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Abstract— Teaching Cyber-Physical System (CPS) design 
requires covering significant breadth while ensuring students 
experience how all the pieces fit together. This paper describes a 
distributed elevator control system design project that addresses 
many of the areas required in a CPS project experience. 
Mapping project aspects to ABET accreditation areas frames a 
discussion of the course’s treatment of CPS issues. The most 
important lesson learned is that students benefit from being 
immersed in and reflecting upon a carefully curated experience 
with a CPS engineering process rather than being turned loose to 
invent their own ad hoc approach to building complex systems. 

Keywords— Cyber-Physical System (CPS) education; 
distributed embedded system course project.  

I. INTRODUCTION 

Teaching Cyber-Physical System (CPS) design requires 
covering a broad range of topics in the areas of computer 
hardware design, software design, mechanical system design, 
and control design, as well as potentially covering related 
disciplines such as system safety, user interface design, and 
dependability. While it is unrealistic to expect a single college 
course to teach everything needed, it is likely that a significant 
unified project experience can be instrumental in helping 
students integrate the aspects of CPS design. An important 
question is how to do this in a scalable way while ensuring that 
students learn the right lessons. 

This paper describes a semester-long project in a 
distributed embedded system course that has been taught at 
Carnegie Mellon University since 1999 [1] with class sizes of 
up to 70 students. While it is not intended to be a perfectly 
balanced CPS experience, it addresses many of the required 
points, especially in the area of methodical engineering 
processes. This paper describes the project in terms of how it 
addresses ABET accreditation goal areas [2] in the context of 
CPS education. A “lessons learned” section reflects upon 
problems that are likely to face significant CPS project courses. 

II. PROJECT SUMMARY 

The project is the design of a distributed elevator control 
system that runs entirely in simulation on a discrete event 
simulator. The elevator is designed as a fine-grain distributed 
system, with a separate (simulated) CPU allocated to every 
instance of every button, light, door, and so on. While real 
elevators are distributed systems, this project elevator 

intentionally exaggerates the number of processors to expose 
students to the issues that arise in complex distributed systems. 

The project is not intended to be an open-ended capstone 
design exercise in which students determine their own project 
goals and concentrate on achieving an aggressive technical 
result. Rather, it is designed to be a carefully curated design 
experience in which students more or less follow the same 
process, demonstrate a certain set of technical skills, and 
experience a core set of design process challenges.  

A. The Elevator Project 

The elevator is based on the author’s experience as part of 
an industry elevator architecture team, and includes sufficient 
detail to be a design experience that captures (often in 
simplified form) a wide range of industry-relevant CPS design 
considerations. A key part of the project is that simulated 
passengers ride the elevator, providing a self-contained way to 
exercise and evaluate the system’s behavior. Examples of the 
details involved include door reversal triggering that varies 
based on passenger size, sounding a buzzer to get some 
passengers to exit an overweight elevator, randomized time 
constants on passengers behaviors such as button presses, and 
passengers who only enter and exit when car lanterns and floor 
indicators display correct information. 

Elevator kinematics models include door motion and a 
multi-speed main motor with a specified acceleration profile. 
The elevator must serve floors in response to hall call and car 
call buttons, re-level as necessary due to weight-induced cable 
stretch, and attempt to maximize passenger satisfaction as a 
function of waiting time and other factors. A simulated 
electromechanical safety system asserts an emergency stop if 
the elevator moves out of the leveling zone with doors open. 

Some parts are already done to ensure the project presents a 
reasonable student workload, such as pre-made passengers, a 
main drive kinematics model, test scaffolding, a graphical user 
interface, and starting points for some complex functions. A 
significant simplification is avoiding the implementation of 
elevator modal behaviors (e.g., firefighter service). But, 
overall, the simulation is complex enough to force students to 
think things through – and to discover behaviors of real 
elevators they’d never noticed before. Most importantly, the 
behaviors are complex enough that it is virtually impossible for 
a non-elevator expert to implement the nuances required for 
successful operation without following a methodical design 
process rather than just diving in to write code. 
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The goal of the course is a 12-hour weekly total student 
workload including a pair of two-hour lectures per week. 
Lectures cover material most students have not encountered 
before this course, primarily in the areas of system engineering 
process, embedded networking, and critical system design. 

The project is organized as a set of  weekly deliverables of 
increasing complexity that follow a defined process flow. 
Students work in teams of 3 or 4, and must have a very simple 
elevator operational by the middle of the course which just 
stops at every floor. After students understand basic elevator 
operation and the simulator framework, they spend the second 
half of the course designing a relatively sophisticated 
dispatching and control system to optimize passenger 
satisfaction without violating stated high level design 
requirements. Some of these high level requirements are 
obvious (e.g., don’t cause an emergency stop). But some 
requirements are passenger preferences that are somewhat 
arbitrary from a purely technical point of view (e.g., once a car 
lantern has announced an elevator is “going up” it is not 
allowed to travel down without first going up to a higher floor).  

Students must demonstrate that they meet the requirements 
by building in run-time monitors to ensure none of ten high 
level requirements is violated at any time during simulated 
workloads involving dozens or hundreds of randomly 
generated passengers. Final projects grades are based largely 
on the quality of the design package per grading rubrics, 
emphasizing completeness and end-to-end traceability from 
requirements through acceptance tests (and every step in 
between), with performance weighted less than design quality. 

III. MAPPING TO OUTCOMES 

The call for papers for this workshop proposed an 
adaptation of the ABET accreditation standards [2] to more 
specifically address CPS education, discussed below. 

A. Applying mathematical models 

We teach an evolutionary improvement of common 
embedded industry practices. To do this, we have pieced 
together relatively well known techniques from embedded 
system design and software engineering rather than attempting 
a unified CPS mathematical modeling framework. 

Our most important mathematical model is deadline 
monotonic scheduling theory applied to network performance. 
We additionally require students to use physics knowledge to 
predict the “commit point” at which a moving elevator has to 
decide whether to initiate deceleration to stop at a floor vs. 
bypass that floor. There are interactions between the jittery 
periodic message delivery of the real time communication 
system and the possibility of overshooting a floor due to 
communication latency or randomized message corruption that 
expose students to the need to build in design margins to 
account for timing variations. 

We mandate a purely time triggered design with some jitter 
due to the use of deadline monotonic scheduling. The addition 
of a combined event-based and time triggered model might 
expose additional design issues to students. We have found that 
most students naturally think in terms of event-triggered 

systems, so we intentionally push them to a purely periodically 
run system to teach that way of thinking about time. 

Beyond purely mathematical models, students use a 
lightweight Unified Modeling Language approach to model 
and refine elevator requirements, architecture, and design. We 
use a Use Case Diagram, Sequence Diagrams, and Statecharts. 
We use a modified class diagram notation that includes 
hardware/software allocation to document the architecture. 

It is surprisingly difficult to know whether a CPS is 
completely working rather than almost working. This is 
especially true when some requirements involve how overall 
goals are accomplished rather than whether they are 
accomplished. We use a runtime monitoring approach in which 
students add state-machine based monitors to their elevator to 
ensure that no elevator requirements are violated during 
simulations. Our experience is that without such monitors 
almost every elevator violates requirements without students 
realizing it. Left to their own devices, students tend look at 
whether passengers are delivered rather than whether specified 
functional requirements are violated in an otherwise “working” 
elevator. Having a rigorous model of correct system behavior 
that can be used for acceptance testing is just as important as 
having a model from which to build the system itself. 

B. Design and conduct simulations 

A customized discrete event simulator is used to implement 
the elevator. Real hardware is not used in part because of the 
complexity and expense of providing dozens of CPUs to 
students, and in part to expose students to simulation as a 
technique for understanding system behavior. CPU speed and 
memory are not simulated, but network bandwidth and latency 
are. In this particular design, as in many embedded systems, 
almost all modules have very simple software that could easily 
be handled by a 16-bit processor running at a few MHz. The 
complexity of this system is in the interaction of the distributed 
components, so that is where the simulation fidelity is highest. 

All interactions between computing elements occur via a 
CAN [3] network simulation. Sensors, actuators, and people 
also communicate via the same messaging facilities, except 
they bypass the CAN performance model. The simulator has a 
test framework that supports injecting messages to objects, and 
a way to record output messages to monitor test results. 
Students are required to run unit tests and integration tests with 
these test facilities. Acceptance tests are performed via 
delivering simulated passengers. Carefully designing their own 
tests at all levels is an essential part of students getting their 
elevators to pass the staff-created acceptance tests. 

C. Good engineering practices and quality attributes 

A core goal of the course is to have students experience 
using a very well defined engineering process rather than 
winging it as they might in a typical student project demo. 
Thus, the emphasis is on solid engineering rather than novelty, 
and the project experience is carefully curated by using a well-
debugged, standardized project assignment. Some ambiguities 
and gaps in the materials are intentional and strategically 
included as part of a realistic experience. Keeping the project 
substantially the same every year minimizes gratuitous bugs. 
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Other aspects of creating a realistic system include: 
meeting explicit safety goals, dealing with user interaction 
issues (the passenger time constants are more representative of 
a retirement home and than a student dormitory), and fault 
tolerance to dropped network messages.  

Lectures cover other important engineering aspects such as 
economics, ethics, and security, because they are not explicitly 
included in the project. 

D. Multi-disciplinary teams 

The student body is fairly homogeneous, consisting 
primarily of students with computer science and computer 
engineering backgrounds. Team members are encouraged to do 
at least some of every aspect of the project, although some 
specialization does occur within teams (e.g., test scripts, system 
builds, hand-in audits). Moving to a CPS hardware-based lab 
instead of a simulator-based lab would increase the opportunity 
for multi-disciplinary interaction, but would present scalability 
issues and add substantial hardware debug workload.  

Student demographics make it challenging to create cross-
disciplinary teams of 3 or 4 for the large class sizes we 
encounter (the most recent class had 68 students). Larger and 
more flexible projects would simplify attaining a good skills 
mix even if only a few students from a particular discipline 
enrolled in the class, but would require significant modification 
to the project and might not scale as well to large classes. 

E. Formulate and solve engineering problems 

The first half of the course presents a very restrictive 
project assignment and a rigorously enforced design process 
flow, including a defined architecture, high level requirements, 
requirements allocation to subsystems, detailed requirements, 
design, implementation, design reviews, unit test, integration 
test, acceptance test, and process quality monitoring. The main 
point of this part of the project is to get the students up to speed 
on process, technology, and domain knowledge. Therefore, the 
required elevator behavior is extremely simplistic. 

The second half of the semester is still highly structured, 
but is much less constrained. Students are free to use any 
technical approach to meet ten specified behavioral 
requirements, with bonus points given both for passenger 
delivery performance and having a high quality design 
package. A change of maximum main drive speed is made 
about three quarters of the way through the semester, which 
requires students to use a more sophisticated dispatcher to 
determine the elevator speed ramp-down point multiple floors 
ahead of the desired stop. This lets students experience three 
generations of changing requirements. 

F. Life- and safety-critical systems 

The elevator has a simulated electro-mechanical safety 
brake typical of one found in real elevators. Elevators must 
function in complex and heavy passenger workloads without 
tripping the safety shutdown monitor. Significant lecture 
content covers the topics of dependability, safety, and security, 
including safety-critical design standards. Including a stronger 
safety critical design experience would be appealing, but is 
beyond the time available in the current course. 

G. Effective communication 

Each student group presents a mid-semester and end of 
semester status report, highlighting design choices and lessons 
learned. These tend to focus mostly on software engineering 
concerns and simple metrics such as productivity and review 
effectiveness. Students often touch upon cyber-physical 
interactions in the form of physical performance optimization 
in the final project. If physical project aspects were 
strengthened, more time could be spent on cyber-meets-
physical aspects. Every project team must also provide a 
comprehensive design package with complete traceability from 
requirements through design, implementation, and test. 

H. Cyber vs. physical design decisions 

The tradeoffs in this dimension are twofold. Students adjust 
the real time system schedule to ensure that control loops are 
tuned to the time constants of the physical portion of the 
system (primarily main motor speed, door speed, and user 
interface speed). A second potential tradeoff would be having 
safety performed by a physical system rather than a cyber 
system. Creating a credible software safety system has been 
explored on an individual basis by several students who use the 
elevator as a pilot system for PhD thesis work. 

Opening up the main motor model to permit optimization 
of acceleration/deceleration profiles and energy use (including 
energy recovery from passenger/counterweight imbalances) 
would be a good CPS-oriented extension for this project. 

I. Life-long learning 

Gaps in textbook coverage, such as embedded networks, 
are covered by using practitioner-oriented articles rather than 
academic articles to acclimate students to using such 
publications to keep their skills up to date after graduation. 

J. Contemporary issues 

The course text [4] (and, indirectly, the course organization 
itself) is based on extensive field experience with design 
reviews. Additionally, “war stories” told in each class based on 
instructor experience serve to illustrate and motivate the 
material and issues that students need to be aware of. A more 
formal way of capturing and communicating such issues from 
a variety of sources would aid scalability in this area to other 
courses, but would be a significant undertaking. 

K. Cyber-physical techniques, skills, and tools 

The course uses an end-to-end design process that is 
representative of (or, in many cases, more rigorous than), a 
typical small-system industrial control project. Tools are quite 
lightweight, including drawing UML diagrams with whatever 
tools the students are comfortable, and using spreadsheets for 
traceability. Therefore, the emphasis is more on understanding 
how pieces fit together and learning basic representations of 
ideas rather than on tool proficiency. Students are encouraged 
to use auxiliary tools such as a version control tool and 
customized scripts to manage project portfolio assembly and 
hand-in. In large part this philosophy is driven by an 
observation that end-to-end tool chains are generally not in use 
in smaller industry projects for a variety of reasons. 
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IV. LESSONS LEARNED AND PRACTICALITIES 

While the current project is remarkably similar to the first 
time the course was taught at a high level, just about 
everything in it has been overhauled over the years in response 
to an evolving understanding of what works, what doesn’t 
work, and what benefits students the most given limited time 
and resources for both faculty and students. 

A. Tools 

We have our own simple discrete event simulator written in 
Java and a custom GUI that are reasonably platform 
independent, and require no proprietary tools. While this has 
cost us time to write and rewrite things, it also minimizes tool 
learning curves, license hassles, tool/project mismatch, version 
incompatibilities, and tool obsolescence problems that would 
have otherwise occurred. Adoption of a newer simulation tool 
is a possibility, but there is some virtue in having the simplest 
simulation framework necessary even if it is limited. 

Making students perform all the steps more or less by hand 
helps them to see what goes on “under the hood.” With a more 
multi-disciplinary student body one might have every student 
use an integrated CPS toolset while getting more in-depth 
exposure to what goes on behind the curtain in selected 
specialty areas. If we were to adopt an integrated CPS-specific 
design tool, it would have to be adapted to support the 
distributed system nature of our project, including test 
frameworks, precompiled opaque solution/scaffolding 
modules, detailed network simulation, support for complex 
non-CPS objects such as human passengers, and so on.  

B. Design process vs. technology 

Over the years we have found via student and employer 
feedback that our most valuable contribution is giving students 
an experience in which they come to realize, on their own, that 
sound methodical engineering practices are worth doing 
regardless of how smart the student may be. We’ve achieved 
this by intentionally creating a project that is too complex and 
subtle for most students to get right without using a methodical 
design process. Students who try to brute force things by 
writing code first and documenting later usually have a 
catastrophic experience (we help them recover before the end 
of the project). Many students list “skipping design steps bites 
you later” as one of the things they learned in the end-of-course 
retrospective presentations, often with compelling stories from 
their course experience to illustrate the point. 

We also have increasingly had success by requiring the 
students to monitor and comment upon a few simple process 
metrics. For example, using a simple spreadsheet to 
standardize peer review reports and requiring a tally of defects 
found in each peer review has had dramatic effect. Student 
effort has shifted to earlier weeks (to fix bugs earlier) and the 
ratio of bugs found in peer reviews increased from 10% to 
about 50%. Most groups now have a light hourly load the last 
week of the project because the big bugs are being found early. 
After that change, students started listing one of the big things 
they learned in the course as being “peer reviews really work.” 

One of the open challenges with this course is individual 
assessment. We have tried many approaches to measuring 

individual performance within teams, and have found that most 
students game any grade-related metrics heavily. We now just 
concentrate on detecting dysfunctional teams via meetings and 
a weekly effort report. An essential ingredient in team success 
is a weekly 30-minute project management meeting for each 
group with a Teaching Assistant (TA). We have found that it is 
essential for each TA to have taken the course previously to 
appreciate the project issues that arise. 

V. CONCLUSIONS 

After more than a dozen years teaching distributed 
embedded systems, we’ve created a project that scales to large 
class sizes and provides a robust design experience without 
being a “killer project” course. It is strong in engineering 
process, but is somewhat software-centric, with other non-
software aspects present as second-class citizens. The complete 
set of project materials, including the simulation framework, 
are publicly available on the course web site [1]. 

Based on our experiences, it is essential to teach not just 
“good CPS design” but rather “good engineering design” as 
applied to a CPS project that is complex enough that students 
must to follow a good process to succeed.  

We have opted for a do-it-yourself tool set that has served 
us well, but as off-the-shelf CPS tool chains mature and are 
adopted by industry this approach will need to be reconsidered. 
We think it is essential that students understand the underlying 
principle of each step in the design process so as not to treat the 
tool chain (or the steps in using that tool chain) as a magic box 
that just makes CPS designs happen without careful 
engineering consideration. Some students will need to 
understand the details so they can become future tool builders. 

Other approaches to a CPS project experience have been 
and no doubt will be devised with different strengths and 
weaknesses (for example as summarized in [5]), especially as 
CPS skills infuse the undergraduate curriculum so that more 
diverse students are ready to undertake projects of this depth 
and scope. Hopefully the description of this course and some of 
the lessons learned will help others down that path. 
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