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ABSTRACT 
A powerful way to understand where gaps are in the expertise of 
embedded system designers is to look at what goes wrong in real 
industry projects. This paper summarizes the “red flag” issues 
found in approximately 90 design reviews of embedded system 
products conducted over a ten year period across a variety of 
embedded system industries. The problems found can be roughly 
categorized into the areas of process, requirements, architecture, 
design, implementation, verification/validation, dependability, 
project management, and people. A few problem areas, such as 
watchdog timers and real time scheduling, are standard embedded 
education topics. But many areas, such as peer reviews, 
requirements, SQA, and user interface design seem worthy of 
increased attention in texts and education programs. 

Categories and Subject Descriptors 
J.7 [Computer Applications]: Computers in other systems – 
industrial control, process control, real time. 

General Terms 
Management, Documentation, Performance, Design, Economics, 
Reliability, Security, Human Factors, Verification. 

Keywords 
Embedded system education, software engineering, industry 
experience, design reviews, real time systems, software process. 

1. INTRODUCTION 
Most embedded education approaches stem from some attempt to 
create an overarching set of principles, list key topics, and adopt a 
particular teaching philosophy. That’s a great basis from which to 
start. But, an interesting question is, what might be missing? 

This paper looks at the problems and risks encountered by 
practicing embedded system designers. If they are making 
omissions or mistakes that materially affect the quality of their 
product or introduce undue risks to product success, then those 
areas seem reasonable to consider as potentially in-scope for 
embedded system education. 

This paper identifies 43 risk areas for real products in a variety of 
embedded system application areas. The items were identified 
over the course of more than 90 design reviews conducted by the 
author, spanning approximately the past 10 years. While the data 
points are self-selected and are vulnerable to reviewer bias, they 
nonetheless provide insight into what sorts of skill gaps and 
problem areas are present in embedded software projects. 

2. BACKGROUND 
The basis of this paper is a retrospective study of design reviews 
conducted by the author for a variety of embedded system 
companies. The companies are not identified to protect all parties 
involved, but most are divisions of large corporations or similar 
business entities which specialize in embedded systems. Such 
development groups would be expected to have mature and well 
organized procedures for designing and supporting moderate to 
large scale product deployments. A few reviews were of 
prototypes, but in all cases the developers were skilled, 
experienced, and tasked with designing real commercial products. 

2.1 Product Types Included 
The product types that were the subject of reviews generally 
include the following areas. This list is intended to give an idea of 
scope of the findings and does not necessarily include every 
single product: 

• Transportation 
o Automotive control  
o Train control 
o Navigation 

• Chemical processing 
o Metering and flow control 
o Chemical analysis 
o Process automation 

• Buildings 
o Heating, Ventilation, and Cooling (HVAC) 
o Lighting and building security 
o Elevator and related transportation systems 
o Building utility services 

• Telecommunication systems and data centers 
o Power regulation, switching, and backup 
o Environmental controls 

• Manufacturing 
o Motion control and robotics 
o Inspection 
o Monitoring and equipment maintenance 

• Underlying technology 
o Embedded real time control networks 
o Safety critical system design 
o Security 
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Some embedded application areas are absent from this data, such 
as consumer electronics and large military combat systems 
(although the author has had product experience with these areas 
in the past). There is no reason to believe these results are limited 
to the listed domains, but it seems plausible that concerns would 
vary depending upon which market segment a product is in. 

All projects reviewed were predominantly software projects, 
although select hardware aspects were considered when 
appropriate for evaluating the system as a whole. Code size 
ranged from a few hundred bytes to about a million lines of code. 
Development team sizes ranged from one part-time developer to 
teams of up to 25 developers.  (In some cases an overall system 
had many more developers, but only a specific subsystem was the 
topic of a review.) Most projects were in assembly language, C, 
or C++, but other languages were occasionally used. Developers 
most often followed Waterfall or Vee development approaches, 
but some products used Spiral, Incremental, or Agile approaches. 
Most reviews were of US-based teams, with a handful of reviews 
in Europe and Asia. Perhaps one fifth of US development teams 
used development partners or remote team members in India or 
China. In most cases remote developers participated in reviews 
either in person or via conference call. 

Systems were about evenly divided between small 
microcontrollers and bigger CPUs that ran some sort of RTOS. A 
very few systems used DSPs or FPGAs, and none used custom or 
domain-specific silicon. Product volume ranged from prototypes 
to hundreds of thousands of units per year, although most reviews 
were for products in the 1,000 to 20,000 units per year range.  

The results of some design reviews beyond those in the data set 
were excluded due to contractual obligations or because they did 
not result in formal review reports. But, if included, that data 
would not have materially changed the outcome of this study. 

2.2 Design Review Process 
A typical design review involves the steps of setting up the 
review engagement, learning some domain background, obtaining 
as many project documents as possible, selectively reviewing 
documents, setting a meeting agenda, traveling to hold an on-site 
review visit, and generating a written report. A minority of 
reviews to examine very specific areas or answer narrow 
questions were done via e-mail and phone, with no visit. 

On-site visits typically lasted one day or, in some cases, two days. 
The amount of information available before the visit ranged from 
essentially nothing to thousands of pages of design information 
(often including complete source code listings). The degree to 
which developers self-identified problems before a visit varied, 
but most problems were identified by the reviewer without hints 
from the review team. More importantly, in almost all cases the 
review team accepted the problems identified as valid feedback. 
(This is not to say that every recommendation was necessarily 
carried out. But, for the most part, teams agreed that the areas 
identified as critical risks were in fact major issues that 
significantly affected the likelihood of project or product 
success.)  

Perhaps a third of all the design reviews, mostly in the first years, 
were carried out by two independent reviewers in parallel, with a 
shared visit and jointly issued report. More recent reviews were 
single-reviewer events in large part due to economic constraints. 

Most reviews were performed at about the time the product was 
ready to start acceptance testing or ready to be released. In cases 
where a problem was identified, an attempt was made to trace 
back to a reasonable root cause. For example, a bug-prone module 
might be identified as having implementation problems, design 
problems, architecture problems, or requirement problems 
depending on which stage in the design process was the most 
effective place to have avoided the bug (and other similar bugs). 

Each review engagement produces a set of recommendations, 
including “red flag” issues that present significant and immediate 
risks to the success of the project or product. Other, less pressing, 
“yellow flag” risks and reviewer observations are also listed in 
review reports. 

Over time, reviews became more formal and repeatable as a list of 
typical problem areas and review questions was developed using 
the input of a number of experts over the first few years of 
conducting reviews. A triage process based on this list was 
formally used for perhaps a third of the reviews, and the general 
knowledge of what was in this list informed most of the other 
reviews. The list presented in this paper does not strictly conform 
to the items in that proprietary checklist, but is similar in nature. 
The checklist has approximately three times as many topics as the 
red flag items discussed in this paper. In other words, two thirds 
of the entries on the checklist are worth asking about, but have 
failed to generate any red flag in a decade of performing reviews. 

Very few reviews covered all checklist areas due to lack of time. 
Rather, emphasis was placed on areas that seemed to the reviewer 
and the developers to be the most likely place to be sources of 
major risk. The study presented here is solely concerned with red 
flag issues identified in one or more reviews. 

There is no way to know how many significant risks were missed 
because reviewers didn’t think to ask the right questions. 
However, the chance of this happening was reduced by initially 
by the use of multiple reviewers, and in later years by the use of a 
comprehensive checklist-based triage process as just described. 

2.3 Background of designers 
The design teams reviewed varied in technical background 
significantly. Many team members had degrees and experience in 
mechanical or electrical (non-electronic) engineering. A number 
had electronic and computer engineering degrees. A few had 
computer science or, rarely, software engineering degrees. For the 
most part, senior developers started as domain specialists and 
picked up embedded computing on the job. Junior developers 
were more likely to have had software training of some sort, but 
usually had a non-software engineering background. 

Over the years, there has been a trend for many design teams to 
advance to a higher level of software process sophistication (for 
example, many teams attained SEI Capability Maturity Model [6] 
Level 2 or above). This is in large part due to a concerted effort to 
improve software quality. It is also in part due to hiring of 
developers with formal software training into embedded system 
product teams. But, high process maturity is not universal across 
embedded projects. In particular, each company seems to find its 
own way up the software learning curve as it introduces the first 
non-trivial computing capability into its products and attempts to 
write software using domain experts who have little or no formal 
software training. 
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3. RISK AREAS IDENTIFIED 
The following risk areas were identified as red flag (significant) 
risks in one or more reviews in this study. They are grouped and 
organized to provide some structure in terms of typical 
development process stages and activities. The ordering does not 
connote any severity or frequency. A typical item in this list was 
a red flag in one to five reviews and a yellow flag in several more. 

The examples and likely consequences of risk areas given are 
generally representative of the risks actually seen without 
revealing company-specific information. (To the degree that 
examples or statements are true about any particular product, they 
are also true of many different products that were reviewed.) 

3.1  Development Process 
#1. Informal development process 
The process used to create embedded software is ad hoc, and not 
written down. The steps vary from project to project and 
developer to developer. This can result in uneven quality. 

#2. Not enough paper 
Too few steps of development result in a paper trail. For example, 
test results may not be written down. Among other things, this 
can require re-doing tasks such as testing to make sure they were 
fully and correctly performed. 

#3. No written requirements 
Software requirements are not written down or are too informal. 
They may only address changes for a new product version 
without any written document stating old version requirements. 
This can lead to misunderstandings about intended product 
functions and difficulty in designing adequate tests. 

#4. Requirements with poor measurability 
Software requirements can’t be tested due to missing or 
subjective measurement criteria. As a result, it is difficult to know 
whether a requirement such as “product shall be user friendly” 
has been met. 

#5. Requirements omit extra-functional aspects 
Product requirements may state hardware processing speed and 
hardware reliability, but omit software response times, software 
reliability, and other non-functional requirements. Implementing 
and testing these undefined aspects is left at the discretion of 
developers and might not meet market needs. 

#6. High requirements churn 
Functionality required of the product changes so fast the software 
developers can’t keep up. This is likely to lead to missed 
deadlines and can result in developer burnout. 

#7. No SQA function 
Nobody is formally assigned to perform an SQA function, so 
there is a risk that processes (however light or heavy they might 
be) aren’t being followed effectively regardless of the good 
intentions of the development team. Software Quality Assurance 
(SQA) is, in essence, ensuring that the developers are following 
the development process they are supposed to be following. If 
SQA is ineffective, it is possible (and in my experience likely) 

that some time spent on testing, design reviews, and other 
techniques to improve quality is also ineffective. 

#8. No mechanism to capture technical and non-technical 
project lessons learned 

There is no methodical effort to identify technical, process, and 
management problems encountered during the course of the 
project so that the causes of these problems can be corrected. As a 
result, mistakes are repeated in future projects. 

3.2 Architecture 
#9. No defined software architecture 
There is no picture showing the system’s software architecture. 
(Many such pictures might be useful depending upon the context 
– but often there is no picture at all.) Ill defined architectures 
often lead to poor designs and poor quality code. 

#10. No message dictionary for embedded network 
There is no list of the messages, payloads, timing, and other 
aspects of messages being sent on an embedded real time network 
such as CAN. As a result, there is no basis for analysis of real 
time network performance and optimization of message traffic. 

#11. Poor modularity of code 
The design has poorly chosen interfaces and poorly decomposed 
functionality, resulting in high coupling, poor cohesion, and 
overly long modules. In particular, interrupt service routines are 
often too big and mask interrupts for too long. The result is often 
increased risk of software defects due to increased complexity. 

3.3 Design 
#12. Design is skipped or is created after code is written 
Developers create the design (usually in their heads) as they are 
writing the code instead of designing each module before that 
module is implemented. The design might be written down after 
code is written, but usually there is no written design. As a result, 
the structure of the implementation is messier than it ought to be. 

#13. Flowcharts are used when statecharts would be more 
appropriate 

Flowcharts are used to represent designs for functions that are 
inherently state-based or modal and would be better represented 
using a state machine design abstraction. Associated code usually 
has deeply nested, repetitive “if” condition clauses to determine 
what state the system is in, rather than having an explicit state 
variable used to control a case statement structure in the 
implementation. The result is code that is significantly more bug 
prone code and difficult to understand than code based on a state-
machine based design. 

#14. No real time schedule analysis 
There is no methodical approach to real time scheduling. 
Typically an ad hoc approach to real time scheduling is used, 
frequently featuring conditional execution of some tasks 
depending upon system load. Testing rather than an analytic 
approach is used to ensure real time deadlines will be met. Often 
there is no sure way to know if worst case timing has been 
experienced during such testing, and there is risk that deadlines 
will be missed during system operation. 
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#15. No methodical approach to user interface design 
The user interface does not follow established principles (e.g., 
[5]), making use of the product difficult or error-prone. The 
interface might not take into account the needs of users in 
different demographic groups (e.g., users who are colorblind, 
hearing impaired, or who have trouble with fine motor control). 

3.4 Implementation 
#16. Inconsistent coding style 
Coding style varies dramatically across the code base, and often 
there is no written coding style guideline. Code comments vary 
significantly in frequency, level of detail, and type of content. 
This makes it more difficult to understand and maintain the code. 

#17. Resources too full 
Memory or CPU resources are overly full, leading to risk of 
missing real time deadlines and significantly increased 
development costs. An extreme example is zero bytes of program 
and data memory left over on a small processor. Significant 
developer time and energy can be spent squeezing software and 
data to fit, leaving less time to develop or refine functionality. 

#18. Too much assembly language 
Assembly language is used extensively when an adequate high 
level language compiler is available. Sometimes this is due to 
lack of big enough hardware resources to execute compiled code.  
But more often it is due to developer preference, reuse of previous 
project code, or a need to economize on purchasing development 
tools. Assembly language software is usually more expensive to 
develop and more bug-prone than high level language code. 

#19. Too many global variables 
Global variables are used instead of parameters for passing 
information among software modules. The result is often code 
that has poor modularity and is brittle to changes. 

#20. Ignoring compiler warnings 
Programs compile with ignored warnings and/or the compilers 
used do not have robust warning capability. A static analysis tool 
is not used to make up for poor compiler warning capabilities. 
The result can be that software defects which could have been 
caught by the compiler must be found via testing, or miss 
detection entirely. If assembly language is used extensively, it 
may contain the types of bugs that a good static analysis tool 
would have caught in a high level language. 

#21. Inadequate concurrency management 
Mutexes or other appropriate concurrent data access approaches 
aren’t being used. This leads to potential race conditions and can 
result in tricky timing bugs. 

#22. Use of home-made RTOS 
An in-house developed RTOS is being used instead of an off-the-
shelf operating system. While the result is sometimes technically 
excellent, this approach commits the company to maintaining 
RTOS development skills as a core competency, which may not 
be the best strategic use of limited resources. 

3.5 Verification & Validation 
#23. No peer reviews 
Code, requirements, design and other documents are not subject 
to a methodical peer review, or undergo ineffective peer reviews. 
As a result, most bugs are found late in the development cycle 
when it is more expensive to fix them. 

#24. No test plan 
Testing is ad hoc, and not according to a defined plan. Typically 
there is no defined criterion for how much testing is enough. This 
can result in poor test coverage or an inconsistent depth of testing. 

#25. No defect tracking 
Defects and other issues are not being put into a bug tracking 
system. This can result in losing track of outstanding bugs and 
poor prioritization of bug-fixing activities. 

#26. No stress testing 
There is no specific stress testing to ensure that real time 
scheduling and other aspects of the design can handle worst case 
expected operating conditions. As a result, products may fail 
when used for demanding applications. 

3.6 Dependability 
#27. Insufficient consideration of reliability/availability 
There is no defined dependability goal or approach for the 
system, especially with respect to software. In most cases there is 
no requirement that specifies what dependability means in the 
context of the application (e.g., is a crash and fast reboot OK, or 
is it a catastrophic event for typical customer?). As a result, the 
degree of dependability is not being actively managed. 

#28. Insufficient consideration of security 
There is no statement of requirements and intentional design 
approach for ensuring adequate security, especially for network-
connected devices. The resulting system may be compromised, 
with unforeseen consequences. 

#29. Insufficient consideration of safety 
In some systems that have modest safety considerations, no safety 
analysis has been done. In systems that are more overtly safety 
critical (but for which there is no mandated safety certification), 
the safety approach falls short of recommended practices. The 
result is exposure to unforeseen legal liability and reputation loss. 

#30. No or incorrect use of watchdog timers 
Watch dog timers are turned off or are serviced in a way that 
defeats their intended role in the system. For example, a 
watchdog might be kicked by an interrupt service routine that is 
triggered by a timer regardless of the status of the rest of the 
software system. Systems with ineffective watchdog timers may 
not reset themselves after a software timing fault. 

#31. Insufficient consideration of system reset approach 
System resets might not ensure a safe state during reboots that 
occur when the system is already in operation, resulting in unsafe 
transient actuator commands. 
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#32. Neither run-time fault instrumentation nor error logs 
There is no run-time instrumentation to record anomalous 
operating conditions, nor are there error logs to record events 
such as software crashes. This makes it difficult to diagnose 
problems in devices returned from customers. 

#33. No software update plan 
There is no plan for distributing patches or software updates, 
especially for systems which do not have continuous Internet 
access. This can be an especially significant problem if the 
security strategy ends up requiring regular patch deployment. 
Updating software may require technician visits, equipment 
replacement, or other expensive and inconvenient measures. 

#34. No IP protection plan 
There is no plan to protect the intellectual property of the product 
from code extraction, reverse engineering, or hardware/software 
cloning. (Protection strategies can be legal as well as technical.) 
As a result, competitors may find it excessively easy to 
successfully extract and sell products with exact software images 
or extracted proprietary software technology. 

3.7 Project Management 
#35. No version control 
Sometimes source code is not under version control. More 
commonly, the source code is under version control but 
associated tools, libraries, and other support software components 
are not. As a result, it may be difficult or impossible to recreate 
and modify old software versions to fix bugs. 

#36. No backward compatibility and version management 
plan 

There is no plan for dealing with backward compatibility with old 
products, product migration, or installations with a mix of old and 
new product versions. The result may be incompatibilities with 
fielded equipment or a combinatorial explosion of multi-
component compatibility testing scenarios necessary for system 
validation. 

#37. Use of cheap tools (software components, etc.) instead of 
good ones 

Developers have inadequate or substandard tools (for example, 
free demo compilers instead of paid-for full-featured compilers) 
because tool costs can’t be reckoned against savings in developer 
time in the cost accounting system being used. As a result, 
developers spend significant time creating or modifying tools to 
avoid spending money on tool procurement. 

#38. Schedule not taken seriously 
The software development schedule is externally imposed on an 
arbitrary basis or otherwise not grounded in reality. As a result, 
developers may burn out or simply feel they have no stake in 
following development schedules. 

#39. Presumption in project management that software is free 
Project managers and/or customers (and sometimes developers) 
make decisions that presume software costs virtually nothing to 
develop or change. This is one contributing cause of requirements 
churn. 

#40. Risk of problems with external tools and components 
External tools, software components, and vendors are a critical 
part of the system development plan, and no strategy is in place to 
deal with unexpected bugs, personnel turnover, or business failure 
of partners and vendors. 

#41. Disaster recovery not tested 
Backups and disaster recovery plans may be in place but untested. 
Data loss can occur if backups are not being done properly. 

3.8 People 
#42. High turnover and developer overload 
Developers have a high turnover rate. As a result, code quality 
and style varies. Lack of a robust paper trail makes it difficult to 
continue development. Often more important is that replacement 
developers may lack the domain experience necessary for 
understanding the details of system requirements. 

#43. No training for managing outsource relationships 
Engineers who are responsible for interacting with outsource 
partners do not have adequate time and skills to do so, especially 
for multi-cultural partnering. This can lead to significant 
ineffectiveness or even failure of such relationships. 

4. ANALYSIS 
4.1 Projects Don’t Need To Be Perfect 
It is important to point out that not every project needs to get 
everything on the preceding list perfect. Red flag areas were 
based on risk specific to a particular domain and product. A 
development team could totally ignore many or most items on the 
above list, so long as this didn’t create a significant risk of 
product or project failure. For example, having the watchdog 
timer turned off is likely to be a red flag on unattended equipment 
with 24x7 operational requirements, but might not be a big deal 
for a non-critical hand-operated device that is power cycled 
before each use in normal operation. 
In other words, items were red flags because they were significant 
risks in the context of that particular product, not because they 
were on a list of best practices that ignored application tradeoffs. 
That having been said, identification of red flag issues was at the 
discretion of the reviewer with feedback from the developers 
being reviewed, and therefore somewhat subjective. 

4.2 Back to Basics – But Less Than Expected 
Perhaps surprisingly, there are only a very few risk areas that are 
almost universally accepted as embedded system core educational 
topics. Real time scheduling, watchdog timers, and concurrency 
management are likely to be on a typical embedded system 
educator’s list of desirable technical topics for either a first or 
second course in the area. But most of the problem areas aren’t 
like that. Many of the items are things omitted by typical 
embedded system texts and courses. 

That doesn’t mean core technical areas don’t matter. I believe it is 
important to give embedded system designers a principled 
understanding of core engineering principles and underlying 
technology. But, these results suggest that informally trained 
embedded designers (who have, however, been formally schooled 
in a rigorous way of thinking about technical problems in general) 
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tend to find ways to fill in basic technical areas on their own, 
even if they haven’t have technology-specific formal training. So, 
apparently, self-teaching with a book in one hand and a 
development board in the other works out pretty well for the 
basics. But it doesn’t seem to work well enough beyond that. 

Most risk areas seemed uncorrelated with developer backgrounds, 
but there were a few areas in which team members’ formal 
educational background affected likely risk areas in ways that 
most people would probably expect. For example, developers 
with formal software training were more likely to use a version 
control system. Differences were not as dramatic as might be 
expected. In part, this is because non-software engineers are 
trained to follow a methodical development approach (such as 
creating written requirements and formal test plans) for non-
software aspects of the system, and that approach carried over to 
software. However, developers without formal embedded training 
were more likely to have gaps in embedded-specific technology 
areas such as concurrency control and real time scheduling since 
they had not seen that material in an introductory programming 
text (and may well have been self-taught from an introductory 
embedded system text that lacked that information). 

4.3 Knowing You Have A Problem 
Most of the problem areas might be characterized as having the 
property that they are the result of a gap in the developer’s 
understanding or a gap in the software process being used. In 
other words, developers didn’t realize (or didn’t have time) to 
look for some types of problems. Basic functionality for a desired 
system was usually there at the time of the design review. For 
example, everyone had figured out by the design review how to 
use an A/D converter well enough to get acceptable sample 
quality. And, developers were quite capable of finding and fixing 
obvious problems with functionality. The risks tended to come 
more from having a high probability of undetected subtle bugs, 
missing chances to have avoided big problems that surfaced late 
in the project, and missing chances to avoid project schedule or 
cost problems. 
On the whole, it seems that smart, motivated developers can 
figure out most of the technology and fix most problems if they 
have a way to know what’s broken. The biggest risks come when 
they don’t realize something in their technology or development 
process is broken, or when they attempt ad hoc solutions to 
difficult problems because they don’t know of the existence of 
more robust solution approaches. In other words, the biggest risks 
come from lack of a comprehensive education and 
correspondingly comprehensive process. 

4.4 Weak Process Hurts 
A surprise (to me at least) was that a significant fraction of the 
problem areas ended up being software process problems instead 
of technology problems. While most embedded system educators 
appear to be technologists at heart, the fact of the matter is that 
poor software process is a huge problem impeding the success of 
embedded system development efforts. (It’s hard to have a good 
product with bad technology. But it’s also hard to succeed with an 
ineffective development process.) 
The lack of process content in most developer degree programs 
and educational support materials is deeply ingrained, and has 
various sources. But it is really hurting embedded developers, and 
is a critical skill set they must currently pick up once in industry. 

4.5 Embedded Software Problems Are Only 
A Little Special 
Many of the red flag areas would not be out of place in a list of 
enterprise computing project risks. Some software practices are 
good ideas regardless of the domain. However, the ways to 
mitigate risks are often different for embedded applications than 
for desktop applications. 

4.6 Five Forebodes Failure 
One of the informal observations made across the course of these 
reviews was that developer teams with exactly 5 primary 
contributors have the most spectacular project failures. Invariably 
these teams had previously completed a project with 3 or 4 
members successfully, and increased the team size to tackle a 
more complex project without making any changes in their 
software process. But they failed with the new, 5-person team. 

While this is an anecdotal result, projects that grow past 4 
developers in size should seriously consider switching to a 
heavier weight software process (more paper, more formality, 
more methodical rigor). Smaller teams still seem to benefit from 
good process, but basically can get away with informality with 
less dramatic risks than larger teams (5 or more developers) 
working on more complex projects. 

5. EDUCATIONAL IMPLICATIONS 
5.1 Risk Areas And Formal Education 
Embedded system software development is often performed by 
engineers with no formal training in that area. Rather, developers 
most often start as domain experts and pick up embedded 
software skills informally. As mentioned previously, the 
surprising part is not that such developers have gaps, but rather 
that they seem to do a pretty good job of filling in the gaps in 
basic technology areas all on their own. In other words, there isn’t 
much difference in the risks areas identified in projects being 
performed by computer-trained embedded system engineers vs. 
non-computer trained domain experts. 
The gaps that were identified are largely either in a few system 
integration technical areas or in the broader area of software 
development process. Most computer engineers (and even many 
computer scientists) receive little software process training. Thus, 
even embedded system engineers with formal computer-related 
degrees typically haven’t see much formal educational material 
that would fill these gaps. 
I believe that plugging the gaps in embedded system projects isn’t 
likely to be solved by having more engineers take the usual sort 
of existing embedded system college courses. The problem is 
really that these topics typically aren’t being taught to (nor 
packaged for learning by) embedded designers. This data suggests 
that it might be useful to rethink the core skills that should be 
taught in embedded system courses and included in texts. 

5.2 Course Organization 
Informal awareness of the types of topics that cause problems in 
industry embedded projects has been guiding graduate and 
undergraduate course content choice at my institution for a 
number of years. But, until I performed this study, I was 
operating on gut feel instead of data. As a result of this analysis, a 
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two-course embedded systems sequence has been updated to 
address most of the risk areas. 
18-348 Embedded System Engineering is a course which is 
mostly taught to third- and fourth-year Electrical and Computer 
Engineering (ECE) undergraduate students. The syllabus 
superficially appears to be a rather typical introduction to 
microcontrollers course using 16-bit CPUs. But, portions of 
lectures, homework assignments, and lab assignments have been 
crafted to instill an understanding of the basics of methodical 
software process. For example, every assignment has carefully 
written, numbered requirements. Most assignments require 
documented peer reviews, designs, test plans, defined acceptance 
tests, and so on as an addition to the main, technology-centric 
objectives. These are lightweight approaches to instill awareness 
rather than rigorous treatment of process topics, largely because 
undergraduates lack the world-view and experience to appreciate 
and learn about process topics. But they are a start in the right 
direction. Technology topics from the list given earlier in this 
paper directly taught at this level are concrete, technical, or linked 
directly to implementation: #11 modularity, #12 design before 
implement, #13 statecharts, #14 real time scheduling, #16 coding 
style, #19 globals, #20 compiler warnings, #21 concurrency, and 
#30 watchdog timers. 
18-649 Distributed Embedded Systems is taught to ECE Masters 
Degree students, usually in their first year of graduate school, and 
to fourth-year undergraduates as a follow-on to 18-348. The 
remaining risk areas not covered by 18-348 are covered in this 
course, with the coverage increasing over recent years as lectures 
have been modified to correspond to the risk area list. Course 
lectures are divided into three parts: one third cover software 
process and advanced embedded system technology, one third 
cover embedded networking and distributed systems, and one 
third cover dependable and critical system design. That is to say 
that most of the lecture content is technical (which is what most 
students are interested in learning when they sign up for the 
course), and only a few lectures are overtly process-centric. A 
semester-long course project is used to demonstrate the execution 
of process methods and (for students who are at a point that they 
are ready to learn the lesson) instill the value of having a 
lightweight but complete process for software development. A 
companion text [4] based on the experiences described in this 
paper also provides risk area information to the students. 

5.3 Software Process Educational Philosophy 
Most university students lack experience with the complexities of 
real systems, and have not yet encountered situations in which 
lack of good development process has caused a project failure. 
(Or, at least, they have not recognized that process issues may 
have contributed to the failure of a project they have been 
involved in.) Because of this lack of experience, it is often 
difficult to motivate computer engineering students to study these 
topics, which are more traditionally thought of as software 
engineering. Rather, students often want to focus solely on what 
they consider technical (non-process) matters in coursework. 
The course sequence just discussed attempts to address this issue 
by creating exposure to key ideas at the undergraduate level and 
concentrating on a more direct treatment of process issues at the 
graduate student level via a hands-on course project experience. 

Unlike most computer engineering course projects, the goal of the  
18-649 course project is to learn good process. (To be sure, the 
project has to work! But fancy technical aspects are not the end 
goal.) The approach is to have an experience in using a 
reasonable process that incorporates risk areas identified in this 
paper. For this to work, the project has to be complex enough that 
most students are likely to fail or have a very difficult time if they 
ignore the process, but well structured enough that students are 
likely to succeed if they follow a good process. 
To this end, the project in 18-649 is a simulation of a fine-grain 
distributed building elevator system. In this system every 
component (button, light, motor, etc.) has its own CPU that 
communicates with other CPUs via an embedded network. This 
project was chosen for many reasons, including giving students 
exposure to discrete event simulation and a taste of how 
distributed embedded control systems can be designed. But, most 
importantly, there are a number of quite subtle system-level 
behaviors that emerge from the interaction of component 
behaviors that are both representative of real elevator behavior 
and difficult to get right just by writing code. Moreover, there are 
sufficient technical subtleties in real elevator behavior to maintain 
student interest throughout the semester in their quest to create an 
elevator that actually delivers all the simulated passengers 
without triggering the simulated safety shutdown mechanism. 
To accomplish the goal of emphasizing process, all students work 
from the same set of high level specifications and have the same 
acceptance tests. The elevators have to actually deliver passengers 
safely. But, most grading points are awarded for following a 
reasonable software process and delivering items such as 
requirements, architectural documents, design diagrams, unit 
tests, integration tests, and traceability tables. High level system 
requirements are modified mid-semester to require more 
sophisticated (and realistic) elevator behavior, and students must 
then update all aspects of their design package to correspond to 
the modified system while maintaining end-to-end traceability. 
In keeping with the process spirit of the project, grading is an 
exercise in Software Quality Assurance (SQA). Graders award 
points based on whether the process was followed (e.g., did you 
submit design diagrams for every module?) rather than the 
technical excellence of the result (optimization is not judged). 
Based on experience, it seems helpful to give some technical 
feedback to students rather than having grading be purely SQA, 
but such feedback is given as technical advice without attaching 
grading points to non-process evaluations. A small number of 
bonus points is awarded to the one team who has the most 
efficient performance on acceptance tests. The same number of 
bonus points is available to all teams at the end of the semester 
who have excellent end-to-end design packages. The message 
most students get from this is that getting the process right is what 
they should emphasize. 
By the end of 18-649, most students have experienced some bug 
or other difficulty that they themselves attribute to a process 
failure, and that experience is a main objective of running the 
project. (For example, they may encounter a bug that took a long 
time to track down because a design diagram had not been 
updated to correspond to modified code.) Informally, it appears 
that most students are skeptical about the need for rigorous 
software process at the start of the course. By the end of the 
project two-thirds to three-quarters of the students seem to have 
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gained an appreciation for the benefits of a process. (This 
estimate is taken from comments made during oral presentations 
where students are encouraged to be honest, and for the most part 
seem inclined to say what is on their mind.) The remaining 
students will often say they think the process content was a waste 
of time. But, at least they have experienced such an approach. 
There are no doubt many other ways to approach teaching good 
software development process to engineering students who are 
not overtly interested in that. But, the point is that focusing a 
technically challenging project experience on methodical design 
methods rather than technical excellence of the outcome seems to 
help students understand and absorb process lessons in 
appropriate risk areas. 

5.4 Related Work 
It is no surprise that cross-disciplinary hardware/software 
education is required to educate embedded system designers ([12] 
and [13] discuss this, and this idea is also present in most 
curriculum designs cited below to some degree). There has been 
little formalized work on analyzing the needs of industry with 
regard to embedded systems. [2] is based in part on an analysis 
that takes into account industry surveys, and suggests that 
embedded system education should be more cross-disciplinary 
and more representative of embedded industry experiences. These 
are important observations and worthy goals. My results extend 
these observations by reporting problems that even experienced 
industry designers aren’t able to resolve on a consistent basis. 

A number of embedded system educators already emphasize 
some of the areas on the risk list, most typically the areas 
identified for inclusion in 18-348 as well as distributed system 
and dependability topics. Examples include [1], [7], [10], [11] and 
previous courses at Carnegie Mellon [3]. Other curriculum 
proposals include an explicit software engineering courses (e.g., 
[8]). No doubt there are some other degree programs that address 
most or all of these areas in one way or another (for example, 
Carnegie Mellon has an interdisciplinary Master of Science in 
Information Technology – Embedded Software Engineering 
degree [9] that requires both graduate embedded system technical 
courses and graduate software engineering courses). But such 
programs are not the norm. My belief is that software process 
concepts should be integrated throughout the embedded 
curriculum, and not just an optional or isolated course module. 

Embedded system courses almost universally use hands-on 
project content as a way for students to get a feel for system 
integration issues. This certainly gives students experience in how 
difficult complex projects can be and gives them a chance to test 
their fundamental technical skills. However, I have found that 
even engineers who have been through a large number of industry 
design projects have gaps. Thus, I believe that merely 
experiencing a design project without guidance and reflection 
upon solid principles and these specific risk areas is not enough to 
fill these gaps. It is difficult to teach yourself ways to fix 
problems when you don’t ever realize you got things wrong. 

6. CONCLUSIONS 
This paper identifies 43 areas that were identified as red flag risk 
areas across reviews of 90 industry embedded system projects in 
the past decade. The most striking aspect of the list is that, by and 
large, even self-trained developers are not at huge risk of missing 

the basics of embedded systems. Rather, most risks are either 
complex system integration skills (e.g., concurrency 
management) or software development process issues (e.g., 
requirements problems or inadequate test plans).  
While many of the areas identified might not seem specific to 
embedded systems, they are the risk areas that are actually 
affecting real embedded projects. Embedded educators should 
take notice and take steps to ensure that future courses and degree 
programs address most of these areas, preferably in a way that 
teaches the skills most useful in an embedded system context. 
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