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Abstract 
 
This position paper identifies three significant 

research challenges in support of deeply embedded 
system survivability: achieving dependability at the 
enterprise/embedded interface gateway, finding a viable 
security patch approach for embedded systems, and 
surviving run-time software faults. 

1. Introduction 
Deeply embedded systems consist of one or more 

embedded systems connected to an enterprise system or 
to the Internet (e.g., [3]). To be survivable, such systems 
must continue to function in the face of faults, whether 
accidental or malicious, and whether the faults are 
caused by design errors or unexpected operating 
conditions. Embedded system survivability can be more 
challenging than enterprise survivability because 
embedded systems may not be able to perform frequent 
reboots, incorporate weekly patches, transfer large 
amounts of data, or be cared for by trained system 
administrators. Beyond this, the different natures of 
embedded control vs. enterprise systems present 
fundamental limitations to applying known techniques 
from either area to the other. [1] 

2. Fundamental limitations 
2.1 Time triggered to event triggered interfaces 

A fundamental limitation to achieving deeply 
embedded system survivability is the inherent mismatch 
between time triggered and event triggered systems. 

Embedded systems are often “time triggered,” 
meaning that they perform periodic computations and 
messaging in support of hard deadlines (e.g., [2]). 
Because of the dramatically different needs of real time 
control systems compared to desktop computing, they 
often use specialized network protocols such as CAN 
that provide low-cost, but low-bandwidth solutions 
optimized for very short messages (often 100 bits or 
fewer per message with network speeds on the order of 
1 Mbit/sec). 

Enterprise systems, in contrast, are usually 
characterized as “event triggered” systems with much 
larger, sporadic events, and typically have orders of 
magnitude more CPU power and network bandwidth. 

The interface between the embedded and enterprise 
sides of a deeply embedded system is usually in the form 
of a “gateway” that provides a bidirectional transition 
between the time triggered and event triggered worlds. 
Given sufficient resources, each computing paradigm 
can be made to simulate the other. Event triggered 
systems can schedule events periodically to simulate 
time triggered operation. Time triggered systems can 
schedule periods so fast that they don’t miss events. But, 
those approaches only work in the fault-free case. 

Deeply embedded system gateways will encounter 
fundamental limitations when attempting to map faults 
and responses in one computing paradigm into the other 
computing paradigm. For example, what happens when 
event triggered messages are clumped in transit, and 
arrive faster than the minimum inter-arrival rate assumed 
by the time triggered side of the gateway? Queues in the 
gateway provide only a partial solution, and can cause 
problems when the system encounters queue overflow or 
system instability as a result of queue lag time.  

In the other direction, time triggered messages that 
contain too much value jitter can defeat whatever low 
pass filters are in place at the gateway and can 
potentially flood the enterprise system with messages. 
Leaky buckets and other throttling methods can provide 
some relief, but are not necessarily able to do the right 
thing in those cases where an event shower is 
representative of a true emergency situation rather than a 
fault or attack. 

Despite a lack of understanding of these fundamental 
issues, deeply embedded system gateways are already 
being deployed, sometimes in critical systems. 

2.2 Limits to the patch mentality 
The approach of using security patches to address 

emergent attacks is pervasive in the desktop computing 
environment. Embedded systems have fundamentally 
different constraints that make patching difficult. 

Safety critical systems must be recertified each time 
critical software is updated. Doing so is usually a costly 
and time-consuming process. Quick-turnaround security 
patches are currently impracticable if they affect critical 
code. Unfortunately, many embedded systems are 
designed in such a way that all their code is effectively 
critical (i.e., any change to the code might affect critical 
properties, so it must all be assumed to be critical). 



Strategies to isolate critical from non-critical software on 
the same CPU are still a subject of research.  

An additional issue with patching embedded systems 
is that many of them have a zero down-time 
requirement. Maintenance reboots and physical operator 
intervention are simply unacceptable in many unattended 
applications. 

Finally, patching approaches typically assume that the 
owner of a system is trustworthy.  This is often not the 
case in embedded systems.  For example, it is relatively 
common for sports car owners to install engine 
controller software that circumvents pollution emission 
and fuel economy controls as a way to get more 
performance. 

2.3 Limits to the perfect software mentality 
Much research in computer science is based on the 

laudable goal of creating perfect software. Industry 
practices also employ the assumption that “perfection” 
(or a close approximation thereof) can be achieved by 
identifying all the “important” bugs and removing them. 

In the real world, very few application domains have 
the time and resources to deploy low defect rate 
software. Getting the highest software quality possible 
within time and budget is certainly important. But, 
spending exponentially increasing resources to chase 
down the last few bugs is usually impractical. Instead, it 
might make more sense to spend a small fraction of 
available resources providing ways to survive bugs that 
will inevitably be encountered, rather than throwing all 
resources at an attempt to achieve absolute perfection. 

3. Research challenges 
There are several research challenges that stem from 

the limitations just discussed. They are: 
Understand what goes into the embedded/ 

enterprise gateway. While some combination of queues 
and message filters can work in the fault-free case, 
mapping fault manifestations and survivability 
mechanisms across the time triggered to event triggered 
interface provides fundamental research challenges. 

Make patching of critical embedded software 
viable. Patching of unattended, critical embedded 
systems provides fundamental challenges that aren’t 
encountered in most desktop systems. Creating patching 
approaches that maintain system integrity promises to be 
difficult. 

Increase system survivability by tolerating 
inevitable software defects. Software defects are 
inevitable in most fielded systems. In some cases these 
defects will result in security vulnerabilities. In others 
they will result in failures to maintain critical system 
properties. Making software faults more survivable 

could offer improved cost effectiveness and reduced 
system fragility. 

 

4. Promising innovations and abstractions 
4.1 Safety invariants 

Safety invariants, which are formal expressions of 
critical system properties that must hold true, offer new 
promise for increasing system survivability. 
Traditionally, analysis and testing are used to ensure the 
invariants are never violated.  But, these techniques only 
work for the systems that are modeled (which are 
usually fault-free systems).  One could also check safety 
invariants at run time to detect when a fault has occurred 
that is severe enough to compromise system safety.  
Safety invariant checks could act as failure detectors that 
activate recovery or safe shutdown mechanisms. 

4.2 Graceful degradation 
The term graceful degradation encompasses several 

meanings. The term was coined to describe modular 
redundancy in fault tolerant computing, and later 
evolved to encompass failover strategies and functional 
diversity.  More recently, the term has been used to 
describe performability tradeoffs in Quality of Service 
research. The notion of providing systems that can 
partially work rather than only be fully working or fully 
failed is essential to achieving cost-effective 
survivability. 

5. Possible Milestones 
Survivability is an emerging research area, with the 

current emphasis more on understanding fundamental 
problems rather than on comprehensive solutions.  
Long-term milestones should include discovering 
fundamental tradeoffs, impossibility results, and 
workarounds applicable to realistic systems.  Short term 
research milestones should emphasize characterizing 
practical limitations and exploring techniques to offer 
near-term improvement to system builders. 
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