
Position Paper: Deeply Embedded Survivability

Philip Koopman, Jennifer Black, Theresa Maxino
Carnegie Mellon University

{koopman, jenm, maxino}@cmu.edu

Abstract

This position paper identifies three significant

research challenges in support of deeply embedded
system survivability: achieving dependability at the
enterprise/embedded interface gateway, finding a viable
security patch approach for embedded systems, and
surviving run-time software faults.

1. Introduction
Deeply embedded systems consist of one or more

embedded systems connected to an enterprise system or
to the Internet (e.g., [3]). To be survivable, such systems
must continue to function in the face of faults, whether
accidental or malicious, and whether the faults are
caused by design errors or unexpected operating
conditions. Embedded system survivability can be more
challenging than enterprise survivability because
embedded systems may not be able to perform frequent
reboots, incorporate weekly patches, transfer large
amounts of data, or be cared for by trained system
administrators. Beyond this, the different natures of
embedded control vs. enterprise systems present
fundamental limitations to applying known techniques
from either area to the other. [1]

2. Fundamental limitations
2.1 Time triggered to event triggered interfaces

A fundamental limitation to achieving deeply
embedded system survivability is the inherent mismatch
between time triggered and event triggered systems.

Embedded systems are often “time triggered,”
meaning that they perform periodic computations and
messaging in support of hard deadlines (e.g., [2]).
Because of the dramatically different needs of real time
control systems compared to desktop computing, they
often use specialized network protocols such as CAN
that provide low-cost, but low-bandwidth solutions
optimized for very short messages (often 100 bits or
fewer per message with network speeds on the order of
1 Mbit/sec).

Enterprise systems, in contrast, are usually
characterized as “event triggered” systems with much
larger, sporadic events, and typically have orders of
magnitude more CPU power and network bandwidth.

The interface between the embedded and enterprise
sides of a deeply embedded system is usually in the form
of a “gateway” that provides a bidirectional transition
between the time triggered and event triggered worlds.
Given sufficient resources, each computing paradigm
can be made to simulate the other. Event triggered
systems can schedule events periodically to simulate
time triggered operation. Time triggered systems can
schedule periods so fast that they don’t miss events. But,
those approaches only work in the fault-free case.

Deeply embedded system gateways will encounter
fundamental limitations when attempting to map faults
and responses in one computing paradigm into the other
computing paradigm. For example, what happens when
event triggered messages are clumped in transit, and
arrive faster than the minimum inter-arrival rate assumed
by the time triggered side of the gateway? Queues in the
gateway provide only a partial solution, and can cause
problems when the system encounters queue overflow or
system instability as a result of queue lag time.

In the other direction, time triggered messages that
contain too much value jitter can defeat whatever low
pass filters are in place at the gateway and can
potentially flood the enterprise system with messages.
Leaky buckets and other throttling methods can provide
some relief, but are not necessarily able to do the right
thing in those cases where an event shower is
representative of a true emergency situation rather than a
fault or attack.

Despite a lack of understanding of these fundamental
issues, deeply embedded system gateways are already
being deployed, sometimes in critical systems.

2.2 Limits to the patch mentality
The approach of using security patches to address

emergent attacks is pervasive in the desktop computing
environment. Embedded systems have fundamentally
different constraints that make patching difficult.

Safety critical systems must be recertified each time
critical software is updated. Doing so is usually a costly
and time-consuming process. Quick-turnaround security
patches are currently impracticable if they affect critical
code. Unfortunately, many embedded systems are
designed in such a way that all their code is effectively
critical (i.e., any change to the code might affect critical
properties, so it must all be assumed to be critical).

Strategies to isolate critical from non-critical software on
the same CPU are still a subject of research.

An additional issue with patching embedded systems
is that many of them have a zero down-time
requirement. Maintenance reboots and physical operator
intervention are simply unacceptable in many unattended
applications.

Finally, patching approaches typically assume that the
owner of a system is trustworthy. This is often not the
case in embedded systems. For example, it is relatively
common for sports car owners to install engine
controller software that circumvents pollution emission
and fuel economy controls as a way to get more
performance.

2.3 Limits to the perfect software mentality
Much research in computer science is based on the

laudable goal of creating perfect software. Industry
practices also employ the assumption that “perfection”
(or a close approximation thereof) can be achieved by
identifying all the “important” bugs and removing them.

In the real world, very few application domains have
the time and resources to deploy low defect rate
software. Getting the highest software quality possible
within time and budget is certainly important. But,
spending exponentially increasing resources to chase
down the last few bugs is usually impractical. Instead, it
might make more sense to spend a small fraction of
available resources providing ways to survive bugs that
will inevitably be encountered, rather than throwing all
resources at an attempt to achieve absolute perfection.

3. Research challenges
There are several research challenges that stem from

the limitations just discussed. They are:
Understand what goes into the embedded/

enterprise gateway. While some combination of queues
and message filters can work in the fault-free case,
mapping fault manifestations and survivability
mechanisms across the time triggered to event triggered
interface provides fundamental research challenges.

Make patching of critical embedded software
viable. Patching of unattended, critical embedded
systems provides fundamental challenges that aren’t
encountered in most desktop systems. Creating patching
approaches that maintain system integrity promises to be
difficult.

Increase system survivability by tolerating
inevitable software defects. Software defects are
inevitable in most fielded systems. In some cases these
defects will result in security vulnerabilities. In others
they will result in failures to maintain critical system
properties. Making software faults more survivable

could offer improved cost effectiveness and reduced
system fragility.

4. Promising innovations and abstractions
4.1 Safety invariants

Safety invariants, which are formal expressions of
critical system properties that must hold true, offer new
promise for increasing system survivability.
Traditionally, analysis and testing are used to ensure the
invariants are never violated. But, these techniques only
work for the systems that are modeled (which are
usually fault-free systems). One could also check safety
invariants at run time to detect when a fault has occurred
that is severe enough to compromise system safety.
Safety invariant checks could act as failure detectors that
activate recovery or safe shutdown mechanisms.

4.2 Graceful degradation
The term graceful degradation encompasses several

meanings. The term was coined to describe modular
redundancy in fault tolerant computing, and later
evolved to encompass failover strategies and functional
diversity. More recently, the term has been used to
describe performability tradeoffs in Quality of Service
research. The notion of providing systems that can
partially work rather than only be fully working or fully
failed is essential to achieving cost-effective
survivability.

5. Possible Milestones
Survivability is an emerging research area, with the

current emphasis more on understanding fundamental
problems rather than on comprehensive solutions.
Long-term milestones should include discovering
fundamental tradeoffs, impossibility results, and
workarounds applicable to realistic systems. Short term
research milestones should emphasize characterizing
practical limitations and exploring techniques to offer
near-term improvement to system builders.

6. Acknowledgements
This work had been funded by the General Motors

Collaborative Research Laboratory at Carnegie Mellon
University and the Pennsylvania Infrastructure
Technology Alliance.

7. References
[1] Koopman, P., Morris, J. & Narasimhan, P.,

"Challenges in Deeply Networked System
Survivability," NATO Advanced Research Workshop On
Security and Embedded Systems, August 2005

[2] Kopetz, H., Real-Time Systems: Design Principles
for Distributed Embedded Applications. Kluwer, 1997.

[3] Tennenhouse, D., “Proactive Computing,” Comm.
ACM, 43(5): 43-50, May 2000.

