
Reliability, Safety, and Security in
Everyday Embedded Systems

Philip Koopman

Carnegie Mellon University

Pittsburgh, PA 15213, USA
koopman@cmu.edu

Extended Abstract

Embedded systems permeate our everyday lives. From automobiles to elevators,
kitchen appliances to televisions, and water heaters to cell phones, we increasingly
depend upon embedded systems to operate as expected. A few obviously critical
embedded application domains, such as aviation, have traditionally benefited from
extraordinary care during development to ensure that everything is done correctly.
But increasingly, everyday embedded applications are becoming “mission critical,”
with little fanfare and perhaps without the full attention to dependability properties
that they truly deserve.

Consider the following potentially significant failure modes for embedded systems:
A cell phone that doesn’t work when the owner needs to call for emergency medical
attention. A domestic hot water heater that overheats water, causing scalding burns on
a child. A thermostat that doesn’t turn on heat when needed, causing household water
pipes to freeze and burst. A microwave oven that turns on with the door open. An
automobile that unintendedly accelerates. Today, hardware interlocks mitigate many
of these hazards. But, software is playing a bigger role as both a vulnerability and a
mitigation mechanism for critical failures. Because most embedded systems have
actuators that influence the environment, and because people count on them to operate
as expected, special care must be taken to ensure that they are safe, reliable, and
secure.

Safety in the context of embedded systems deals with minimizing the frequency of
mishaps (especially loss of life, injuries, and damage to property). In many ways this
is the most mature of the areas we are discussing, because there are several industry-
specific standards that can be followed to create safe systems (e.g., IEC 61508). There
are, however, some significant research challenges outstanding in this area, including:
• How can we be sure that following a given system development process actually

results in the hoped-for level of safety?
• How can we make it easy for small, non-specialist teams of domain experts to

follow complex, “heavy-weight” safety standards and actually get it right?
• How can we simplify the representation and specification of safety properties to

make it easier to design safe systems?
Reliability in embedded systems has been studied for many years, and has to do

with ensuring that once an embedded system starts a “mission,” it has a high
probability of completing that mission without experiencing a failure. Traditional

high-reliability systems have used hardware redundancy (for example, two engines on
an airplane instead of one). But, cost-sensitive everyday embedded systems often do
not have a price structure that permits redundancy. An even bigger problem is
creating highly reliable software, especially with quick time-to-market and low
development budget constraints. Some current research challenges in this area are:
• How can we make it easy for small, non-specialist teams of domain experts to

create highly reliable software?
• How can we quantify software reliability to support testing for design

requirements such as “software crashes no more than once per month”?
• Achieving absolute software perfection seems unrealistic. How can we create

embedded systems that survive the activation of latent software defects?
Security is, of course, a hot topic. But currently, it seems to be getting less

attention in embedded systems than in enterprise systems. While embedded systems
have not yet experienced as many widely publicized security problems as enterprise
systems have, the potential for widespread, significant impact to society is certainly
there. What happens if malicious attackers gain control of many embedded systems
with the ability to release energy (or hazardous substances) into the environment?
What if some critical infrastructure, such as energy distribution, traffic flow control,
building environmental services, or telecommunications, suddenly stops working?
While there are no easy answers to security in any environment, embedded systems
present unique challenges that require research beyond the scope of enterprise
security research, including:
• How can we make it easy for small, non-specialist teams of domain experts to get

security right, even on a small product?
• What unique security challenges arise when interconnecting embedded systems

(for example, coordinating actuators across many systems)?
• What novel vulnerabilities arise in Internet-connected embedded systems?
• What security concerns arise due to threats unique to embedded systems (for

example, when the system owner is the attacker).
Embedded systems have historically been simple, often non-critical, and usually

very reliable, safe, and secure. Newer systems are becoming more complex, and
starting to cross the fuzzy line from non-critical to criticality. Unfortunately, the
techniques and culture of developers for newly critical applications often do not take
into account this major shift. While improving developer literacy in the areas of
reliability, safety, and security will help, significant research challenges remain.

A common, underlying challenge has to do with the central role of domain experts
in embedded system design. It is common for embedded system development teams
to be relatively small, and staffed more with domain experts than computing experts.
This is often appropriate, because expert domain knowledge is crucial to success.
However, small teams and companies that are concerned mostly with an application
domain rather than computer technology often don’t have access to expertise in
dependability. So, even if researchers can solve the many outstanding research
problems, there is still the issue of finding ways to deploy that knowledge to everyday
working engineers whose training is often not primarily in computing. We must not
only solve the research questions, but also find a way to deploy that knowledge.

This work was supported in part by the General Motors Collaborative Research
Center at Carnegie Mellon University.

