
Undergraduate Embedded System
Education at Carnegie Mellon

PHILIP KOOPMAN, HOWIE CHOSET, RAJEEV GANDHI, BRUCE KROGH,
DIANA MARCULESCU, PRIYA NARASIMHAN, JOANN M. PAUL,
RAGUNATHAN RAJKUMAR, DANIEL SIEWIOREK, ASIM SMAILAGIC,
PETER STEENKISTE, DONALD E. THOMAS, and CHENXI WANG
Carnegie Mellon University

Embedded systems encompass a wide range of applications, technologies, and disciplines, necessi-
tating a broad approach to education. We describe embedded system coursework during the first 4
years of university education (the U.S. undergraduate level). Embedded application curriculum ar-
eas include: small and single-microcontroller applications, control systems, distributed embedded
control, system-on-chip, networking, embedded PCs, critical systems, robotics, computer peripher-
als, wireless data systems, signal processing, and command and control. Additional cross-cutting
skills that are important to embedded system designers include: security, dependability, energy-
aware computing, software/systems engineering, real-time computing, and human–computer in-
teraction. We describe lessons learned from teaching courses in many of these areas, as well as
general skills taught and approaches used, including a heavy emphasis on course projects to teach
system skills.

Categories and Subject Descriptors: K.3.2 [Computer and Information Science Education]:
C.3 [Special-Purpose and Application-Based System]: D.4.7 [Organization and Design]:
J.7 [Computers in other Systems]

General Terms: Design, Experimentation, Human Factors, Performance, Reliability, Security

Additional Key Words and Phrases: Embedded systems education, curriculum

1. INTRODUCTION

Trying to teach embedded computing as a unified topic is a difficult task. Em-
bedded applications are very diverse and span a tremendous range of complex-
ity [Estrin et al. 2001]. Indeed, embedded computing is more readily defined
by what it is not (it is not generic application software executing on the main
CPU of a “desktop computer”) than what it is. Embedded CPUs comprise the
vast majority of processors [Turley 2002], although many of those processors
are used in very high-volume applications.

Authors’ address: Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA, 15213.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1539-9087/05/0800-0500 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005, Pages 500–528.

Undergraduate Embedded System Education at Carnegie Mellon • 501

From an educational needs perspective, it is relevant to scope educational
capacity according to the number of engineers involved. While precise num-
bers are difficult to come by, one useful data point is the relative size of rele-
vant periodical subscriber bases. Embedded Systems Programming magazine,
a qualified subscription monthly publication, currently has 45,000 subscribers,
mostly in the United States [CMP 2005]. By way of comparison, IEEE Com-
puter magazine, which is sent to every member of the IEEE Computer Society
worldwide, has 94,841 subscribers [IEEE 2004]. From our experience, most em-
bedded system developers have minimal or no formal training in methodical
embedded system engineering approaches—most expertise comes as a result
of on-the-job experience and self-training. Given the substantial number of en-
gineers who practice in this area, we believe that the field could greatly benefit
from an enhanced, widespread foundation of education in computer science and
engineering, and are working to that end.

Carnegie Mellon University has offered embedded system courses of various
sorts for three decades. Grason and Siewiorek [1975] describe an early embed-
ded controls project course that included student projects on motion control,
flight simulation, train control, and ultrasonic obstacle detection. Over time,
various courses and areas of specialization have evolved to become those de-
scribed in the remainder of this paper.

There are two important cultural factors inherent to work at Carnegie
Mellon that influence our approach. First, we have a strong tradition of sys-
tem building, both in research and coursework. This is reflected in the signifi-
cant project content of many of our courses. Second, our engineering school has
adopted a very flexible curriculum [Director et al. 1995] that minimizes prereq-
uisite courses and encourages continuous innovation by faculty in their course
coverage. This has lead to a situation in which the embedded “curriculum” is
an organic result of evolutionary development based on feedback from indus-
try, faculty perception of technology trends, faculty coordination, and student
interests. It is definitely not the result of a centralized planning process.

The purpose of this paper is to describe how we at Carnegie Mellon Univer-
sity approach the task of organizing and teaching the diverse areas of embedded
computing, as well as to discuss areas we consider important in this field, even
if we do not happen to teach specific courses on them. The emphasis of the
discussion is on undergraduate education (the first 4 years at a U.S. university,
leading to a Baccalaureate degree) and characterizing various areas of knowl-
edge at that level rather than by research topics more typical of graduate-level
(post-Baccalaureate) course offerings. To reduce confusion over terminology,
we will refer to portions of the curriculum by year, with the first 4 years being
Baccalaureate study, years 5 and 6 generally referring to Masters and new Doc-
toral students, and years 7 and on referring exclusively to Doctoral students.

A relatively new requirement for ABET [2004] accreditation in a U.S. engi-
neering education is the inclusion of what most universities term a “capstone”
design course. A capstone course involves the completion of a significant engi-
neering project, usually in the student’s fourth year. Such projects are typically
completed by teams within the structure of a normal university course. Em-
bedded systems content is prevalent in our capstone design courses. Capstone

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

502 • P. Koopman et al.

courses are distinct from the European Diploma thesis approach, which, in
general, is not used within the United States educational system.

2. APPROACH TO EMBEDDED EDUCATION

We believe that it is the rare embedded system developer who will need, or
even be able to absorb, expertise in all areas of embedded systems. Therefore,
we divide expertise into several areas to guide our approach to teaching. From
an application perspective, we think of embedded computing as falling into
the following distinct categories: small and single microcontroller applications,
control systems, distributed embedded control, system on chip, networking,
embedded PCs, critical systems, robotics, computer peripherals, wireless data
systems, signal processing, and command and control. More detailed explana-
tions of these categories are provided in the following sections. Most embedded
system developers will need expertise in several of these areas.

In addition to application categories, there are core skill areas that apply to
most application areas rather than being specific to a focused end-use applica-
tion or industry. These skill areas include: security, dependability, energy-aware
computing, software/systems engineering, real-time computing, and human–
computer interaction.

There are, of course, many institutions teaching various aspects of embedded
systems. For example, the ARTIST [2003] project has issued guidelines for
curricula on embedded software and systems. (ARTIST is also the subject of a
paper elsewhere in this special issue.) That curriculum divides topics into the
areas of control and signal processing, computing theory, real-time computing,
distributed systems, optimization and evaluation, and system architecture and
engineering, with a noted need for practice on real systems and simulators.
We have organized our courses somewhat differently for a variety of reasons
that are probably not crucial. But, more importantly, we have chosen to place
significant emphasis on teaching a broad range of embedded systems in the
first 4 years.

Other universities are contributing to understanding what it takes to create
a broad and deep educational experience in embedded systems beyond point
courses in the area. For example, Neilsen et al. [2002] at Kansas State Uni-
versity are teaching a four-course interdisciplinary sequence for real-time em-
bedded systems that includes a remedial course (covering computer science
and computer engineering topics), a real-time implementation course, a theory
course, and a capstone design course. Motus [1998] describes a trio of courses at
Tallinn Technical University on real-time software engineering. Pri-Tal et al.
[2001] have reported an ambitious plan to combine research, education, and in-
dustry outreach to establish an “ecosystem” for embedded systems in Phoenix
Arizona, including Arizona State University. Tempelmeier [1998] advocates
adjusting the regular computer science curriculum to include real-time ed-
ucational components as practiced at the Fachhochschule Rosenheim. Vahid
[2003] describes a three-course embedded systems sequence at the University of
California, Riverside. There are obviously many courses and sets of courses
in embedded systems worldwide beyond those described in published papers.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 503

Beyond university offerings, the series of Embedded Systems Conferences
[2004] has a significant lecture track designed to provide continuing education
as well as introductory material on embedded systems to practicing engineers.

Wolf and Madsen [2000] summarize some of the issues in embedded sys-
tems education. But for all the efforts to teach embedded systems thus far,
the community is, in general, still finding its way. It is our hope that this pa-
per contributes to understanding the depth and breadth of possible education
approaches in this developing area.

3. EMBEDDED APPLICATION AREAS

The following sections discuss each embedded application area in turn. Our cur-
riculum organization is that the first course on small and single microcontroller
applications is used as the gateway course to the rest of the embedded curricu-
lum. In general there are no embedded-specific constraints on what students
can take (additional prerequisites tend to be area-specific skill courses to rele-
vant domains, such as signal processing mathematics). We do not necessarily
teach courses for the first 4 years of study in every area listed at the moment,
but we believe that doing so is a reasonable goal to set for the long term. Unless
otherwise noted, the term “course” refers to a semester-long university course
that, in general, meets 3 or 4 hours per week (plus laboratory sessions) for 15
weeks.

3.1 Small and Single Microcontroller Applications

Distinguishing Features. Many low-end embedded applications use a 4- or
8-bit microcontroller running a relatively small program to control some device.
This is the traditional origin of embedded computing, where education has of-
ten taken the form of an “introduction to microcontrollers” course and, which
we feel, still serves well as an introduction to other embedded topics. The area
is characterized by severe cost limitations and scarcity of almost every resource
(memory, computing power, etc.). While embedded devices increasingly support
networking capabilities (e.g., sensors in building-monitoring networks), most
of the processors produced are still used as stand-alone systems. A comprehen-
sive understanding of the operation of nonnetworked, single microcontroller-
based embedded systems is crucial for students in year 2 or 3 to appreciate
the emerging issues when these devices are connected together in networked,
multimicrocontroller embedded systems.

Key Skills and Principles. Because embedded devices contain both hard-
ware and software components, understanding hardware–software interactions
is essential. Key skills in this area span both electrical engineering and com-
puter science and address the interrelationships among processor architec-
tures, performance optimization, operating systems, virtual memory, concur-
rency, task scheduling, and synchronization. It is important for students to
have a breadth of exposure so that they appreciate the utility of other fields
(e.g., digital signal processing, feedback control) in embedded systems. At the
same time, students should appreciate what distinguishes embedded systems

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

504 • P. Koopman et al.

from related areas, such as operating systems, and understand the tight cou-
pling between embedded applications and the hardware platforms that host
them.

Teaching Approach. As a prerequisite, students should have participated
in some significant (C and assembly language) programming project so that
they can concentrate on building system-level skills rather than on learning to
write programs. An introduction to logic design course that is required of all
students in the department provides sufficient hardware background.

Our course coverage includes writing assembly-language and C programs
specifically for embedded system applications. The lecture topics include
timers, interrupts, caches, virtual memory, direct memory access, double-
buffering, profiling, performance optimization, A/D and D/A conversion, prac-
tical signal processing, mutual exclusion, watchdog timers, scheduling, system
buses/backplanes, serial/parallel communications, flash memory, and device
drivers.

Because this course covers a diverse array of topics, we have favored us-
ing a series of individual hands-on projects that build upon each other, with
each project oriented toward a distinct topic. Students learn more effectively
when motivated by exciting course projects. To this end, the course involves
designing/implementing/testing eye-catching, interesting projects with under-
lying complex, detailed concepts. For instance, one project involves building a
simple version of a video-arcade game. In the process of building something
“fun,” students learn about and implement, a great deal of embedded-system
functionality, including watchdog/periodic timers, nested interrupts, software
interrupt-handlers, flash memory, and terminal device I/O. We have success-
fully taught, and continue to teach, this course as a live, distance education
offering to an audience consisting of students on our Pittsburgh campus and
our campus in Athens, Greece.

In our current curriculum, this area is combined with real-time computing
(discussed later), leading us to use 32-bit processors and relatively full-featured
real-time operating systems for projects. This is a tradeoff that might be made
differently in other curricula, where more introductory emphasis on hands-on
8-bit microcontroller projects in a course that covers only this area has merit.
Our current course does not use a standard text because of the combination of
topics and student audiences we address. Several textbooks and other books
suitable for classroom use exist and should be considered by instructors teach-
ing this area. Available books that span a range of approaches include those by
Wolf [2001], Simon [1999], Lewis [2001], Catsoulis [2003], and Berger [2002].

Challenges. Because many embedded devices are used in safety-critical set-
tings, incorporating and emphasizing a steady level of software engineering is
important in training embedded system engineers. We have found that typical
engineering students dislike “heavy” engineering processes and, when short on
time, cut corners to meet course deadlines. A significant challenge is getting
third-year students to appreciate the perspective that undocumented, unmain-
tainable code that appears to mostly “work” is not good enough for an embedded

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 505

systems course. A crucial end result to strive for is making good software en-
gineering practices an intrinsic part of each student’s mindset and approach,
rather than merely an afterthought.

3.2 Control Systems

Distinguishing Features. Embedded control systems are used to close feed-
back loops. Consequently, in contrast to many embedded system applications
where design requirements map directly into specifications for embedded soft-
ware, the design requirements for control systems typically prescribe desired
behaviors for the integrated closed-loop system. For example, requirements for
an automotive cruise control system characterize the desired behavior of the au-
tomobile under various road conditions and driver commands rather than enu-
merating software functions. What embedded processors need to do to achieve
the desired behavior is not immediately obvious from the requirements and
requires models of the automobile dynamics as well as feedback control theory.

Key Skills and Principles. Industry is moving quickly toward model-based
design of embedded control systems, where models are used throughout the
entire design process, from requirements capture to the automatic genera-
tion of the production code for the target embedded processor. Students should
learn how to create, analyze, and validate models of physical dynamic systems.
They should also understand numerical simulation, how parameters need to
be chosen for integration routines to obtain correct simulation results, and
how control-oriented models are created using linearization and order reduc-
tion. They should be introduced to hardware-in-the-loop (HIL) testing and un-
derstand what features of the real implementation can be investigated using
HIL techniques. They need to understand the elements of automatic code gen-
eration, including the influence of parameters for timing and target-specific
features, as well as why final parameter tuning is usually needed in the im-
plementation of embedded control systems, and how it can be accomplished to
achieve the desired performance.

We are unaware of any textbooks that introduce students to the full range of
issues described above. Traditional control systems textbooks have, at best, only
a cursory discussion of implementation issues. Embedded systems textbooks,
on the other hand, seldom include any discussion of the complexities of control
system design.

Teaching Approach. The historical approach of simply having students take
control courses along with embedded systems courses is unsatisfactory for sev-
eral reasons. By focusing exclusively on the mathematics of feedback control
system design, traditional control courses fail to introduce students to the re-
alities of embedded control system implementation. Control-oriented models
neglect important details such as sampling jitter, finite precision (which is typ-
ically much more restrictive on an embedded processor than in the computers
used for design), data conversion, timing constraints, limits imposed by the
device interfaces, and physical saturation in sensors and actuators. These is-
sues are addressed and understood adequately only when the feedback control

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

506 • P. Koopman et al.

design is carried through to a full implementation on an embedded processor.
On the other hand, an embedded systems course that does not consider feed-
back control applications fails to introduce students to the types of constraints
and limitations that arise when the “environment” for the embedded software
is a complex physical dynamic system.

We have designed a course that introduces students to several of these top-
ics through lectures, homework assignments, and, most importantly, through
a sequence of laboratory exercises based on a commonly used 32-bit automo-
tive embedded controller. Students coming into this course have taken a first
course in signals and systems and, perhaps, a course in feedback control theory,
as well as an introductory computer systems course covering concepts such as
interrupts, operating systems, and device drivers. The emphasis in this course
is model-based design using tools such as MATLAB Simulink/Stateflow and
Real-Time Workshop (RTW). Experiments involving motor control systems in-
crease in complexity, culminating in a full haptic interface system that emulates
elements of control systems for the so-called X-by-Wire systems (e.g., steer-by-
wire, brake-by-wire, fly-by-wire). To make sure they understand the real-time
implementation, students write some code without using autocode generation
and also modify some of the automatically generated code on selected projects.

Challenges. The biggest challenge in an embedded control systems course
is to strike a balance between teaching control systems principles and embed-
ded systems principles. The approach we have taken is to always maintain a
focus on embedded implementation issues when introducing control material
and to maintain a focus on feedback control systems when introducing embed-
ded systems material. We have found that for all of the students there is an
enormous benefit gained from the model-based approach. Having the students
design systems completely in simulation gives them an understanding of the
complete system from a “theoretical” perspective. Having them then implement
the same system as a working embedded control system then creates for them a
strong a connection between theory and practice that they would not gain from
simply jumping immediately to implementation, in addition to giving them an
appreciation of “real-world” issues. The modeling and simulation step makes
the students realize the value of understanding a system design analytically
and gives them insights into why the real system behaves as it does. This con-
nection between theory and practice is an invaluable experience facilitated by
the technology of model-based autocode generation.

3.3 Distributed Embedded Control

Distinguishing Features. Distributed embedded control systems have mul-
tiple CPUs connected by a low-bandwidth real-time communication network.
Automotive control computing is a good example of this area (Leen and
Heffernan [2002]), often involving several dozen CPUs connected via real-time
networks at data rates often below 1 Mbit/sec. CPUs within such a system of-
ten include many small (4- or 8-bit), inexpensive microcontrollers coupled to
sensors and actuators as well as a smaller number of large (often 32-bit) CPUs
to perform compute-intensive functions.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 507

Key Skills and Principles. The key design principles for distributed embed-
ded control center on the need for coordinated system-wide real-time perfor-
mance with extreme resource constraints. Many of the underlying theoretical
principles of distributed computing apply, but with dramatically altered ap-
plication. For example, typical desktop and enterprise computing systems are
transaction-oriented (also known as being “event-triggered”), use dynamic soft-
ware allocation within hardware components, use more or less homogeneous
computing nodes, optimize throughput, and use Ethernet-based network tech-
nology. In contrast, distributed embedded systems are often based on periodic
state variable updates (also known as being “time triggered;” Kopetz and Bauer
[2003]), use static software allocation, execute on diverse heterogeneous pro-
cessing nodes, concentrate on meeting a set of system-wide coordinated end-to-
end deadlines, and often use non-Ethernet-based network technology. Under-
standing distributed embedded systems requires revisiting many traditional
topics in a different, embedded, frame of thought.

Teaching Approach. Teaching distributed embedded systems requires im-
parting a detailed understanding of communication protocol tradeoffs and be-
haviors to support prediction of system-level timing properties. For example, a
commonly used embedded real-time protocol is Controller Area Network (CAN)
[Bosch 1991], which has a maximum message payload size of only 8 bytes, but is
just right for many embedded systems because it supports prioritized message
transmission and efficient communication of short messages.

The best-known text in this area is by Kopetz [1997], which covers distributed
embedded systems with significant emphasis on the approach used by his Time-
Triggered Architecture. Key topics include distributed time, atomic broadcast,
group membership, and the need for some aspects of synchronous system oper-
ation to provide essential services. Additional topics that are important include
end-to-end real-time operating system support, security, graceful degradation
in the face of component failures, and management of redundancy in support
of dependability.

This material is currently taught as a component of a capstone design course
taken after the single-processor embedded system course. Students experience
creating specifications, designs, and implementations for relatively simple
fine-grain distributed components, and then watching simulations of complex
emergent behavior from the interaction of those components. A portion of the
assessment for the course is based building an elevator system simulation
composed of more than 100 nodes, including demonstrating graceful degrada-
tion during fault injection trials. The project includes phases representative
of industry with deliverables including requirements, architecture, design,
test planning, implementation, failure mode analysis, system integration,
verification/validation, and acceptance testing.

Challenges. The challenges in teaching this area include making dis-
tributed system theory accessible to students and providing a reasonably large
testbed without incurring the space, cost, and maintenance overhead of a huge
distributed hardware physical lab. This problem is addressed via the use of a

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

508 • P. Koopman et al.

simulated system rather than a physical one. This strategy is effective, in part,
because students have already had experience with embedded hardware in a
prerequisite single-processor embedded system course.

3.4 Systems-on-Chip

Distinguishing Features. The Multi-Processor System on a Chip (MPSoCs)/
Systems-on-Chip (SoC) area is an outgrowth of the areas of Application-Specific
Integrated Circuit (ASIC) design and embedded systems design. ASIC design
was focused on creating a single chip hardware design dedicated to prespeci-
fied functionality. As technology has progressed, single-chip systems with 5–10
heterogeneous processors connected via buses to shared memories have become
available [e.g., Wolf 2003]; future systems will likely have tens or even hundreds
of processing elements of a dozen or more types. Thus, ASICs and many em-
bedded system chips are evolving to become highly concurrent, programmable
MPSoCs. Indeed, one vision for these systems is that of custom-designed
supercomputers on single chips for portable and handheld devices [Austin
et al. 2004].

Since these systems are on the cutting edge of IC manufacturing, design
tools and strategies for these systems lag behind other more established areas.
Current textbooks are organized around a collection of research topics and are
primarily targeted at advanced (year 5 and later) students [e.g., Jerraya and
Wolf 2004]. Thus, it is challenging to introduce MPSoC design into the first 4
years of a curriculum.

Key Skills and Principles. Hardware design knowledge is required as a pre-
requisite for MPSoC design. The knowledge needed is at the level of compos-
ing Intellectual Property (IP) blocks. At this level, IP may represent a fully
custom-hardware portion of the system, such as a JPEG encoder, or an individ-
ual processing element. Unfortunately, since there is no widely accepted bus or
network on chip standard [Benini and De Micheli 2002] these building blocks
seldom “snap” together. Thus, some detailed hardware design is required.

As in most areas of embedded systems, software carries out much of the
real-time functionality for MPSoCs. Since the software in these systems can
be updated, a performance-oriented design of the system’s hardware and soft-
ware must be done with an eye to future applications—designing in hardware
capacity for anticipated functionality.

The hardware/software codesign research area initially took the view that
software and hardware could be conceived as monolithic, side-by-side design en-
tities. However, this did not fully address the design issues, such as scheduling,
that began to appear for these emerging systems. Currently, there is no well-
established set of principles or even a common design language for MPSoC
design.

Teaching Approach. In the absence of a well-established fundamental set of
principles, instruction in the design of MPSoCs at Carnegie Mellon is primarily
at the level of a fourth-year capstone design project course that concentrates
on a large, team-created project.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 509

Students who design an MPSoC learn to consider multidisciplinary tradeoffs
among the areas of computer hardware design, computer system architecture,
real-time embedded software design, and system modeling. Issues, such as the
software’s level of concurrency or portability in the context of overall concurrent
system performance, must be considered. Additional considerations include the
possibility of simplifying software at the expense of additional hardware, or
trading off more complex scheduling decisions for fewer hardware resources.
The evaluation of system performance, itself, is a new fundamental principle
for many students, as are optimizing for maximum speed of execution, and
minimum design effort.

The design of an MPSoC prototype in a capstone design course provides
the basis for application of fundamentals as well as “just-in-time” learning
of new technology, applications, and design tools. Since we cannot build an
actual MPSoC due to the time and expense involved in chip fabrication, we
apply a similar process using CAD tools to create designs built from processors,
embedded controller chips, FPGAs, and SRAM. Although the whole class works
from the same high-level design specification, alternate implementations are
possible, as each team is expected to customize their design based on a set of
self-selected quantifiable design goals. Project topics have included: the game
of GO, chess, MP3 players, voice over IP, and face recognition.

The method of delivery for the capstone MPSoC course reflects the unique set
of skills being taught. There are few formal lectures, no exams, no homework,
and not even any formal lab sessions. After the project is introduced in the
first week of class, the entire remainder of the class lecture time is designed
to support the development of the term-long project, with each team having
24-hour access to a hardware lab bench for project work. Student assessment
includes: in-class presentations, design reviews, interim reviews, weekly email
journals, four demonstrations throughout the course, and a final project demo
at the end of the course.

Challenges. The challenge of teaching this course lies in evolving the project
specifications and implementation technology as new capabilities arise. Be-
cause there is no consensus yet as to the “best” way to design MPSOC systems,
students must be taught general approaches that will serve them well as the
area evolves and matures.

3.5 Networking

Distinguishing Features. Most commercial network devices are embedded
systems. While desktop computers can function as a network device (they can
route packets, filter packets, and do network address translation), they tend to
be too slow or too expensive to deploy as everyday network devices. Network
devices must have fairly predictable response time so they can keep up with
the rate of packets flowing through the device, whereas traditional operating
systems tend to be too complex to consistently keep up with high data rates.
Moreover, the amount of processing per packet is typically small and, for many
packets, processing is limited to the header, so the data locality of memory ac-
cess is low, rendering caches ineffective. Because of these unique requirements,

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

510 • P. Koopman et al.

high-end network devices tend to be multiprocessor architectures, using a com-
bination of special-purpose ASICs, specialized programmable processors, and
general-purpose processors.

Key Skills and Principles. The skills we teach to embedded system stu-
dents in this area fall into three categories. First, students have to learn about
the unique architectural considerations and tradeoffs that exist in network de-
vices, both at the system and at the processor level. A traditional computer
architecture course targets processors with large caches and a lot of material
focuses on arithmetic and branch type instructions. In contrast, network pro-
cessors have significant on-chip support for moving data and for rich interrupt
support. Moreover, traditional multiprocessors are homogeneous, while most
network processors are heterogeneous, combining a variety of specialized pro-
cessors on a single chip. Second, students learn the different types of functions
that are performed on network devices. Functions are typically classified as
data processing and control functions. Data processing is time-critical since it
has to keep up with the packet flow (e.g., route lookup based on the destina-
tion address in a packet). In contrast, control functions run in the background
(e.g., building the packet forwarding tables that are used for route lookup).
The third category of skill is mapping functions onto appropriate processors in
the architecture. For example, packet forwarding is usually done on a micro-
engine of special-purpose hardware, while routing tables can be calculated on
general-purpose processors. Other implementation-oriented skills include pro-
gramming the different types of processors and coordinating their operation.

Teaching Approach. We teach a fourth-year capstone design course on “Net-
work Design and Evaluation” that uses a platform built around a network pro-
cessor and a 4-by-4 router with Ethernet interfaces to introduce students to
network device internals [Steenkiste 2003]. The platform currently in use has
multiple microengines programmed in both microcode and C. Processor coordi-
nation is performed via shared memory, message passing, and interrupts.

Challenges. The biggest challenge in this area is dealing with the complex-
ity of realistic network processor platforms. We address this by aggressively
presenting platform-specific tutorials to students. In most teams, each team
member specializes in specific aspects of the platform.

3.6 Embedded PCs

Distinguishing Features. Embedded PCs include applications such as wear-
able computers in which a personal computer hardware and software platform
is adapted for an embedded environment. These applications are generally char-
acterized by either the use of nontraditional peripherals [e.g., a head-mounted
display (HMD) or small touchscreen rather than a full-size screen], or by ded-
ication to a single task (e.g., use as a cash register). This category can easily
blur with traditional computing if a desktop computer is used both for embed-
ded applications, such as home climate control, as well as traditional desktop
applications.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 511

Originally, both the research and educational emphasis in this area was on
building custom-printed circuit boards and custom housings (for example, the
early VuMan wearable computers evolved in sophistication over a series of
semester-long project courses, as reported by Siewiorek et al. [1994], Smailagic
et al. [1995], and Amon et al. [1995]). Over time, wearable computer hardware,
PDAs, and other highly mobile computing hardware have started to become
commercially available products. Therefore, educational emphasis has shifted
to integrating available or incrementally modified technology to address specific
application needs in a quick-turnaround fashion (early examples of this include
Smailagic et al. [1998] and Siewiorek et al. [1998]).

With the advent of rapid design methodologies and rapid fabrication tech-
nologies, it is possible to construct fully customized systems in a matter of
months. We have developed a User-Centered Interdisciplinary Concurrent Sys-
tem Design Methodology (UICSM) that takes teams of electrical engineers,
mechanical engineers, computer scientists, industrial designers, and human–
computer interaction (HCI) students who work with an end-user to generate a
complete prototype system during a 4-month long capstone design course run
in conjunction with industry partners.

Key Skills and Principles. The design methodology that forms the basis
of our teaching is web-based and defines intermediary design products that
document the evolution of the design, including not only software and dig-
ital hardware, but also mechanical issues, thermal management, and other
relevant aspects of system design. The methodology has been used in design-
ing over two-dozen mobile and wearable systems with applications as diverse
as aircraft manufacturing at Boeing, bridge inspection with PennDOT, off-
shore crane operation for Chevron, river environmental data collection on the
Pittsburgh Voyager vessel, and new car/driver interactions for General Motors.
The methodology includes monitoring and evaluation of the design process.
While the complexity of the prototype artifacts has increased by over two or-
ders of magnitude over the years, the total design effort in terms of person-hours
per project has increased by only a factor of two.

While the artifact of the design process changes from year-to-year, the fun-
damental learning objectives do not. Upon completion, students are able to
generate systems specifications from a perceived need, partition functionality
between hardware and software, produce interface specifications for a system
composed of numerous subsystems, use CAD tools, fabricate, integrate, and
debug a hardware/software/mechanical system, and evaluate the system in
the context of an end-user application. Within the course, students exercise
their primary discipline skills, such as building small, embedded printed cir-
cuit boards with processors, memory, sensors, and wireless communications,
housings for electronics, wireless communication services, software services,
and novel user interaction modalities and interfaces.

Teaching Approach. The course evolves around our UICSM, with the indus-
trial partner introducing the problem and interacting with students through-
out the semester. Whenever possible, the students visit an actual work site for

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

512 • P. Koopman et al.

firsthand observations, including, in one case, an offshore oil rig. People who
will actually use the system, critique the design at each phase, with critique
sessions including travel to campus and to remote application sites.

The course itself is divided into three phases: (1) conceptualization, (2) de-
tailed design, and (3) implementation. During each phase, a set of work products
are produced and placed on the course web site. At the end of each phase, stu-
dent teams write a design document and orally present a design review that
are critiqued by the instructors and industry representatives.

During the conceptualization phase, the class is introduced to the problem
through presentations by faculty and the industry partner. Brainstorming and
other methods are used to develop a visionary scenario from which functionality,
cost, performance, and techniques for prototype construction are identified. In-
structors introduce appropriate technology and students conduct research with
instructors serving as consultants. Students are organized in discipline-specific
teams with four to five participants. Students specify the system architecture
and subsystems for interaction, hardware, software, and mechanical. Perfor-
mance, interface specifications, and evaluation criteria are also defined.

The second phase leads to a detailed design document. Student teams for this
and later phases are multidisciplinary, organized around functional capabilities
identified in the first phase. Instructors provide “risk management,” ensuring
that students do not make decisions that will lead to undue difficulties. Students
use task-appropriate CAD tools. Component mock-ups are used to conduct HCI
studies.

The final phase consists of four main activities: implementation of subsys-
tems using rapid-prototyping techniques; integration of subsystems; system
evaluation through user experiments; and quantitative evaluation of the course
methodology. The final presentation, final report, and prototype system form a
comprehensive deliverable for the industry partner.

The instructors meet with students at the end of each phase to provide feed-
back through oral “annual reviews” including their current grade. Grading is
based on: (1) visible, concrete contributions to the final project; (2) performance
as a leader, presenter, or editor (students rotate through these positions); and
(3) incremental activities in the work log.

The industry partner provides the application domain, domain expertise,
and background material. In addition to providing companies with access to
potential new hires, student projects are a way to explore high-risk ideas. For
students, this is a truly unique course that exposes them to multiple disci-
plines. They take a project from concept to functional product prototype in just
one semester. The class’s start-up atmosphere—complete with a celebration
and t-shirts for the “first customer ship”—excites students. Students and their
potential employers recognize the course as valuable preparation for work in
today’s corporate environment.

Challenges. Managing multidisciplinary teams of students on a large coor-
dinated project is a challenge both because students from different disciplines
(e.g., fine arts designers and computer hardware engineers) are not used to
working with each other and because of aggressive project goals. Making the

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 513

course succeed requires a substantial amount of faculty time. A future challeng-
ing topic for this course will be creating more “context-aware” computing (one
in which an embedded computer is aware of its user’s state and surroundings
and modifies its behavior based on this information). New projects, exploiting
context information to significantly reduce demands on human attention, will
bring new challenges to this class.

3.7 Critical Systems

Distinguishing Features. Critical systems include traditional safety and
mission-critical systems such as nuclear power, medical devices, aviation, and
some process control applications. This area is characterized by an application
need for assured levels of safety and, often, very high dependability as well. It
is distinct from the cross-cutting skill of dependability discussed later in that
emphasizes specific safety analysis techniques, which sometimes result in sys-
tems being shut down (a dependability violation) to maintain safety. One could
also envision combining critical systems and dependability, but that is not the
way we approach the material.

Key Skills and Principles. Key concepts taught include the principles of
software safety, the general approach of embedded software safety standards,
and common analysis techniques such as Failure Mode Effect Analysis (FMEA)
and Fault Tree Analysis (FTA).

An additional topic that is essential to discuss in a critical systems course is
ethics. Most safety critical situations involve inherent tradeoffs between safety,
functionality, time to market, and cost. In more mature safety critical applica-
tion areas, engineers can face ethical issues in ensuring that safety standards
are being followed with an appropriate amount of rigor in the face of sched-
ule and cost pressures. But there are other application areas in which such
standards are immature, not widely followed, or nonexistent, and engineers
working in these areas can face significant ethical dilemmas. A key concept
that students are exposed to is that many safety decisions implicitly or explic-
itly put a monetary value on each human life lost or saved by a system design
decision.

Teaching Approach. We incorporate an introduction to critical systems into
our capstone design course on distributed embedded systems, since many such
systems have safety critical aspects (for example, steer-by-wire is a safety criti-
cal automotive application in addition to being a distributed embedded system
application). The capstone design project includes an FMEA exercise along with
fault injection so that students can see how accurately their FMEA-predicted
system responses to injected faults. An alternate approach for a course dedi-
cated to safety would be to use the text by Storey [1996].

Challenges. As more systems acquire functions that are directly or indi-
rectly safety critical, a significant challenge is exposing a broader base of non-
specialists to the basic principles of critical system design. Even a basic expo-
sure to the concept of failure mode analysis could go a long way to avoiding the
creation of brittle systems that become dangerous when something goes wrong.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

514 • P. Koopman et al.

3.8 Robotics

Distinguishing Features. Robotics clearly covers many facets of embedded
computing, while offering exciting possibilities for motivating students. While
a full discussion of robotics is beyond the scope of this paper, robotics is used as
a vehicle to teach general engineering skills and general aspects of embedded
systems.

Key Skills and Principles. We teach a third-year course entitled “General
Robotics.” The interrelated goals of this course are to inject basic mathemat-
ics into fundamental engineering education and tie basic theory together with
pragmatic implementation for students who are not necessarily going to special-
ize in embedded systems. The approach uses robotic construction experiences
to reinforce fundamental topics by having students build a LEGO robot every
week. This significantly motivates students and gives them hands-on examples
of engineering principles in the context of robotics projects.

Teaching Approach. Unlike conventional “cookbook” chemistry labs, labs
are both hands-on and heads-on, requiring students to synthesize approaches
and solve problem statements rather than follow prescriptive directions. Stu-
dent self-evaluation of success is made easier by the fact that students can ob-
serve whether or not a robot is actually working, whereas theoretical homework
can often be assessed only via a human grader. In addition, homework serves
as small creative design experiences that expose students to working in teams.

There is a separate fourth-year capstone design course in robotics. A recent
capstone project example is a mock search-and-rescue experience where student
teams designed a robot to traverse rough terrain. Students drove the robots,
but only using images from a camera on board the robot, with the students in
a separate physical space from the operating robots, as would be the case in
a real search-and-rescue scenario. The projects provided students with many
lessons of robot integration which are difficult to teach in the classroom, but can
be learned through direct experience. Results of that project have influenced
the design of search-and-rescue robots.

3.9 Computer Peripherals

Distinguishing Features. A significant fraction of embedded computers are
placed in printers, disk drives, and other similar computer peripheral applica-
tions. The computer peripheral industry has a market that differs dramatically
from many other embedded systems, because it is driven by the market cycle
and economics of the desktop computing industry. For example, disk drives
themselves become obsolete in only a few years due to density improvements
in newer drives rather than by wear-out of installed embedded hardware and
software. Because peripherals are connected to computers that are, in turn,
usually connected to the Internet, deploying software patches for peripherals
is considerably easier than for most other embedded applications (for example,
it is standard practice to update the firmware of a newly installed peripheral
as part of installation or troubleshooting—something relatively rare in most
other embedded applications).

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 515

Key Skills and Principles. We have neither identified a unique set of embed-
ded system engineering principles that applies to the computer peripheral area,
nor are we aware of a specific text or teaching methodology that is distinctively
tailored to this area for students in years 1–4.

Teaching Approach. We rely upon students learning other areas (primarily
the small microcontroller area, as well as non-embedded computer engineering
areas) to gain the skills needed to work in this application area.

3.10 Signal Processing

Distinguishing Features. Signal processing as a discipline involves filter-
ing, coding, detecting, analyzing, and otherwise using computers to process
signals that include audio, video, and other data streams. Courses to teach the
mathematics and theory of this area are well established. Beyond those pre-
requisite courses, however, there is an opportunity to teach how to implement
theory subject to the constraints and limitations of real computing platforms.
Representative application areas include radar, sonar, and image compression.
Very often, such systems employ specialized embedded processing hardware,
including Digital Signal Processing (DSP) chips.

Key Skills and Principles. We teach this area via a capstone design course
that centers on using DSP hardware to implement a student-selected project of
their choice. Topics have included: speech and music processing, digital commu-
nications, multimedia processing, data compression, data storage, wireless com-
munications, CD drives, image processing, and signal processing. One month
of introductory laboratories familiarize the students with DSP hardware and
support software. Lectures address Z-transforms, IIR and FIR filter design us-
ing MATLAB and DSP hardware, LPC and adaptive filters, channel coding,
time and frequency multiplexing, short-time Fourier and wavelet transforms,
and spread spectrum techniques.

Teaching Approach. As one might expect, the first of two prerequisite
courses is an introductory signals and systems course. Because this is a broad
capstone design course, the second prerequisite is flexible, including a course
in wireless communications, an introductory computer science data structures
course, optical processing, multimedia encoding, image processing, or advanced
digital signal processing. Projects are generally expected to build upon the com-
bined strengths of the members of each project team in these or related areas.

Challenges. A key challenge in this area is similar to that experienced in
the controls area—bridging the gap between the abstract mathematics of signal
processing and the gritty details of implementation on resource-constrained
hardware. This is currently addressed via students having to come to terms
with real hardware limitations as part of a capstone design experience. In the
future, bridging the two areas with lecture-based course material might also
be useful.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

516 • P. Koopman et al.

3.11 Command and Control

Distinguishing Features. Command and control systems are exemplified by
relatively complex military combat and aerospace systems, and so-called “sys-
tems of systems” built by defense contractors. This area is characterized by a
need to integrate very large systems from different subsystem suppliers, of-
ten with soft real-time constraints and an emphasis on data coordination and
aggregation.

Key Skills and Principles. It seems difficult to separate the specific em-
bedded system skills necessary for this area from the more generalized
skills required for complex software systems and general-purpose computing.
Specifically, because they tend to be built from “Commercial Off The Shelf”
(COTS) components, these systems increasingly use desktop and enterprise
technologies.

Teaching Approach. We have not been able to pin down the essential topics
for this area, nor do we offer a course in it. Nonetheless, this area represents
a distinct approach to embedded systems, is one that employs a significant
number of graduating students, and might be well served by being directly
addressed at years 3–4 in some institutions.

One way this area can be addressed, in part, is to tailor an embedded real-
time course to command and control applications, along the lines of textbooks,
such as the one by Cooling [2003]. Of course, many of the difficult issues of com-
mand and control systems go beyond real-time computing, and result from the
immense complexity encountered in system integration. Dealing with system
complexity traditionally falls under the realm of software engineering, which
we treat in years 5–6 at Carnegie Mellon with a curriculum created by the
Software Engineering Institute [Ford and Gibbs 1989]. While some elements of
that curriculum cover embedded computing, that program is not fundamentally
focused on embedded systems.

Challenges. The principle challenge to teaching command and control sys-
tem skills to embedded system engineers is that of motivating those students
to invest serious attention in what amounts to software engineering, whereas
most embedded engineering students are trained as and think of themselves
as hardware engineers. Creating students with strength in both hardware and
software engineering (as opposed to mere programming or only software sys-
tems) remains an open challenge.

3.12 Wireless Data Systems

Wireless data systems are a relatively new area of study that involve collec-
tions of nodes used to sense, aggregate, and distribute data. A popular alter-
nate name for this area is “sensor networks.” This is a relatively new area
that we have taught to students in year 6 and later. Topics of interest in this
area include: wireless network operation, image processing, security, privacy,
distributed databases, portable data representation, and distributed systems.
However, we have not yet attempted to teach this topic to year 1–4 students.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 517

Hemingway et al. [2004] have addressed this topic in a capstone design course
at the University of Washington.

4. CROSS-CUTTING EMBEDDED SKILL AREAS

Beyond specific application areas, there are cross-cutting technologies, skills,
and teaching areas that are not applications in themselves, but rather tools and
techniques that are frequently used by embedded system designers. In general,
the difference between these skills and the previous embedded computing areas
is that most people would not consider a course with one of the below titles to
be an “embedded” course. Nonetheless, we have found in our interactions with
industry that all of the skills are critical ones for practicing embedded system
engineers. Thus, all these skills must be taught either within the embedded
computing courses themselves or as strongly recommended/required auxiliary
courses to produce well-rounded students.

4.1 Security

Distinguishing Features. Security for embedded applications presents dif-
ferent requirements and constraints from traditional applications [Koopman
2004]. First, many embedded applications execute in resource-constrained en-
vironments (both in terms of CPU power and memory capacity), making liberal
use of heavy-weight security mechanisms, such as public-key cryptography, in-
feasible in many cases. Second, embedded applications typically have stringent
reliability requirements. For instance, a controlled battery bank that provides
power to critical applications may be required to stay up for 99.99999% of the
time, even in the face of malicious attacks, while typical desktop applications
can tolerate occasional interruptions. Last, embedded applications are often
cost sensitive—a 10-cent increase in the manufacturing cost due to security is
sometimes prohibitively expensive.

More than 20 years of security research suggests that it is impracticable
to add security as an afterthought to an existing system design. Thus, it has
to be built in by the original embedded system designers. However, embedded
security is a subject area that is rarely taught (if at all) in academic institu-
tions. Instilling some level of understanding of security concepts in embedded
system engineers is a critical challenge for the near future as well as long-term
educational planning.

Key Skills and Principles. The principal security issues behind embedded
applications can be loosely categorized as follows:

Authentication and Access Control. This deals with determining the iden-
tity and access rights of the entity involved in certain operations. Many em-
bedded applications have subtle authentication and access control issues. For
example, Internet-capable devices often have no clear definitions of a user (con-
sider embedded processors in a dishwasher), and yet can be accessed remotely
[Bergstrom et al. 2001]. The consequence of being controlled by the wrong user
can range from relatively benign (hot water wasted by an extra washing cycle)
to disastrous (consider power loss for a life-support machine).

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

518 • P. Koopman et al.

Data Privacy and Integrity. Many embedded devices store or communicate
sensitive data. For instance, automobile location information can reveal where
a person is at what time. Even seemingly benign devices can sometimes reveal
information with privacy implications [Koopman 2004].

Software Security. Malicious code presents an ever-increasing threat as
more and more embedded systems become interconnected. For example, a re-
mote software update capability for automobiles is being pursued by car man-
ufacturers. However, the security implications for remote programming are so
significant that the industry is proceeding with extreme caution.

Security Policies. Security policies govern system operation. Cookie-cutter
policies for desktop computing may not apply, because requirements for embed-
ded applications can be considerably different.

The above issues are not fundamentally different from those found in tra-
ditional computer/network security. However, many established security solu-
tions do not carry over to the embedded domain. In the near future, embedded
security will become a stand-alone area for research and, possibly, teaching.

Teaching Approach. At this time, we teach security as a separate subject
and students must map concepts onto embedded systems on their own. This can
be challenging because general security courses, by and large, ignore memory
and CPU constraints as well as other embedded-specific concerns.

Challenges. The main challenge for teaching embedded security is that the
subject area has not been studied extensively and therefore lacks good teach-
ing material. There is no textbook written specifically on the subject and no
published body of knowledge summary that recommends course topics in this
area. We believe that a course on embedded security should be based on a cross-
fertilization of security and embedded computing, incorporating fundamental
aspects of both. However, this is a new curriculum area and there will no doubt
be many lessons to learn along the way.

4.2 Dependability

Distinguishing Features. Dependability includes fault-tolerant computing
techniques for both hardware and software, along with related techniques to
increase the amount of reliance that can justifiably be placed on a computer
system to meet its specification. While critical applications emphasize depend-
ability and safety, many noncritical embedded applications also need some level
of assured dependability. Because dependability can apply to any application
area and any system, we treat it separately from critical systems (discussed
earlier), which traditionally have niche application domains.

We note that the term “dependability” is often considered to encompass se-
curity as well as other areas. From a teaching point of view, the dependability
community (with a fault tolerant computing heritage) and the security com-
munity have not yet merged, so we treat these as separate educational areas.
This will change as faculty from both areas are cross-trained and new course
materials are developed.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 519

Key Skills and Principles. Several aspects of dependability are important
in building real-world, mission-critical systems. Of particular importance are
reliability engineering, which aims to make systems less failure-prone, and
fault-tolerance, which aims to compensate for failures when they do happen.

The fundamental building blocks needed for understanding dependable dis-
tributed systems include atomic multicast, reliable group communication, repli-
cation, architecture-based reliability, fault detection, network protocols, fault
injection, fault models, and transaction processing. Each of these techniques is
useful in specific contexts, and some of these techniques can be combined to ob-
tain adequate guarantees of dependability. It is essential for students to learn
these concepts (and to have actually implemented them in practical systems)
before they can be entrusted with high dependability applications. As a part
of this area, students should learn how to critically examine the dependabil-
ity trade-offs (e.g., performance versus reliability, real-time versus reliability,
availability versus safety) involved in making engineering and design choices.

Teaching Approach. An introduction to this area is incorporated into the
distributed embedded system fourth-year capstone design course, along with
an introduction to safety-critical computing concepts. This is because an in-
creasing number of distributed embedded applications require heavy-weight
approaches to dependability. (For example, automotive X-by-Wire systems are
likely to incorporate group membership as a fundamental system service.)

However, there is far more specialized material than can be taught in
Baccalaureate courses during the first 4 years of study. Therefore, we teach
an addition fifth/sixth-year course on dependable distributed systems. Over
time, we are transitioning the core concepts such as group membership from
that later course into the fourth-year course. The topics in this course include:
(1) individual and combined aspects of real time, performance and reliabil-
ity, (2) basics of distributed systems, including concepts such as asynchrony,
(3) tools and techniques for analyzing dependability, and (4) critique of cur-
rent distributed technologies from the respective viewpoints of real time, fault
tolerance, and scalability. While the emphasis is on fundamental concepts to
enable students to apply their skills throughout their careers, projects use new
technologies, e.g., recent release versions of middleware.

A substantial portion of course content involves a cooperative team software
system implementation project. The project requires the design, implementa-
tion, empirical evaluation, and end-to-end analysis of a real-time, fault-tolerant
high-performance distributed application. Lectures, along with regular project
meetings with the instructor, allow students to design and implement realistic
middleware applications (often equivalent to their commercial counterparts),
to develop infrastructures to make these applications dependable, and to eval-
uate the effectiveness of their techniques. This allows students to get first-hand
insight into the real-world aspects of reliable systems and to learn to appreciate
both the practical and theoretical aspects of dependability. While the context
for this course is enterprise computing, the material taught is applicable to dis-
tributed embedded systems and, for that reason, is taken by many embedded
systems students.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

520 • P. Koopman et al.

While this course is targeted to fifth-year students, increasing numbers of
fourth-year students have been taking it to target careers in specific industries.
For instance, students seeking positions in mission-critical industries (e.g., de-
fense contractors, financial industries, telecommunications companies) often
take this course in their fourth year, prior to graduation. Software engineers
from local industries also take this course, upon recommendation from their em-
ployers, who want their employees to have formal dependability knowledge and
exposure to practical, hands-on experience. The combination of diverse sets of
students (graduating fourth-year students with jobs awaiting them, fifth-year
students, and employed software engineers with domain expertise) makes for
a combination of complementary strengths, especially in team project settings
to solve dependability problems.

Challenges. A future challenge will be addressing the unique needs of
middleware that executes on embedded systems (for example, middleware in
the infotainment system of an automobile). Some concepts will carry over intact
from enterprise middleware, but some will need to be revisited entirely to be
useful in an embedded environment.

4.3 Energy-Aware Computing

Distinguishing Features. Traditionally, mobile, portable, and battery-
powered embedded systems have provided incentive for low-power design and
energy-aware computing. Energy management has become a first-class design
constraint and a mandatory ingredient of embedded system curricula. Energy-
aware computing provides power reduction techniques that can be used and
orchestrated in order to achieve the best performance within a given power
budget, or the best power efficiency under prescribed performance constraints.

Key Skills and Principles. An energy-aware computing course must address
not only low-power design aspects, but also needs to introduce students to var-
ious techniques that can be used in concert to achieve the best set of power-
performance operating points. A representative example is the use of voltage
scaling for power reduction. Since power consumption varies as the cube of sup-
ply voltage (assuming that speed is also scaled accordingly), scaling down the
voltage is the technique that achieves the most dramatic results for power sav-
ings. However, such techniques are only practical when combined with a deep
understanding of not only the low-level circuitry involved to support them, but
also the application profile and platform used for designing the system.

Thus, a course on energy-aware computing must expose students to both:
(1) available “knobs” or parameters subject to change that are provided by cir-
cuit technology; and (2) customized, advanced techniques that take advantage
of these “knobs” and provide an overall energy-aware solution.

Teaching Approach. Although a mainstream textbook for energy-aware
computing has yet to be published, there is a wide variety of material that
one could use in support of such a course. We have used a few monographs that
touch upon low-power design aspects such as the one by Rabaey and Pedram

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 521

[1996], as well as power-aware computing methodologies, such as the ones by
Pedram and Rabaey [2002], and Melhem and Graybill [2002], in conjunction
with literature on low-power and power-aware design. We start with transistor-
level power modeling and progress through all levels of abstraction (gate,
microarchitectural, and system level), culminating with dynamic power man-
agement through operating system control. Thus, the prerequisite knowledge
of students must cover (albeit, not necessarily at the same level of expertise)
various areas which, until recently, have been in separate tracks in traditional
computer engineering curricula. The most important tool for assessing how
students have assimilated this knowledge is a semester-long integrated circuit
design project, which, depending on the level of abstraction, could be a pure
design project fully simulated (if possible, including postlayout simulation), a
simulation framework, or implementing a power management mechanism in a
real prototype (in which case a demo becomes part of the project milestones).

Challenges. As uncertainties in design increase due to a larger impact of
process variability on overall design flow, joint-power and fault-tolerance man-
agement will become relevant for future technologies. We have incorporated
such ideas in our course in support of these upcoming challenges.

4.4 Software and System Engineering

Distinguishing Features. Embedded systems are just that—systems com-
posed of many components having many different apects, not the least of which
is software. For this reason, teaching software engineering principles at some
level is vital to teaching embedded systems. Moreover, teaching system engi-
neering principles is similarly important (and, to a large degree, parallels or
overlaps with teaching software engineering principles).

Key Skills and Principles. Important topics that are included in various
embedded system courses include design and life cycle phases such as require-
ments, design, implementation, verification/validation, deployment, and main-
tenance. In addition, interdisciplinary tradeoffs between hardware, software,
and mechanical components, as well as human operator actions, are central to
many areas of embedded system design. A key economic issue that we discuss is
the progressive shift of many systems from having recurring hardware cost as
their main economic concern to having nonrecurring software development as
a significant system cost, even when software costs are amortized over a large
production run.

Teaching Approach. Currently, elements of software and systems engineer-
ing are included in different ways in various courses, mostly via capstone design
project courses, as discussed in other sections of this paper. A traditional third-
year/fourth-year software engineering course is available and taken by many
students. However, it is not specifically designed to address embedded system
engineering concerns.

Challenges. Expecting every embedded system engineering student to
double-major in software engineering as well is unrealistic. Yet, it is common

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

522 • P. Koopman et al.

for practicing engineers to need both skill sets, typically acquiring one or the
other set of skills on the job. An integrated way to teach both skills to more
students without resulting in academic overloads would better prepare them
for industry.

4.5 Real-Time Systems

Distinguishing Features. A real-time system is one whose timing behavior
is part of its correctness, with many embedded systems having this property.
For example, in an automotive engine control system, fuel needs to be injected
at the right points in time to improve both engine power and fuel efficiency
while avoiding engine damage. Examples of real-time systems can be found in
robotics, transportation and motion control systems, automated manufactur-
ing, process control, nuclear reactor control, aerospace applications, and de-
fense systems, among others. In general, any embedded control system is a
real-time system to some degree.

Key Skills and Principles. Real-time systems are often called upon to
provide predictable and guaranteed worst-case real-time response to critical
events, acceptable average-case response times to noncritical events, and satis-
faction of critical needs if transient overloads occur. Relatively large real-time
systems employ real-time operating systems that support capabilities, includ-
ing multitasking, priority-based preemptive, or time-driven scheduling, real-
time synchronization primitives that minimize priority inversion [Sha et al.
1990], real-time communications that support priority queuing and priority in-
heritance [Object Management Group 2002; RTJ 2000], high-resolution timers
and clocks, and predictable memory management including wiring down of
memory pages, periodic threads, and exceptions for missed deadlines.

Teaching Approach. Third-year students are exposed to a significant
amount of real-time content as part of the single-processor embedded sys-
tems course already described. They get further exposure to end-to-end real-
time scheduling in both the distributed embedded control capstone design
course and the MPSoC capstone design course, as well as fifth-and-sixth year
courses.

Students in the third-year introductory course learn concepts including real-
time scheduling theory (Klein et al. 1993), principles of resource management,
and composability of real-time properties. Students also learn various real-time
system approaches, including the use of cyclic executives, multitasking sys-
tems, resource management schemes, client–server paradigms, and pipelined
approaches. Additional topics include real-time synchronization schemes, such
as mutual exclusion, producer-consumer patterns, and techniques to avoid both
buffer overflow/underflow and priority inversion.

A series of five course projects give students hands-on exposure to real-time
system skills. Students use tools to analyze worst-case timing behavior and
various debugging strategies, including processor simulators. An important
lab project involves implementing a real-time low-footprint embedded oper-
ating system that implements context-switching, task scheduling, real-time

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 523

operation, and semaphore management. Students also build interactive timed
games and complete audio and/or video-based multitasking applications to test
and validate the functionality of the underlying RTOS that they themselves
built. Our treatment of real-time systems in combination with single processor
system topics in a third-year course of necessity limits the amount of material
that can be covered. A possible alternate approach for other institutions is to
teach a course that is more exclusively focused on real-time systems, using one
of the many available texts such as those by Liu [2000] or Burns and Wellings
[2001].

Challenges. An important challenge is making real-time system theory,
which can be quite math-intensive, accessible to third year nonspecialist stu-
dents. This has been done to this point by devoting multiple class meetings to
going over the intricate mathematical details, but other approaches might be
more appropriate for other curricula.

4.6 Human-Computer Interaction

Distinguishing Features. It is common for embedded computers to have an
interface for directly interacting with humans (for example, a digital watch, or
a sewing machine with touch-screen LCD). Many embedded systems also inter-
act with humans indirectly through system behavior or less computer-specific
interaction devices (for example, a toaster, or an antilock braking system). Any
time an embedded system interacts with people, using good approaches to hu-
man computer interaction is an important consideration.

Key Skills and Principles. Carnegie Mellon is fortunate to have a
department-level emphasis on HCI in the form of the Human Computer Inter-
action Institute (HCII). Several courses in the area of HCI are offered, although
none is specifically designed for embedded system engineers. An essential ten-
ant in HCI is involvement of end users in the design process. We teach students
that “The user is not I.”

Teaching Approach. Techniques in user-centered design include contextual
enquiry, coalescing concepts via affinity diagrams, and creating scenarios from
which capabilities and, subsequently, functional requirements, are identified.
There is an undergraduate second major in HCI that enrolls one-half dozen
electrical and computer engineering students. Courses in the major are drawn
from social science and psychology (Humanities College), design (College of
Fine Arts), and computer science.

Two fourth-year capstone design courses already discussed have specific HCI
content. The Rapid Prototyping of Computer Systems capstone design course
specifically includes students from the School of Design, and is cotaught by
the Department Head of the HCII. Projects in that course emphasize the hu-
man aspects of design and system construction, usually of embedded computing
systems. The distributed-embedded systems capstone design course includes a
full lecture on HCI and other courses, include varying levels of HCI content as
well.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

524 • P. Koopman et al.

5. LESSONS LEARNED AND GENERAL OBSERVATIONS

Perhaps the salient feature apparent from our description of embedded sys-
tem education is that it is not a single, monolithic approach. Teaching ap-
proaches, assessment approaches, and goals vary dramatically. We consider
this a strength, because it gives our students exposure to a wide variety of ex-
periences. Life for an engineer in an embedded consumer electronics startup
company can be expected to differ dramatically from life at a large, established
company producing safety-critical medical devices. Similarly, our course expe-
riences differ based on application area and recognized faculty strengths in var-
ious technical and educational areas. They also differ based on position in the
curriculum, from introductory courses to fourth-year capstone design courses
in which up to one-half of enrolled students are actually postbaccalaureate stu-
dents, to fifth-year courses in which up to one-half of the enrolled students are
actually baccalaureate students. They also differ based on the demographics
of students, which have included mainstream students enrolled in ordinary
courses, experienced industry professionals, and overseas distance education
students.

Some of the high level lessons learned across our various teaching experi-
ences are listed below:

• Students who have experience in nonembedded versions of a skill area do
not necessarily have an advantage. A previous course (in operating systems,
or distributed systems, for example), might give them a grasp of some topics,
but also gives them preconceived ideas that have to be unlearned for the
embedded system environment (for example, techniques that consume too
much memory, network bandwidth, or CPU power).

• Students retain knowledge better when working through actual implemen-
tations in realistic environments that force them to confront the very real
limitations and quirks of embedded systems.

• Enforcing a methodical design process noticeably increases the success rate
of capstone design projects (i.e., projects that actually “work” at the end of the
semester). However, students who perceive they are “wasting” time on process
instead of creating more system features can lose motivation, so finding the
right amount of process is a difficult balancing act.

• Significant projects can be completed with dramatically different team sizes,
with team sizes of 2 to 4 students common for capstone design projects.
Thirty-student projects can also be successful, but require significant atten-
tion from staff or faculty to perform management coordination and enforce
an appropriate system engineering process.

• Because embedded system terminology can be nonintuitive and differ from
desktop computing, students are well served by having access to a lexicon,
such as the one by Ganssle and Barr [2003]. This is especially important for
students who are newly transitioning to the language being used for instruc-
tion (English, at our university).

• Noncomputer engineering students (for example, mechanical engineers from
industry enrolled part-time in a fourth-year course) might not have any

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 525

background in discrete mathematics. This can be an unpleasant surprise for
both students and faculty, because embedded-systems faculty usually take
discrete mathematics preparation for granted.

• Because the embedded system industry gets little press in most professional
publications, guest speakers from embedded system industries provide in-
valuable motivation and insight when they visit classes.

• When possible to arrange, using industry partners as customers for
embedded-system projects injects a level of realism not possible in any other
way. Most students do not have an intuitive sense for the requirements and
tradeoffs inherent in embedded system design and such issues carry more
credibility when presented by an industry practitioner.

Beyond exposing students to engineers from industry in any reasonable way
possible, it is important to expose students to realistic problems, and realistic
problem-solving situations. Students need to learn about themselves, including
their own strengths and weaknesses, as they respond to different situations.
Someday they will not be able to rely upon faculty or teaching assistants to
help them out, nor will an 84% correct piece of software (which can be an ac-
ceptable grade in many situations) be good enough shipping a safety-critical
application. For these reasons, educators need to, as closely as possible within
the confines of an academic setting, approximate real situations. Approaches to
this vary across our embedded curriculum. Some project courses give students a
problem and let them make their own mistakes, trusting that with subtle guid-
ance from the course instructors they will emerge with appropriate skills. Some
project courses set forth a very rigorous design methodology and make students
follow it so that they can try it on for size. Of course, many approaches have
value and we strongly encourage students experience multiple such situations
to truly learn what they need to acquire lifelong learning skills. In all cases it
is important to realize that the specific tools or technologies being taught are
transitory. The deeper lessons that must be ingrained in students involve han-
dling open-ended, complex, multidisciplinary, and overconstrained situations,
and learning how to adapt techniques as problems unfold. Our feedback sur-
veys of students indicate that, by and large (depending on choices made by the
students themselves on their course of study), our graduates have indeed at-
tained a set of skills that has prepared them well for work in various embedded
system application domains.

6. CONCLUSIONS

Embedded systems cover an enormous span of applications, technology, and
system scale. In three decades of teaching increasing amounts of embedded
computing material, we have learned two important lessons. The first is that
significant hands-on course content is essential to teaching the systems aspects
that form an inherent part of embedded systems. This is reflected, in part, by
the fact that much of our embedded system course content is taught as capstone
design courses. Even the noncapstone courses usually have significant project
content. The second major lesson is that embedded systems can be taught with-
out having a single, monolithic curriculum or, for that matter, strong centralized

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

526 • P. Koopman et al.

planning of course content. Informal interaction among faculty and tailoring
of each course to its relevant embedded system area has resulted in a robust
set of courses that covers most, but not all (primarily due to limited faculty
size), of what we consider to be the important areas that can be covered in an
undergraduate embedded system curriculum.

Discovering how to best teach embedded systems is, of course, a continu-
ing journey. Technology, applications, and people change over time. So must
embedded system education.

ACKNOWLEDGMENTS

P. Koopman was supported in part by the General Motors Collaborative Re-
search Laboratory at Carnegie Mellon University, Honeywell, DaimlerChrysler,
and the Pennsylvania Infrastructure Technology Alliance. B. Krogh was sup-
ported in part by grants from General Electric, Lockheed Martin, Ford, the
US Defense Advance Projects Research Agency (DARPA) contract nos. F33615-
00-C-1701 and F33615-02-C-4029, US Army Research Office (ARO) contract
no. DAAD19-01-1-0485, and the US National Science Foundation (NSF) grant
no. EIA-0088064. D. Marculescu was supported in part by US National Science
Foundation (NSF) Career Award no. CCR-008479 and Semiconductor Research
Corporation (SRC) grant no. 2004-HJ-1189. P. Narasimhan was supported in
part by the National Science Foundation (NSF) Career Award CCR-0238381
and the General Motors Collaborative Research Laboratory at Carnegie
Mellon University. J. Paul was supported in part by grants from ST Microelec-
tronics, General Motors, Altera, Xilinx, the Pittsburgh Digital Greenhouse, and
The National Science Foundation (NSF) grant no. 0103706 and grant no. EIA-
9812939. R. Rajkumar was supported in part by the General Motors Collabora-
tive Research Laboratory at Carnegie Mellon University. D. Siewiorek and A.
Smailagic were supported by the National Science Foundation (NSF) grants
no. 0205266 and 0203448, the Defense Advanced Research Project Agency
(DARPA) contract no. NBCHC030029, and the Pennsylvania Infrastructure
Technology Alliance. P. Steenkiste’s development of the course on “Network
Design and Evaluation” was supported by Intel. C. Wang was supported in
part by grants from the US National Science Foundation (NSF) contract nos.
CCR-0208853 and ANI-0326472. The insights gained about industry needs for
embedded system education have also been informed by collaboration with
numerous partners that had a direct impact on what and how we teach, in-
cluding: General Motors, Ford, Bombardier Transportation, Boeing, Lockheed
Martin, General Electric, Chevron, Pennsylvania Department of Transporta-
tion, Hyundai Motors, NASA, Bosch, ABB, Emerson Electric, United Tech-
nologies, Intel, DaimlerChrysler, AT&T, Honeywell, Lutron, the US Navy, and
Inmedius.

REFERENCES

ABET ACCREDITATION COMMITTEE. 2004. Criteria for Accrediting Engineering Programs. November
1.

AMON, C. H., FINGER, S., SIEWIOREK, D. P., AND SMAILAGIC, A. 1995. Integration of design education,
research and practice at Carnegie Mellon University: A multi-disciplinary course in wearable
computer design. Frontiers in Education Conference, 1–4 Nov. Vol. 2, pp. 4a1.14–4a1.22.

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

Undergraduate Embedded System Education at Carnegie Mellon • 527

ARTIST PROJECT. 2003. Guidelines for a Graduate Curriculum on Embedded Software and Sys-
tems, Project IST-2001-34820 report, review version, May 6. Accessed at http://www.artist-
embedded.org/Education/Education.pdf on August 28, 2004.

AUSTIN, T., BLAAUW, D., MAHLKE, S., MUDGE, T., CHAKRABARTI, C., AND WOLF, W. 2004. Mobile super-
computers. IEEE Computer, May 2004, 81–83.

BENINI, L. AND DE MICHELI, G. 2002. Networks on chips: a new SoC paradigm. IEEE Computer,
January 2002, 70–78.

BERGER, A. 2002. Embedded Systems Design: An Introduction to Processes, Tools and Techniques.
CMP Books, Manhassett, NY.

BERGSTROM, P., DRISCOLL, K., AND KIMBALL, J. 2001. Making home automation communications
secure. Computer, October 2001, 50–56.

BOSCH, ROBERT GMBH. 1991. CAN Specification, Version 2.
BURNS, A. AND WELLINGS, A. 2001. Real Time Systems and Programming Languages: Ada 95,

Real-Time Java and Real-Time C/POSIX (3rd Edition), Addison Wesley, Reading, MA.
CATSOULIS, J. 2003. Designing Embedded Hardware, O’Reilly, Sebastopol, CA.
CMP 2005. CMP Media Publication Information, accessed at http://www.cmp.com/pubinfo/?

pubID=50 on February 14, 2005.
COOLING, J. 2003. Software Engineering For Real-Time Systems. Addison Wesley, Reading, MA.
DIRECTOR, S. W., KHOSLA, P. K., ROHRER, R. A., AND RUTENBAR, R. A. 1995. Reengineering the

curriculum: Design and analysis of a new undergraduate Electrical and Computer Engineering
degree at Carnegie Mellon University. Proceedings of the IEEE 83, 9(Sep.), 1246–1269.

EMBEDDED SYSTEMS CONFERENCES. 2004. Embedded Systems Conferences home page,
http://www.esconline.com/ accessed August 28, 2004.

ESTRIN, D., BORRIELLO, G., COLWELL, R., FIDDLER, J., HOROWITZ, M., KAISER, W., LEVESON, N., LISKOV,
B., LUCAS, P., MAHER, D., MANKIEWICH, P. L., TAYLOR, R., AND WALDO, J. 2001. Embedded Every-
where: A Research Agenda for Networked Systems of Embedded Computers. National Academy
Press, Washington, DC.

FORD, G. AND GIBBS, N. 1989. A Master of software engineering curriculum: recommendations
from the Software Engineering Institute. Computer 22, 9 (Sep.), 59–71.

GANSSLE, J. AND BARR, M. 2003. Embedded Systems Dictionary, CMP Books.
GRASON, J. AND SIEWIOREK, D. 1975. Teaching with a hierarchically structured digital systems

laboratory. IEEE Computer, December 1975, 73–81.
IEEE 2004. Advertise in Computer, accessed at http://www.computer.org/computer/ad.htm on

August 18, 2004.
HEMINGWAY, B., BRUNETTE, W., ANDERL, T., AND BORRIELLO, G. 2004. The Flock: Mote Sensors Sing

in Undergraduate Curriculum. IEEE Computer, August 2004, 72–78.
JERRAYA, A. AND WOLF, W., EDS. 2005. Multiprocessor Systems-on-Chips. Morgan Kaufmann,

San Francisco, CA.
KLEIN, M., RALYA T., POLLAK B., OBENZA R., AND HARBOUR M. 1993. A Practitioner’s Handbook for

Real-Time Analysis. Kluwer Academic Publ., Boston, MA.
KOOPMAN, P. 2004. Embedded system security. IEEE Computer, July 2004, 95–97.
KOPETZ, H. 1997. Real-Time Systems: Design Principles for Distributed Embedded Applications.

Kluwer Acadimic Publ., Boston, MA.
KOPETZ, H. AND BAUER, G. 2003. The time-triggered architecture. Proceedings of the IEEE 91, 1

(Jan.), 112–126.
LEEN, G. AND HEFFERNAN, D. 2002. Expanding automotive electronic systems. IEEE Computer,

January 2002, 88–93.
LEWIS, D. 2001. Fundamentals of Embedded Software: Where C and Assembly Meet. Prentice

Hall, New York.
LIU, J. 2000. Real-Time Systems, Prentice Hall, New York.
MELHEM, R., AND GRAYBILL, R., EDS. 2002. Power Aware Computing, Kluwer Academic Publ.,

Boston, MA.
MOTUS, L. 1998. Teaching software-intensive embedded systems at Tallinn Technical University,

Proceedings of Real-Time Systems Education III. Poznan, Poland, 30–35.
NEILSEN, M., LENHER, D., MIZUNOL, M., SINGH, G, ZHANG, N., AND GROSS, A. 2002. An in-

terdisciplinary curriculum on real-time embedded systems. In Proceedings of the 2002

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

528 • P. Koopman et al.

American Society for Engineering Education Annual Conference & Exposition, session
1526.

PEDRAM, M., AND RABAEY, J., EDS. 2002. Power Aware Design Methodologies, Kluwer Academic
Publ., Boston, MA.

PRI-TAL, S., ROBERTSON, J., AND HUEY, B. 2001. An Arizona ecosystem for embedded systems. In 20th
IEEE International Performance, Computing, and Communications Conference (IPCCC 2001).
Phoenix AZ, April 4–6, 131–134.

RABAEY, J., AND PEDRAM, M., EDS. 1996. Low Power Design Methodologies, Kluwer Academic Publ.,
Boston, MA.

OBJECT MANAGEMENT GROUP. 2002. Real-Time CORBA, CORBA 2.0 Specification, accessed at
http://www.omg.org.

RTJ 2000. JSR-000001, The Real-Time Specification for Java, accessed at http://www.rtj.org
SIEWIOREK, D. P., SMAILAGIC, A., AND LEE, J. C. 1994. An interdisciplinary concurrent design

methodology as applied to the Navigator wearable computer system. Journal of Computer and
Software Engineering. 2, 3, 259–292.

SIEWIOREK, D. P., SMAILAGIC, A. ET AL. 1998. Adtranz: a mobile computing system for maintenance
and collaboration. Proceedings of The Second IEEE International Symposium on Wearable Com-
puters, IEEE Computer Society Press. 25–32.

SMAILAGIC, A., SIEWIOREK, D. P. ET AL. 1995. Benchmarking an interdisciplinary concurrent design
methodology for electronic/mechanical design. Proc. ACM/IEEE Design Automation Conference.
514–519.

SMAILAGIC, A., SIEWIOREK, D.P., STIVORIC, J., AND MARTIN, R. 1998. Very rapid prototyping of wear-
able computers: a case study of custom versus off-the-shelf design methodologies, Journal on
Design Automation for Embedded Systems 3, 217–230.

SHA, L., RAJKUMAR, R., AND LEHOCZKY, J. 1990. Priority inheritance protocols: An approach to real-
time synchronization. IEEE Transactions on Computers. 39, 9, 1175–1185.

SIMON, D. 1999. An Embedded Software Primer, Addison-Wesley, Reading, MA.
STEENKISTE, P. 2003. A network project course based on network processors. ACM Technical

Symposium on Computer Science Education (SIGCSE 2003). Reno, Feb. 9–23, 262–266.
STOREY, N. 1996. Safety-Critical Computer Systems, Addison-Wesley, Reading, MA.
TEMPELMEIER, T. 1998. “Embedding practical real-time education in a computer science curricu-

lum. In Proceedings of the 3rd IEEE Real-Time Systems Education Workshop. Poznan Poland,
21 November, 149–153.

TURLEY, J. 2002. Embedded processors (Parts 1–3), January 2002. Accessed at http://www.
extremetech.com on August 18, 2004.

VAHID, F. 2003. Embedded system design: UCR’s undergraduate three-course sequence. Proceed-
ings of the 2003 IEEE International Conference on Microelectronic Systems Education (MSE’03).
72–73.

WOLF, W. AND MADSEN, J. 2000. Embedded systems education for the future. Proceedings of the
IEEE 88, 1, (Jan.), 23–30.

WOLF, W. 2001. Computers as Components: Principles of Embedded Computing System Design.
Morgan Kaufmann. San Francisco, CA.

WOLF, W. 2003. How many system architectures? IEEE Computer, March 2003, 93–95.

Received August 2004; revised February 2005; accepted May 2005

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 3, August 2005.

