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Abstract.    
Deeply networked systems are formed when embedded computing systems gain 
connectivity to each other and to larger enterprise systems.  New functionality also 
brings new survivability challenges, including security across the embedded/enterprise 
interface.  Addressing the needs of deeply networked system survivability is an open 
challenge that will require new approaches beyond those used for enterprise systems. 

Introduction 

A deeply networked system is formed when embedded computing subsystems are 
connected to each other and to enterprise systems, often via the Internet [20].  By increasing 
access to information and computing resources, these systems promise to provide new 
capabilities and opportunities.  Unfortunately, deep networking also introduces survivability 
issues that have, thus far, received little attention. 

Consider an automotive control application (such as a road-condition sensor or intake 
air quality sensor, Figure 1) which is connected via the vehicle’s embedded networks to an 
automotive telematics infrastructure [2].  In this system, external servers could optimize 
performance for a given emissions requirement by reconfiguring the ratio of internal 
combustion to battery power in the car’s engine, based on data from the internal vehicle 
sensors and other external sources (such as traffic conditions).  However, what happens if 
someone penetrates the servers and commands all hybrid vehicles to perform 100% internal 
combustion on a smoggy day?  What happens when a fault in a vehicle’s telematics 
connection disrupts enterprise server operations?  Worse, what happens when someone uses 
the enterprise-to-embedded communication channel to break into a vehicle and cause it to 
behave in an unsafe manner?  

Given the proliferation of embedded applications that are increasingly connected to the 
Internet [19][16][15], including automobiles [9] and train control [6], it becomes imperative 
to find strategies that can safely and securely connect the two types of systems.  In 
particular, deeply networked systems must ensure the survivability of embedded 
applications [12][10][18] with critical functionality. 
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Figure 1: Example of a coupled embedded + enterprise system. 

1. Embedded Survivability 

Embedded systems are often used in critical applications, and there is much previous work 
in creating dependable systems for transportation applications, among others.  In addition to 
newer security-based approaches, classical approaches have included hardware fault 
tolerance, software fault tolerance, and techniques to assure high software quality for 
critical systems ([4] are proceedings from a primary conference on these topics). 

Classical work in this area assumes closed systems in which external attackers cannot 
gain access to the system.  For this reason, most embedded systems have little or no native 
security capabilities.  For example, the real-time embedded networks currently used in 
mainstream automobiles have no security mechanisms available for network messages.  

 

1.1. Embedded system differences 

It seems likely that traditional approaches won’t solve many security problems in typical 
embedded systems, because the constraints and application domains differ tremendously 
from enterprise systems.  A description of many of the differences can be found in [11].  
The following points discuss the differences most relevant to survivability. 

Many embedded systems interact with the external world by reading sensor values and 
changing actuators.  Several properties of this real-world interaction that increase the 
difficulty of maintaining essential functions in the face of a failure or attack are: 

• Reactive and real time.  Embedded systems often perform periodic computations to 
close control loops.  Even small timing variations (less than one second in many 
cases) that destabilize a single control loop can cause complete system failure. 

• Critical.  Embedded systems are often used in life- or mission-critical applications.  
This means that even minor disruptions to service can have unacceptably high cost. 
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• Non-recoverable.  Because embedded systems have actuators that change the 
physical world, it may be difficult or impossible to “roll back” a state change 
caused by a faulty system as can be done with errant financial transactions. 

• Exceptional.  Embedded systems often operate in harsh environments with analog 
inputs, potentially subjecting them to many hardware faults. 

Embedded systems have to remain survivable even though they usually are far more 
constrained than enterprise systems.  Common embedded system constraints include: 

• Small size & weight; battery power.  Severe constraints on size, weight, and power 
often limit the amount of memory and computational power available. 

• Low cost.  Cost pressure usually results in the least capable CPU possible being 
used.  Indeed, 8-bit CPUs dominate the market by volume [21]. 

• 24x7 operation of single nodes.  Continuous operation, often with a single CPU 
dedicated to a particular function, makes it impracticable to have periodic 
downtime for applying patches, updates, or other preventive maintenance functions. 

• Use of embedded networks.  Most embedded systems are too low-cost to permit 
the use of Ethernet, TCP/IP, or other enterprise communication techniques.  
Instead, they use specialized embedded real-time networks such as CAN and 
TTP/C that don’t support TCP/IP efficiently. 

• Lack of system administrator.  While it might be realistic to have a system 
administrator for every personal computer, most embedded systems are not 
designed to be continually patched or require software management.  (Who should 
be the sysadmin for an air conditioner?) 

Because of these various issues, it is clear that techniques used in enterprise systems 
cannot be expected to work as-is in an embedded environment.   

1.2. Issues at the Embedded/Enterprise Interface 

Most embedded systems aren’t designed to connect to the Internet.  Rather, most designs 
assume that the manufacturer has complete control over the software and network interface 
to every node.  Moreover, they are typically built under the assumption that the system 
designer has taken into account all likely failure modes, that there are no misbehaving nodes 
(with misbehavior due possibly to software defects, unforeseen hardware defects, or 
malicious attackers), and that all system inputs conform to system requirements.  Once a 
system is connected to the Internet, even indirectly, these assumptions are no longer valid. 

2. Embedded System Design Approach Differences 

Because embedded systems have so many differences in constraints and domain 
characteristics from typical enterprise systems, it should come as no surprise that their 
design approaches are often fundamentally different.  These differences affect which 
approaches are viable for creating survivable systems.   
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2.1. Event-based vs. time-based operation 

Enterprise systems are typically transactional and event-triggered in nature, which means 
that they usually focus on preserving data and tend to center around end-to-end request-
response semantics.  Usually the emphasis is on statistically good performance under 
various loading conditions, and it is often acceptable to refuse admission to tasks during 
overloads.  “Best effort” servicing of aperiodic tasks is often acceptable. 

Embedded systems often focus on interacting with continuous, physical systems with 
hard deadlines.  Even minor disruptions to service can have unacceptably high cost.  
Periodic operation of all aspects of the system to makes it easier to ensure that worst case 
timing properties are acceptable.  Such operation is often called "time triggered" system 
design (e.g., as discussed in [13]).   

Time triggered design makes possible optimizations such as leaving time stamps (or 
even message identifiers) off messages and instead relying on the fact that the system 
assures timely message arrival to identify messages.  A focus on worst case performance 
leads, in many cases, to static periodic execution schedules to ensure that every task has the 
computational resources it needs to run at its worst-case highest frequency.  (Dynamic 
scheduling techniques can also be used, but in the end resources must still be reserved for 
worst-case loading conditions.) 

Embedded systems designed for worst-case situations are at first glance more 
survivable to overload situations than typical enterprise systems.  This is because no matter 
how many events an attacker or fault from the enterprise system throws at it, excessive 
loads applied to one task will not compromise resources used for other tasks. 

2.2. Discrete vs. continuous applications 

The interface between event- and time-based portions of deeply embedded systems creates 
additional types of vulnerabilities to faults and attacks.  Beyond the usual issues of 
authentication and integrity, there are also timing vulnerabilities in continuous-time 
applications.  Assuming that the embedded system has a typical time-triggered design 
approach, only one incoming message of a particular type can be processed per processing 
cycle (for example, one message of a particular type every 250 msec).  If the data is being 
used for a control application, the system is likely designed to expect a fresh value for each 
and every control cycle.  Even small disruptions in timing on the enterprise side, whether 
from congestion, faults, or malicious attacks, force exception handling mechanisms to be 
developed for the interface to the enterprise side.  Exceptions that almost certainly must be 
handled include: missed messages (there may not be time for a successful retry on the 
enterprise side), erratically spaced messages (if two messages arrive during a single cycle, 
does the system queue one to let it get stale, combine the messages, or just throw one 
away?),  severely clumped messages (if ten messages arrive all at once after a long delay, 
how does the system catch up given only enough capacity to process one incoming message 
per cycle?), duplicated messages, and messages that arrive too often over an extended 
period of time.  Dealing with many of these scenarios will force tradeoffs between spending 
money on extra resources to deal with some fraction of overloads vs. discarding data. 
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Message transfer from embedded to enterprise systems requires a low pass filter 
between the periodically generated time-triggered messages and the event-triggered 
processing paradigm of the enterprise system.  For example, it may be important to transmit 
the status of an embedded airbag sensor to an enterprise system.  In a time-triggered 
embedded system, the state of the airbag (deployed or not) might be reported ten times per 
second via a network message to achieve 100 msec latency.  But reporting ten times per 
second from millions of vehicles is an unacceptable enterprise server load. One job of the 
embedded/enterprise gateway on each vehicle must be to apply a low-pass filter to values, 
and only generate an event-driven enterprise message when an airbag is deployed.  The 
gateway must also deal with spurious messages due to sensor failures or coordinated attacks.    

2.3. Fault handling approaches 

Enterprise systems typically use a checkpoint-rollback recovery strategy to make their 
significant amounts of state more survivable.  Rollback reverts to a consistent, previously 
saved state snapshot to facilitate recovery or restart in the event that a failure occurs. 

Embedded systems often use roll-forward recovery, because they cannot roll back in 
dealing with the irreversible physical world.  Typically, embedded systems contain far less 
state than their enterprise counterparts. Thus, while enterprise systems focus primarily on 
data-integrity, ordering and state-consistency protocols, embedded systems tend to focus 
more on time-sensitive, scheduling protocols where data is extracted and processed from the 
system in real time, often grows stale quickly, and can be discarded.  This makes fault 
recovery for embedded systems very different from enterprise recovery approaches. 

2.4. Physical security & repair incentive 

In general, enterprise survivability relies on the assumption that equipment owners have a 
vested interest in keeping their entire system secure and fault-free, so as to obtain full value 
from their capital equipment investment. Another underlying assumption is that it is 
possible to limit access or turn off machines in a crisis.  For example, centralized service 
providers often deny individual users access to their equipment (for example, cut off 
network access or shut down the machine) if that equipment has been compromised, in 
order to avoid disruption to other users.     

Embedded system owners may not have incentive to perform repairs and maintain 
physical security.  Indeed, there is financial incentive to break into some smart cards used to 
store cash value or keep satellite TV access logs.  In other instances, physical tampering can 
remove externally imposed constraints such as increasing vehicle performance at the 
expense of flouting anti-pollution laws or risking unsafe operating conditions. 

Even if such faults or tampering could be detected, simply shutting down an embedded 
application and/or blocking its communication are likely to be unacceptable.  A shut-down 
function would be complicated by the fact that it would have to be owned by someone other 
than the owner of the physical equipment. (Would you want the manufacturer of your 
vehicle or your local police department, for example, to have a “kill switch” for your car?)  
If the embedded system send safety critical information, (fire alarms from a dwelling; 
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airbag deployment alarms from a vehicle; medical alert alarms from a home security 
system), termination of communication might be prohibited without a lengthy process of 
warnings and opportunities for repair. And of course an external kill function would likely 
prove a tempting target for attackers to trip maliciously. 

3. Embedded Enterprise Gateway Requirements 

The usual approach for attempting to resolve problems at the embedded/enterprise interface 
is to use a gateway or “firewall” node to isolate the embedded system from faults and 
attackers originating on the enterprise side (e.g., [1] [17] [22]). However, there is little or no 
guidance available on the types of services that have to be in such a gateway node to ensure 
the resulting system is survivable.  Typical proposed approaches for this interface currently 
focus on the use of encryption (e.g., [7]) and in industrial applications often use VPN.  But, 
based on our observations, the following types of additional services are likely to be needed 
in at least some systems to ensure survivability for a wide variety of deeply networked 
system applications. 

3.1. Trusted Time Base 

A trusted time base that is shared among all embedded gateways and enterprise servers 
within a deeply networked system could provide a foundation for resolving timing 
disruptions and ambiguities.  This could improve survivability by: 

• Distinguishing whether a tightly spaced group of messages arriving at a gateway 
were generated at almost the same time, were bunched up due to congestion, or 
were subject to a man-in-the-middle timing attack. 

• Detecting timing jitter in messages sent between embedded subsystems via an 
enterprise network due to load variation or a control-loop destabilization attack. 

• Enabling compensation for message aging in closing inter-subsystem control loops. 
In some applications the embedded network will have to make available “freshness” data 
for various values transmitted periodically, because the assumption of end-to-end periodic 
operation doesn’t hold for data that has been exposed to the enterprise side of the system. 

3.2.  “Firewall” protection in both directions 

It is just as important to protect the enterprise system against an embedded subsystem as the 
other way around.  Thus, we expect enterprise/embedded gateway nodes to be composed of 
a matched pair of gateway functions in opposing directions.  Each side of the gateway will 
have opposite notions of whom to trust, complicating gateway management. 

As the embedded-to-enterprise side of the gateway converts periodic time-triggered 
data to event-triggered messages, it will have to manage issues such as ensuring delivery via 
acknowledgements, self-throttling of message loads, filtering of inappropriate messages, 
time stamping messages, and in general ensuring that faults or attacks on the embedded side 
of the interface don’t propagate to the enterprise side. 
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In addition to traditional firewall functions, the enterprise-to-embedded side of the 
gateway will have to manage the conversion of incoming event-based messages to time-
triggered messages.  This will include deciding what values to provide to periodic tasks 
when event-based messages are missed, delayed, clumped, repeated, or sent too fast. 

3.3. Limiting damage from compromised servers 

A significant potential vulnerability in deeply networked systems comes from enterprise 
servers that are given direct or indirect control authority over embedded system actuators.  
We believe that such control authority will inevitably creep in to most deeply networked 
systems.  As an example, Koopman [12] describes a real-time energy pricing scenario in 
which a malicious failure of an enterprise server can cause an arbitrary number of houses to 
change their power usage, resulting in a potential physical attack on the electric power grid. 

Avoiding vulnerabilities due to compromises of enterprise servers might be difficult.  A 
starting point might be to limit, by design, the number of embedded systems that are 
permitted to take information from any particular enterprise server (even via indirect paths), 
thus limiting the consequences of a fault or compromise of that server.  

4. Related work 

Firewall designs for enterprise systems are well known, and secure the connection between 
internal and external systems by blocking unauthorized traffic [3].  This might be achieved 
by applying filters to the packet level, the application level, or the physical port level.  
Although these enterprise-centric security designs can be effective at blocking unauthorized 
communication, they are inadequate for the attack scenarios that we have identified for 
deeply networked systems.  The SCADA community has been active in embedded security 
(e.g., [7][8]).  To this point published results have focused on patch management and 
encryption of data sent over physically insecure links. 

The TTP safety-critical embedded network protocol incorporates the concept of a 
“temporal firewall” [14] to isolate time-critical activities, but does not deal with embedded 
systems connected to the Internet.  That refers more to the isolation of time-sensitive and 
non-time-sensitive tasks from each other within an embedded system. 

Duri et al., have proposed a framework for automotive telematics applications to ensure 
the privacy and integrity of user-supplied data in the enterprise system [5].  That technique 
uses trusted processors to collect and aggregate user data to be sent to authenticated 
application.  However, it focuses on authorization rather than message timing attacks. 

5. Conclusions 

Deeply embedded systems combine embedded and enterprise computing, offering 
tremendous potential but also new survivability challenges.  Embedded systems have 
significantly different assumptions and approaches to computing, necessitating different 
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approaches to survivability than those used in enterprise systems.  Moreover, the interface 
between time-triggered, real-time embedded computing and event-triggered, transaction-
oriented enterprise computing presents unique survivability challenges. 
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