
INV ITED
P A P E R

Hardware/Software Codesign
of Aerospace and
Automotive Systems
Software and hardware for these systems must be co-designed since overall

costs depend both on hardware requirements and on the load placed on

the systems by embedded software.

By Ahmed Abdallah, Eric M. Feron, Graham Hellestrand, Fellow IEEE,

Philip Koopman, Senior Member IEEE, and Marilyn Wolf, Fellow IEEE

ABSTRACT | Electronics systems for modern vehicles must be

designed to meet stringent requirements on real-time perfor-

mance, safety, power consumption, and security. Hardware/

software codesign techniques allow system designers to create

platforms that can both meet those requirements and evolve as

components and system requirements evolve. Design method-

ologies have evolved that allow systems-of-systems to be built

from subsystems that are themselves embedded computing

systems. Software performance is a key metric in the design of

these systems. A number of methods-of-methods for the

analysis of worst case execution time have been developed.

More recently, we have developed new methods for software

performance analysis based on design of experiments. Formal

methods can be used to verify system properties. Systems must

be architected to maintain their integrity in the face of attacks

from the Internet. All of these techniques build upon generic

hardware/software codesign techniques but with significant

adaptations to the technical and economic context of vehicle

design.

KEYWORDS | Automotive; avionics; cyber-physical systems;

design of experiments; embedded computing; hardware/

software codesign; software performance; worst case execu-

tion time

I . INTRODUCTION

Modern vehicles rely on embedded computing systems

for all aspects of their operation. Those computing

platformsVa combination of hardware and softwareVare
very different from the sorts of platforms used for desktop

computing or server farms. High-performance embedded

system platforms, like those used in vehicles, must be used

to meet a variety of strict constraints.

• Real-time deadlines must be met. Safety-critical

subsystems like braking and engines clearly must

satisfy deadlines. However, even passenger enter-

tainment systems must meet strict deadlines for
delivery of multimedia data to avoid degrading

presentation quality.

• The platform must operate using the limited power

available from the vehicle’s generator.

• Since weight is a concern in all platforms, the

weight of the computing system and its associated

power and cooling is a factor in design.

• We would like to design the vehicle as a cyber-
physical system in which we match the computing

system’s architecture to the control tasks that must

be performed.

Manuscript received March 16, 2009; revised October 21, 2009. Current version

published March 31, 2010. The work of A. Abdallah and M. Wolf was supported in part

by the National Science Foundation under Grants 0509463 and 0325119. The work

of P. Koopman work was supported in part by General Motors through the

GM-Carnegie Mellon Vehicular Information Technology Collaborative Research Lab.

The work of E. Feron was supported by the National Science Foundation under

grant CSR/EHS 0615025, by NASA under cooperative agreement NNX08AE37A,

and by the Dutton-Ducoffe professorship at the Georgia Institute of Technology.

A. Abdallah was with Princeton University, Princeton, NJ 08540 USA.

He is now with Embedded Systems Technology, San Carlos, CA 94070 USA

(e-mail: aabdalla@princeton.edu).

E. M. Feron is with the Georgia Institute of Technology, Atlanta, GA 30332 USA

(e-mail: feron@gatech.edu).

G. Hellestrand is with Essetek, San Carlos, CA USA

(e-mail: g.hellestrand@essetek.com).

P. Koopman is with the Electrical and Computer Engineering Department,

Carnegie–Mellon University, Pittsburgh, PA 15213 USA

(e-mail: koopman@ece.cmu.edu).

M. Wolf is with the School of Electrical and Computer Engineering, Georgia Institute of

Technology, Atlanta, GA 30332-0250 USA (e-mail: wolf@ece.gatech.edu).

Digital Object Identifier: 10.1109/JPROC.2009.2036747

584 Proceedings of the IEEE | Vol. 98, No. 4, April 2010 0018-9219/$26.00 �2010 IEEE



Hardware/software codesign is the most widely used
approach for the design of high-performance embedded

computing systems. This field was originally developed in

the mid-1990s to support the design of CPUs accelerated

by application-specific integrated circuits (ASICs); early

work emphasized topics like estimating the performance

and area of ASICs to be synthesized. The design of

vehicular computing platforms works with a very different

set of components, but the basic motivation for codesign
still remains. Hardware/software codesign have moved

well beyond the design of ASICs using very small

components to the design of complex networks using

very complex platforms. We need to design a real-time

low-power low-cost computing platform; the best way to

meet all those conflicting constraints simultaneously is to

codesign the hardware and software.

Vehicles present some unique requirements and
boundary conditions that lead us to an updated set of

codesign techniques. Vehicles generally rely on off-the-

shelf hardware that is customized with software, so

component selection is more important than component

synthesis. The large software content of vehicles causes us

to pay special attention to real-time software performance.

We wish to have strict guarantees of as much of the system

behavior as possible, leading us to the use of formal
methods for software design in particular. The strict nature

of the control laws that must be implemented pushes us to

expand the codesign problem to consider control, leading

us to cyber-physical system design techniques. Early

codesign targets did not worry about Internet security,

but today’s vehicles often provide Internet access to both

passengers and the vehicular systems themselves. Security

must therefore become a first-class concern.
Several architectural styles have been developed for

vehicular electronics. Early systems were component-

oriented: each system component was a separate module,

with its own electronics and usually point-to-point wiring.

Federated architectures consolidate all the processors for a

subsystem (navigation, for example) but do not share

processors across subsystems. Integrated modular archi-

tectures share a common pool of processors among all
subsystems.

Traditional hardware/software codesign [1] concen-

trates on what would be a single processor cluster in a

vehicular electronics system. Traditional cosynthesis

systems such as Vulcan [2] or Cosyma [3] synthesize a

bus-based system with a CPU and an application-specific

integrated circuit; codesign allocates operations to soft-

ware executing on the CPU or to the ASIC. However, the
design of vehicular systems requires solving much larger

scale problems. Vehicular electronic systems are net-

worked embedded systems, using as backbones a collection

of diverse networks that support real-time operations. The

network may have tens to hundreds of processing elements

that communicate using perhaps a dozen interconnected

networks. Other changes in technology since the early days

of hardware/software codesign also contribute to the
change in the nature of the problem.

A variety of component types can be used as nodes in

the vehicular network: microcomputers and microcon-

trollers, consisting of CPUs, memory, and I/O devices;

field-programmable gate arrays (FPGAs); or ASICs. In the

past, vehicle system designers have been free to design

very large-scale integration (VLSI) processing elements to

support their mission requirements. But designers are
increasingly constrained to using catalog components that

have been designed for other applications.

The high cost of design of ASICs mitigates against their

use. The design of a large ASIC typically costs $10–$20 mil-

lion; this is a nonrecurring engineering cost before

manufacturing. Given that the sales cost of such ASICs is

on the order of $10, millions of units must be manufactured

to cover the cost of design. FPGAs can be used as substitutes
for ASICs, eliminating the need to fabricate chips and re-

ducing the cost of design, but FPGAs still require substantial

design investments.

Vehicular system designers must also live with the fact

that the lifetime of their vehicle is far longer than the

lifetimes of the components built into those vehicles. Not

only will the components themselves need to be replaced,

but they will eventually need to be replaced with different
types of parts. The current approach to this problem is for

vehicular subsystem vendors to make end-of-life buys of

chips as they become obsolete, and for vehicle manufacturers

to purchase spare components for the lifetime of a vehicle

production year in advance. This is an expensive proposition.

The economics of VLSI systems argue against part with

long market lifetimes. Moore’s law, which dictates that the

number of transistors per chip will double every 18 months,
provides constant improvements in microelectronics but also

ensures that technologies are rapidly outdated. Microelec-

tronics manufacturers drop old components after a few years

because their capabilities are far outstripped by more modern

parts and their flagship marketsVPCs, consumer electron-

ics, etc.Vconstantly design new systems. Even if manufac-

turers want to continue to manufacture old parts, they would

face substantial challenges. The manufacturing equipment
would have to be maintained for longer than the industry is

used to doing; mask-making equipment would similarly have

to be maintained; the computer-aided design tools used to

create the designs would also have to be maintained and

migrated to new desktop computing platforms in case minor

changes had to be made to the components. Once Moore’s

law ends, system designers may be able to rely on

components being available for many years. But for quite
some time, system design must adapt itself to the realities of

ever-changing computer technology.

Furthermore, Moore’s law increasingly dictates that

vehicle manufacturers must rely on commercial off-the-

shelf (COTS) components and less on components

specifically designed for vehicles. The design of high-end

application-specific integrated circuits (ASICs) now costs

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 585



in the neighborhood of $20 million; mask costs alone can
top $1 million. As these costs increase, semiconductor

suppliers must seek larger markets for their parts. Many

other markets do not have the strict reliability require-

ments or other requirements of vehicular systems. Thus,

vehicular manufacturers must often make do with

whatever COTS parts are available rather than use parts

tailored to a particular automotive application.

Increases in computing capacity and the need to move
to different processors over time dictate that more and

more system functions will be performed in software.

ASICs are less common in vehicles today partly due to

inherent design costs and partly because engineering

changes for ASICs are expensive in both time and money.

Software design presents its own challenges. Some, such as

version control, are similar to those of software in other

domains such as business computing. Other challenges are
unique to the demands of real-time and low-power

embedded computing systems.

This paper surveys the design of embedded computing

systems, consisting of hardware and software, for automo-

tive and aeronautical vehicles. Even if COTS components

are used, hardware/software codesign techniques must be

used to ensure that the system meets the strict require-

ments placed on vehicular electronics. Section II describes
design methodologies for vehicular systems. Section III

concentrates on performance analysis of embedded

software, including both worst case execution time

(WCET) analysis and our new approach based on

completion time and design of experiments (DOE).

II . DESIGN METHODOLOGIES

This section describes design methodologies for vehicular

systems. We discuss the structural properties of the

industry that influence design processes. We then

overview systems engineering, introduce some terms,

and discuss the major steps in the process in more detail.

We will then discuss the role of formal methods in vehicle

design methodologies and the challenges in making

embedded computing platforms for vehicles secure.

A. How the Supply Chain Influences Methodology
Automotive system design and automobile operational

environments are much more fragmented than is the case

in aerospace. While we can apply some lessons from

avionics to cars, many new problems must also be taken

into account. The methodologies in common use in vehicle

control system design are typical of many embedded
development shops. Hardware dominates the architecture.

But software does most of the control work, fixes the

hardware limitations, and costs 70% of the engineering

budget. Powertrain engineering still dominates, and Tier 1

supplier companies do most of the control system design

and implementation. Suppliers largely return black-boxes

to the original equipment manufacturers (OEMs, often

called automakers) to assemble into cars. The engineering
effort to specify and design a single electronic control

system (ECU) for a car is typically based on loose, natural

language specifications by the OEM or OEM and Tier 1

supplier. This odd situation in regard to specification,

design, and implementation prevails largely because the

OEMs largely do not possess all the IP and know-how to

design and build the distributed electronic and software

control systems required for their vehicles. The exception
to this rule, in general, is that in powertrain engineering,

many OEMs run highly advanced model specification and

design processes, largely because OEMs see powertrain as

both a strategic IP and marketing differentiator. Even in

this case, however, Tier 1s implement the powertrain

control systems and return the classic black-boxes for

prototype acceptance followed by production.

Almost all non-powertrain ECUs that perform discrete
control of the continuous domain physical systems constitut-

ing the controllable subsystems of a car are currently designed

and realized using an objective function dominated by cost.

Given the current advanced state of the electronics and

software technologies, this is not a major impediment to

innovation, safety, or performance. The consequence is that

almost all ECUs are based on existing, tried and proven, cheap

technologies and components. Essentially, the ECUs contain
software executed by processors of sufficient caliber to

produce computed results with required latencies and

bandwidths that are communicated through buses, peripheral

devices, and networks with sufficient communicational

latencies and bandwidth to effect satisfactory control. There

is little reason for using anything but low cost, moderate speed

silicon for most control required in cars. The exceptions are

high premium ECUs designed for high-end powertrain,
infotainment systems, and some of the new dynamic safety

subsystems effectuated by processed signals originating from

external electromagnetic, thermal, and optical sensors. After

two generations of silicon technology, these ECUs will

themselves become low premium controllers deployed in

lower cost vehiclesVonce again subject to the inevitable,

long-term cost objective function dominated by cost.

The occurrence of Tier 1 black-box design and
production in automotive engineering is not restricted to

single ECUs. A number of Tier 1 companies, such as

Magna,1 Bosch,2 and Denso3 make substantial control

subsystems containing a number of ECUs. And in Magna’s

case, it not only makes the control subsystems but also

makes and assembles complete control systems while

assembling complete cars under contract to a number of

OEMs. Apart from being a strategic issue of control in the
OEM–Tier 1 supply chain relationship, the balkanization

that is inherent in a system architecture designed and built

bottom-up using black-boxes from a number of suppliers is

of concern in regard to cost, safety, reuse, ability to

1www.magna.com.
2www.bosch.com.
3www.globaldenso.com.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

586 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



optimize, and the potential for high complexity in future
control systems simply due to the restricted purview

afforded any single member of the supply chain.

The concept of black-box invisibility anywhere in real-

time critical control engineering, be it in automotive or

aerospace systems, is prejudicial to safety and the ability to

test, prove, optimize, and rationally allocate risk and

liabilities in the context of the entire control system. The

prevalence of black-box automotive engineering is largely a
consequence of spinning out control systems and technol-

ogy divisionsVin the form of Tier 1 companiesVby their

parent automotive OEM companies a decade ago.

Belatedly, a number of OEMs have recognized their

deteriorating strategic position and have drawn battle lines in

an attempt to control the specification, architecture, and

optimization of the control and physical systems defining

their vehicles. This is likely a winning strategy accomplished
by creating executable specifications together with definitive

system test cases of these systems that, when translated into

optimal architectures, become the means by which commu-

nication is effected throughout the supply chain. In addition,

these tactics address the testing of sufficiency of design and

proving that physical realizations meet their specification,

again throughout the supply chain. This is the basis of the

new approach to cyber-physical systems engineering that
eliminates the compromises of black-box engineering and

enables competition in design, design optimization, and pro-

duction but not in specification, architecture, and architec-

tural optimization.

To keep this game interesting, it is not just the OEMs who

have the intellectual capacity to specify and architect the

physical and control systems of vehicles. Tier 1 companies

share this capability, as might a number of organizations,

including research laboratories and companiesVand argu-
ably individuals. When coupled with the ability to configure

short-run supply networks specified by the physical and

control system architecture, the potential to disaggregate the

automotive vehicle industry is present. With a global

production over capacity of about 100%, the automotive

industry may well be in for highly disruptive change [4]V
one in which the disaggregation cycle once again rules [5].

There is also the intriguing potential for further customiza-
tion of control architectures and plants that would result in

extensive personalization of vehicles with the potential to

conserve most of the economic advantages of long compo-

nent production runs through just-in-time supply networks

and to maintain the levels of regulatory compliance required

to permit such vehicles to safely operate in traffic.

B. Automotive Systems Engineering and
Its Methodology

The objective of the automotive engineering process is

the design and production of optimized control systems

that are engineered and manufactured through optimized

supply chains. Both aspects of this endeavor have profound

effects on the economics of vehicle control system design

and manufacture, as well as traffic systems design,

manufacture, and operationVwhere traffic is defined as
many vehicles operating cooperatively and safely.

As shown in Fig. 1, the processes of empirical systems

engineering include four key steps: the formulation of

mathematical models of systems from requirements; the

accurate modelling of the behavior of systems at several

levels of detail; the derivation of functional models from

mathematical models (mapping); and the mapping of

functional models to structural models for physical

Fig. 1. The systems engineering process flow.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 587



realization and production. Architecture is one step of a

systems engineering process and lies between formal

(usually mathematical) executable specification and the
mapping of an architecture to software/hardware design. It

happens to be a step that is highly amenable to empirical

steering and optimization, as is the mapping step. The

realization technologies that ground the systems engineer-

ing process, as mapping targets of structural models, are

software, electronics, and mechanics (mechanical, fluid,

thermal, chemical)Vthis is what hardware/software code-

sign has become in the systems engineering process. The
final step in the process is the proving of the realized

physical system meeting its specification. This is typically

measurement based and driven by use cases both for the

physical and modelling system; however, formal techni-

ques can also be applied in conjunction with the

measurement-based proving.

These tools, technologies, and methodologies, together,

enable the specification of vehicle types that can be bound
structurally, functionally, and economically to create

derivatives able to be empirically optimized for various

markets. This is indeed revolutionary, as it ratchets up a

notch the ability to contemplate, instead of a single vehicle

control architecture (VCA), a common VCA design type
that is used to derive various VCA instantiations. These are

determined by bindings that may be sensitive to the passing

of time, model positioning within a family (for example,
Crown, Camry, Corolla), the economic circumstances

predicted for a future model release, considerations such

as supply chain capabilities and component reuse, etc.

C. System Modeling and Mapping
The first step in the process, as shown in Fig. 2, is

specifying the combined physical and control (cyber-

physical) system to be implemented. As shown, this can be

done using a number of formalisms from the preferred

differential equation set (modeled and solved using

packages such as Matlab4 and Maple5) for continuous
domain systems, to Data Flow + state machine (modeled

and simulated using packages such as Lustre [6], Simulink ),

to functional programming/data flow (Functional Program-

ming [7], Modal [8], Lisp [9]) for discrete domain systems.

Ideally, the formalism chosen is mathematically well

connected to support reasoning about the system. Syn-
chronization is required for input and output with internal

states and function computations.

The second step, as shown in Fig. 3, is to separate the

control specification from the physical system specifica-

tion. This is not a trivial step and requires decisions to be

made about what constitutes the physical system (called

the plant) and what constitutes control to be applied to the

plant, either as part of a feedback loop or as external input
information. Synchronization is now particularly impor-

tant to ensure i) data from a combination of feedback from

the control model and input will coherently drive the

actuators and ii) the capturing of stable state and output

information from the plant model to be used in computing

the updates of the controller, which is to be applied at the

next synchronization event to the plant model.

In summary, from a parent specification undifferenti-
ated with regard to a physical systems and its control, it is

possible to describeVperhaps even generateVa poten-

tially large set of functionally equivalent specifications in

which the control is separated from the physical system.

Typically, the physical system has a continuous behavior in

time. The control part of the separated system (called the

controller) may also exhibit continuous behavior. When

reduced to engineering practice, almost invariably the
controller is discretized with respect to time and data

values, and the control behavior may be realized as either

software executing within the ECU or, on the rare occasion

when it is warranted in automotive systems, as hardware.

This is the standard codesign deployment, and a number of

companies (for example, The MathWorks, D-Space, and

Esterel Technologies) facilitate the efficient conversion of

abstract controller specifications to hardware or software
realizations.

D. Systems Engineering Process:
Specification ! Realization

There is more than one way to separate control from

plant, in reality and in modelling. A surprisingly common

approach to solving this problem is to build a physical

prototype of the specified control system, measure it, and

Fig. 2. Cyber-physical modeling.

4www.mathworks.com.
5www.maplesoft.com.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

588 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



then use the measures to tweak the prototype and declare

it a production control system architecture. It is no

surprise that no one has any idea how far from optimal the

production control system might be. And it is ironic that

poor methodology in basic engineering is likely to

compound economic damage through the production cycle

of each new model in which the VCA is reused.

The optimization of the VCA is of paramount impor-

tance. Fig. 4 shows the two of the four stages in the systems

engineering process where it is directly applicable.

Fig. 3. Separation of control and physical (plant).

Fig. 4. The systems engineering process from specification to partial realization.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 589



The Mathematical Separation of Control from Computa-
tion (Plant) phase of the systems engineering process in

Fig. 4 shows the proliferation of control system candidates.

That each candidate is a simulatable model is fundamen-

tally important in the creation of an efficient engineering

process, enabling the dynamic characteristics of each

candidate control system to be measured and used in the

optimization process. The existence of models enables the

optimization process to essentially walk through the design
space, and use the simulation results from each, to

determine those that belong to the set designated as

optimal according to some objective function. At this stage,

the controller models are still reasonably abstractVbut

each has the potential to have both hardware and software

realizations, with computable complexity, and is assoc-

iated with a set of plant models of known automotive

function having measurable information latency, band-
width, and frequency requirements. This is captured in by

the DoE Traversal to Find the Optimum Executable
Specification process in Fig. 4.

The Mapping Connections between Control and Compu-
tation (Plant) to Networks process is entered with a small

number of candidate VCA controller architectures. The

mapping of nets between controller and plant models to

physical networks and net models, with known attributes,
is relatively straightforward and is not further discussed

here. The selection of which network mapping is optimal

(process 4 in Fig. 4) is amenable to efficient DoE design

space traversal and optimization.

Of major importance for the distributed control system

of a vehicle (automotive, aircraft, and naval) is its

architecture, typically, a VCA of hierarchical and distrib-

uted subsystems (for example, in a carVstability control,
powertrain, braking, cruise control, chassis, steering, body,

etc.). Structural factors determine how distributed or

centralized an optimal control system (or a family of

control systems) will be. The control functions associated

with a particular physical plant (such as engine, transmis-

sion, individual brakes, etc.) are typically carried out by

some ECU. Where the ECU is located and which tasks share

the ECU are determined by other factors that optimize the
overall architecture and determine the network (intercom-

munication) structures between, and the task scheduling

structures within, the control system ECUs.

The final phase in Fig. 1, Computations Mapping, is the

mapping of controller models to hardware or software; +

ECU Realizations is a classic codesign problem for each

controller. Once again, DoE can be used to efficiently

choose an optimal realization across controllers for the
whole VCA. We have seen a DoE protocol described above,

and it is assumed that codesign techniques are known to

the reader, so these will not be repeated here. What is of

interest, however, is that it may be possible to map

multiple controller functions (actually more likely to be

threads or processes) to single ECUs as one of the

realizations of the VCA. To do this, we will need to

demonstrate that for a given ECU, all of the control
threads are able to guarantee that they will meet their

specified targets. This requirement can be formulated as a

set of classical real-time scheduling problems that, apart

from relatively trivial cases, requires extensive simulation

to help solve. Section IV discusses this and demonstra-

tesVperhaps unexpectedlyVthe use of DoE in determin-

ing the worst case execution time for threads operating on

a single ECU. The WCET problem for an interconnected,
real time, highly distributed control system is more

complex, and its discussion remains for a further paper.

Vehicle architecture can be optimized according to

objective functions that have aspects of behavior, timing

(latency), structure (e.g., fault tolerance, location, repeti-

tion), cost (e.g. of engineering, production, assembly),

performance, etc. Optimizing the vehicle without ac-

counting for the context in which they operate virtually
guarantees wildly suboptimal outcomes. Two examples of

the current suboptimal approach to automotive vehicle

design are essentially calibrated, that is, have their control

parameters set, once in their life: 1) if engines are turned

off while vehicles are stationaryVsay, at stop lights, fuel

consumption is decreased by about 17% and emissions are

reduced by a comparable amountVa trivial optimization

step with a big impact; 2) currently the real-time control
system of automotive vehicles, which possess several

hundred tunable parameters. This calibration is set so that

a vehicle model exhibits expected performanceVdictated

by the marketing folkVacross all terrains and operating

conditions. On some vehicles, this scheme is sometimes

dynamically modified to account for wear of vehicle

components. Overall, this approach means that a whole

vehicle modelVmaybe hundreds of thousands of individ-
ual vehiclesVuse the same engine, braking, chassis, etc.,

parameter settings whether they travelling on a flat road,

mountainous road, in sunshine, rain, or snow, in traffic or

in splendid isolation. While this approach makes mass

production easier, it is suboptimal when there is technol-

ogy to enable a vehicle to be continuously calibrated

depending of terrain, traffic, component age, infrastruc-

ture constraints, inter alia. The effects on fuel consump-
tion and emission control can only be guessed since there

are no data available, but reductions much bigger than the

17% reductions cited for turning the engine off while

stationary are highly probable.

E. Formal Methods for Software Design
Software design and implementation in automotive and

aerospace systems must be especially considerate of safety
concerns. Indeed, any misbehavior involving these vehicles

and devices can be life-threatening, and the failure of

several aerospace systems ultimately has been blamed on

software errors or closely involving software functions.

Some memorable incidents include navigation software

malfunctions on the U.S. air superiority fighter F-22 when

crossing the International Date Line, and the European

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

590 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



Ariane V rocket inaugural launch failure due to corrupted
inertial measurement data. A good account of the

interrelation between system safety and computers can

be found in [10]. System failures eventually attributed to

software errors are the target of numerous criticisms

because they are concerned with what could be described as

the most man-made component of the system. Other system

components (e.g., structural components), although thor-

oughly designed, can always be still subject to yet-unknown
failure modes, which renders the boundary between man-

made errors and acts of God blurrier. This is the case, for

example, with early structural failures of Boeing’s 787

Dreamliner. In the case of software, it can be argued that

such a boundary does not exist and that all accidental

software failures could have been prevented with enough

human input. The outcome of these concerns has been a

progressive awakening of the embedded software commu-
nity to the need to exercise thorough quality control on the

software running on large airborne platforms. Software

quality control may be exercised through process control,

on the one hand, and product control, on the other hand.

Process control consists of making sure that software

development, analysis, and monitoring follow published

guidelines during and after software development and

implementation. Such process control guidelines are
outlined in documents such as RTCA’s DO178B [11]. A

close inspection of software development processes may

indeed bring several deficiencies and vulnerabilities to

light, even without looking at the software itself [12]. In

general, the processes outlined in [11] are independent of

available software verification technologies and insist on

Bgood engineering system development practices[ while

leaving the detailed implementation of such practices up to
individual developers, according to the state of advance-

ment of software analysis technology.

Product control consists of a set of techniques aimed at

directly evaluating software conformance to its specifica-

tions. We refer the reader to [13] for a detailed and

rigorous presentation of these techniques.

The simplest software control technology is testing,

whereby the software of interest is run on a variety of
inputs of interest at different stages of its implementation,

and its response is evaluated against a set of performance

requirements. Beyond obvious expected functionalities,

other requirements have been designed as attempts to

address structural questions. These include, for example,

code coverage requirements (all lines of code must be

effectively executed) and variable coverage requirements

(the test suite must make sure that each variable, taken
individually, reaches all possible values). The goal of this

time-consuming task is to isolate the conditions under

which the software misbehaves and to fix it appropriately.

Coverage requirements thus form very poor and incom-

plete forms of state-space reachability analyses. Software

may be tested at various levels of implementation,

beginning with the specification level, where both

software and hardware components are represented as
executable computer programs (Bsoftware simulation[)

and ending with the implementation level, where in the

latter case many of the system’s hardware components are

included in the simulation so as to emulate the system as

close as possible to actual operational conditions

(Bhardware-in-the loop simulation[).

Testing technologies, although they are a necessary and

very useful element of the software debugging panoply, are
incapable of providing more information than that

collected from the finite set of conditions under which

the software was simulated. The role of static analysis

methods is to complement tests with software and software

specification evaluations that offer possibly conservative,

yet comprehensive coverage of all possible software

behaviors, and therefore global conclusions about its

performance. Most static analysis methods will generate
false error alerts; however, they will miss no error.

Methods for the static analysis of safety-critical software

(e.g., formal methods) vary depending on the level of

implementation of the software under consideration.

At the specification level, many of the available analysis

techniques are those available for the analysis of contin-

uous or discrete dynamical systems and can be found in

standard textbooks on automatic control [14]. Such analysis
techniques aim in general at establishing stability and

robustness properties of the system specifications, using

well-established measures, such as gain and phase margins

and Lyapunov stability theory. The development and

extension of these analysis methods constitute the core of

the research in automatic control systems, with particular

emphasis given to the analysis of nonlinear and adaptive

systems. Methods aimed at analyzing discrete and logical
dynamical systems include such analysis tools as SPIN [15],

[16], a model checker, and PVS [17], [18], a theorem proof

assistant. Unlike many of the criteria and metrics available

for continuous systems, the verification environments

provided by model checkers are computationally very

intensive because the structure of the underlying state

spaces is usually much more complex than those tackled by

continuous automatic control systems.
At the level of code analysis, much progress has been

made since the early foundations of the discipline were

laid down more than 40 years ago [19], [20]. The recent

developments include i) a better understanding of how to

mechanically express the code semantics to establish the

properties sought or inquired about and ii) algorithmic

environments powerful enough to establish the properties

sought within acceptable deadlines and without excessive
conservatism. These developments include adaptations of

model checkers that take source code as input to

automatically create the models to be checked. They also

include tools such as ASTREE [21], which is able to

automatically analyze complete avionics codes for aircraft

within a few hours and prove the absence of run-time

errors, for example. One of the key aspects of these recent

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 591



tools is the development of abstraction mechanisms,
whereby complex system behaviors are conservatively

approximated by simpler objects when performing the

reachability analyses necessary to identify the possible

presence of run-time errors. By a strange twist of luck,

such tools make extensive use of concepts also known by

the dynamical systems community, building an immediate

bridge between such code-level analyses and common

specification-level analyses developed by dynamical system
specialists [22]. At the same time, some of these

techniques are not readily usable for system analysis, and

it has been recognized by many that, in that regard at least,

it is necessary to replace hardware systems by models.

Such a view, which has dominated the model-checking

community, is now making progress elsewhere as a

necessary condition for analysis methods to bridge the

gap separating software analysis from system analysis.
To ensure the future of system analysis methods, several

directions must be taken. The first direction consists of the

ability to develop the necessary proofs of system behavior.

With a few exceptions, detailed thereafter, proofs are easily

developed earlier rather than later in the software

development process. Indeed, the compactness and

domain-specificity of notations at the specification level

make it convenient to develop convincing proofs. One
exception to this rule is when the object of the proof

escapes the requirements expressed at the specification

level. This is the case, for example, of WCET, discussed

thereafter, and of behaviors induced by the use of fixed-

point or floating-point arithmetic, whereas specification-

level analyses usually consider real numbers instead.

A second direction is the ability to migrate proofs from

highly abstracted requirements down to the most concrete
code implementationsVeither directly or indirectly.

Indirect proof flow-down is directly concerned with the

process whereby the various levels of code implementation

are guaranteed to perform as expected, using a combina-

tion of proofs that i) the specification that originate the

implementation is proved to be correct and ii) the

implementation is a faithful simulation of the specifica-

tion. Such an approach is attractive in the sense that the
Bburden of proof[ is carried only at the specification level,

and the only ensuing proofs are that the successive layers

of implementation are appropriate simulations of each

other. This approach essentially forms the core element of

Bcredible compilation[ as proposed by Rinard [23]. Direct

proof flow-down is concerned with translating the proof(s)

supporting the good behavior of the software from

requirements to more and more concrete software
implementations. The core idea behind this task is that

the proof should be closely tied to the given software

implementation. Thus, proof translation may mean much

more than a simple transcription from a given high-level to

a lower level. Such proof translation may also face hidden

issues, for example, the models used at the highest level of

abstraction do not capture exactly all aspects of its eventual

implementation. It then becomes important to weigh the
relative merits of i) Bmoving the modeling issues upwards,[
thereby leading to more complex, but more exact abstract

specification models or ii) Badapt the proofs downwards,[
that is, adapt the proofs (or check that the existing proofs

work) to the more concrete level of implementation. One

of the possible advantages of direct proof flow-down is that

since the proof is accessible for all levels of implementa-

tion, there is no immediate need to access ALL levels of
system implementation to verify the proof of proper

execution at a given level of implementation.

F. Security
Aircraft and auto control systems are increasingly being

connected to external computing systems. There are truly

compelling market reasons to do so, but this connectivity

raises significant and challenging security concerns. A

number of different architectural approaches to connect-

ing control systems to desktop and enterprise systems have

been proposed (representative approaches are described by
Wargo [73] for aircraft and Polishuk [74] for automobiles).

Approaches can be expected to vary, but both aircraft and

autos will have remarkably similar issues to deal with in

that they involve interconnecting many different types of

components with different roles to play in terms of

criticality, data types, real-time performance, and security

concerns.

Fig. 5 gives an example of a generic vehicle information
architecture that largely applies to both aircraft and autos

(the term Bvehicle[ in the figure is intended to represent

either type of vehicle). There are two main points to the

figure. The first is that different types of computing

Fig. 5. Security aspects of vehicle information architecture.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

592 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



functions are separated by gateways of some sort. The
second is that there are many different types of functions

that all interconnect directly or indirectly, with varying

levels of trustworthiness. In particular, almost any com-

puter in the world can connect to safety critical vehicle

control functions if it can get past two or three gateways.

It is futile to attempt to isolate safety critical control

systems from other systems in the network. While it is

clearly undesirable to permit an untrusted Internet source to
operate flight controls on an aircraft, it is highly desirable to

support operations such as flight control interaction with

mission planning and maintenance software; mission

planning software feeding information to the cabin

infotainment software to display estimated time of arrival;

infotainment system interacting with passenger laptops to

support Internet access; infotainment system interacting

with the Internet; and vehicle maintenance functions
interacting with manufacturer information systems (for

example, to support advanced fault diagnosis). So the

problem is not that anyone would try to make it possible for

someone on the other side of the world to operate an

aircraft’s jet engines or an automobile’s steering in real time.

The problem is that the transitive closure of connectivity for

obviously desirable functions means that, in the end,

everything is indirectly connected to everything else.
Thus, getting the gateway right is critical. Unfortu-

nately, it is difficult to get enterprise gateways (or firewalls)

perfect. And we know even less about what needs to go into

a gateway that connects embedded to enterprise systems.

Understanding what goes in an embedded system

gateway of this type is an open research question [75]. But,

understanding the constraints, assumption differences

from enterprise firewalls, and necessary capabilities of
such a gateway is a starting point. In particular, gateways

tend to join portions of a system that have dramatically

different design tradeoffs, and it is often unclear what to

do when those tradeoffs clash within gateway operations.

Some of the more important differences driving those

tradeoffs are as follows.

Control Versus Events: Most enterprise computing deals
with transactions or events. Something happens, the result

is committed to a database or sent to an output device, and

then the next thing happens. But much of embedded

computing deals with control loops that must repeatedly

adjust output values based on not only input values but also

the history of those input values. Thus, embedded systems

tend to be time-triggered (based on periodic real-time

computation rather than discrete events). These differ-
ences may require significant design consideration in

transforming data and timing across gateway interfaces.

They may also make systems vulnerable to timing-based

attacks across gateways. These differences may require

significant design consideration in transforming data and

timing across gateway interfaces ([76] is an initial step on

understanding these issues).

Native Support for Security: Enterprise computing
systems have varying levels of support for security built in

or available as standard add-ons. Not so for most embedded

systems. Due to cost, size, and a history of security based on

physical isolation, most embedded systems have essentially no

security functions. For example, predominant automotive and

aviation embedded control networks have no support for

authentication or encryption, and at most primitive protec-

tion for denial of service attacks. In a typical embedded
system, if an attacker can gain control of a gateway, he/she can

issue any command they want on the network without much

effort. Worse, embedded networks generally have small

message sizes and scarce bandwidth, so overlaying enterprise

security mechanisms on them is unlikely to work [77]. Secure

microkernels (e.g., Integrity-178B6 and OKL47) may assist

with distributed embedded security. However, many control-

lers within automotive embedded systems are small proces-
sors that do not run a real-time operating system as such.

Need for Stability Versus Need for Security Patches: A

lynchpin of enterprise security is periodic patches of

vulnerabilities as they are discovered. Over time, a race has

developed between attackers who discover new vulnerabil-

ities and patchers to attempt to fix and distributed software

updates before too many systems are compromised. But, in
the embedded world, a high premium is placed on software

stability, and periodic (weekly or even daily) software

patches are almost unthinkable. In part, this is due to the

issue of recertifying a system as safe (or at least adequately

dependable) after a software patch. In part, this is due to the

typical lack of a system administrator to fix inevitable

problems when automatic patching does not work quite as

planned. While we may see frequent patches to infotain-
ment-type software in vehicles, it is not so clear how to make

releasing security patches to safety-critical vehicle control

functions inexpensive or quick enough to be effective.

Automotive and aircraft embedded system security have

many similarities, but there are also some important

differences. The source of many difference is that aircraft

operation and maintenance is highly controlled and regulat-

ed, whereas cars are far less regulated, making automotive
security a potentially more difficult problem to solve.

Certified aircraft mechanics are trusted to avoid

knowingly compromising security. But it is common for

everyday car owners to modify their vehicles in unapproved

ways, even to the point of subverting safety mechanisms in

critical software. For example, unauthorized software

modifications are commonly made to gain engine perfor-

mance. Thus, automotive security may need to address
increased threat levels from the vehicle owner and

maintenance technicians that are not present in aircraft.

The design and security approach for an aircraft is

likely to be more thorough and more defect-free than

6http://www.ghs.com/.
7http://www.ok-labs.com/.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 593



approaches for typical automotive systems. This is because
aircraft go through rigorous independent certification

processes and lifetime configuration management. In

contrast, while automobiles are remarkably reliable and

safe given their complexity and extreme cost constraints,

they simply are not scrutinized as closely as aircraft. Thus,

it is only reasonable to expect that they will be deployed

with more potential security issues.

Overall, we can expect security issues to increase in
visibility and importance for both aircraft and automobiles

over time. Interconnectivity and vulnerabilities are already

there, and will surely increase in potential for security

problems over time. Fortunately, vulnerabilities due to the

issues inherent in creating embedded to enterprise

gateways have not (yet) been exploited by attackers in

any significant way.

Security Architecture and Methodology: Because automo-

tive and aerospace systems are usually created as a set of

black boxes, the security architecture has to be isomorphic

to this set of black boxes and their interfaces. (In other

words, we have to live with the set of black boxes defined

for functionality and figure out how to add security to it

while keeping each piece of security within a predefined

black box.) As a practical matter, most architectures have
network gateways between layers of the control and system

hierarchy (for example, between the navigation layer and

the vehicle control layer). The usual approach to security is

to add security functions into these existing gateways to

isolate one part of the system from attacks coming from

another part of the system and to isolate the system as a

whole from external attacks. Techniques for building

security into systems built of black boxes remain an open
research problem.

III . SOFTWARE PERFORMANCE
ANALYSIS

Real-time software requires careful attention to software

performance. We start this section with a survey of

research on WCET analysis, which has received a great
deal of attention over the past 20 years. WCET analysis

finds tight bounds on the absolute worst case execution of

software executing on a particular processor, independent

of any input value dependencies. WCET analysis is well

matched to deadline-oriented software design. We then

introduce new methods for software performance analysis

using the well-known DOE methodology. This approach

develops a statistical model of software execution time and
identifies the factors that determine the observed varia-

tions. This approach is designed for design methodologies

in which deadlines may be flexible.

A. Worst Case Execution Time Analysis
Wilhelm et al. [78] provided a comprehensive overview

of the topic of worst case execution time analysis. In this

section, we briefly survey some techniques proposed to
solve the WCET problem.

WCET analysis can be broken into the following

phases [24]:

• path analysis or high-level analysis inspects the

program’s source to extract feasible flow paths;

• transformations translate the flow information

obtained in the path analysis, along with the

control structures from the high-level representa-
tive language to an intermediate form for WCET

analysis;

• target modeling estimates the execution time of

individual instructions from the target hardware;

• WCET estimation determines the actual worst case

based upon the facts derived in the earlier phases.

Path analysis takes on the crucial role of examining the

source code of the program under consideration for WCET
analysis in order to obtain all paths that can theoretically

be taken by this program. Path analysis extracts flow facts

that provide details regarding the constraints on some of

the potential paths: bounds on the number of loop

iterations, the nesting of if-statements, etc. Because the

number of paths grows exponentially, certain approxima-

tions need to be made. Any approximations must be

conservative to avoid violating the Bsafety[ condition that
all viable paths are included in the results.

In an effort to more effectively prune out the

nonexecutable paths from the flow path set, some have

looked to symbolic execution for the answer. The idea as

implemented by Chapman et al. [25], Altenbernd [26], and

Stappert and Altenbernd [27] runs on the control flow

graph of the program. Lundqvist and Stenstrom [28] also

perform symbolic execution, but at the instruction level
rather than abstract structures. In a variation on that

approach, Ermedahl and Gustafsson [29] use abstract

execution, which executes the program abstractly, by

keeping abstract values for the variables, such as intervals,

and performs abstract operations on them. They guarantee

that an abstract value interval represents a set that always

contains all possible concrete values, so they can use this to

remove false paths. Ferdinand et al. [30] also perform
abstract execution to remove false paths, but they do so at

the object code level for processor registers rather than

program variables. Healy et al. [31]–[33] implement

algorithms to automatically determine iteration bounds

for loops with multiple exits and to automatically obtain

averages of iteration bounds for loops with conditions

depending on the values of counters of outer loops. Colin

and Puaut [34] also propose to count loop iterations of
nested loops using annotations that store expressions of

maximum iterations dependant on outer loops rather than

constants. Another approach was taken by Holsti et al. [35]

to bound loop iteration counts, but they limited it to loops

that always increment a counter with a constant value.

Relying on the heavy correlation between input data and

control flow, Ziegenbein et al. [36] use these data to

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

594 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



automatically remove false paths. Wolf and Ernst [37] also
look to take advantage of this relationship by creating a

syntax graph composed of control structures as nodes and

successor edges.

In practice, WCET tools make use of user-provided

constraints such as loop bounds or input value ranges to

improve the quality of their result. Flow facts need to be

mapped from the high-level language source to the object

code in order to properly determine the timing of those
paths. For the goal of using automated support in com-

pleting the transformation, Engblom et al. [38] implemen-

ted the cotransformer. Their tool works in conjunction

with the transformation trace emitted by the compiler to

describe the transformations in their own optimization

description language. These are then positioned in the code

by matching the function and basic block names from the

flow graph nodes to the trace. Kirschner and Puschner’s
approach [39] is to modify the open-source GCC compiler

to produce assembly code annotated with timing. As op-

posed to the previously described approach, this only works

for a single language and compiler combination. Another

technique in avoiding a direct translation stage was im-

plemented by Healy and Whalley [40]. They instrumented

the compiler itself to detect effect-based and iteration-

based constraints, and to generate the relevant path
information using those constraints.

The most active field of WCET analysis is the one

involved with researching the topic of execution modeling.

For instance, Lim et al. [41] keep a timing abstraction data

structure representing tables that contain timing infor-

mation of an execution path that might be the worst case.

Kim et al. [42] extend this approach to better improve this

dynamic load/store data caching behavior by assuming two
misses for each reference to one of these. They then imple-

ment a second pass to reduce this miss overestimation by

identifying these dynamic references in loops and remov-

ing extraneous identified misses. In either case, there is

overestimation of the cache misses. Li et al. [43] come up

with a different data structure, the cache conflict graph, for

each cache set containing two or more conflicting blocks of

contiguous sequences of instructions. The data cache uses a
variation of the cache conflict graph focusing on load/store

instructions. Lundqvist and Stenstrom [44] implement a

cycle-level symbolic execution in order to model the

timing of processors with separate instruction and data

caching. Ottosson and Sjodin [45] assume that each

memory access is a miss. Ferdinand et al. [46] employ a

different approach by separating the cache profiling from

the calculation stage. This separate profiler implements
abstract cache states that keep upper bounds of ages of

memory blocks to determine if a memory block is

definitely in the cache. Mueller [47] implemented a

separate static cache simulator, which works only on the

instruction cache. White et al. [48] also use a separate

static cache simulator, but theirs is capable of analyzing

the data cache also. To do so they maintain cache state

vectors across blocks, and use those to resolve which
possible virtual address ranges that will be in the cache.

Stappert and Altenbernd [49] simulate the execution of

basic blocks while maintaining two sets for each block; one

for active cache blocks upon entry and another for the

active blocks upon exit from the block. This works for both

data and instructions.

Another feature that affects the overestimation of the

results is branch prediction. Colin and Puaut [50]
incorporate the effects of this feature by using a syntactic

tree that allows them to place a bound on the number of

erroneous branch predictions and thus bound the delay

due to these. In an attempt to place more weight on

measurement and less on modeling, Petters and Farber

[51], [52] use path analysis to create measurement blocks.

The object code is instrumented to force the execution of

the path with the chosen block, and the measurements
are taken from a real processor using a software monitor.

Wolf and Ernst [53] also share the same idea, but they

use a simulator of the processor rather than the actual

device.

Finally, the feature that appropriately draws the largest

amount of attention is processor pipelining. Pipelines can

be modeled more easily than can caches thanks to the

nature of instruction-level parallelism and its rather locally
constrained effects. Lim et al. [41] use the same reservation

tables as for the cache to capture conflicts in the use of the

pipeline stages and data dependencies among instructions.

All reservation tables are kept until timing information of

preceding program constructs is known. Colin and Puaut

[54] use a pipeline simulation function, PipeSim, to

statically estimate the worst case time needed for a basic

block. There are others who have geared their pipeline
models to mimic those of available production processors:

Stappert and Altenbernd [49] with the PowerPC; Wolf and

Ernst [53] with the Strong-ARM; and the in-order

superscalar SPARC I of Schneider and Ferdinand [55].

However, the issue with out-of-order superscalar machines

is mainly one of overly complex behavior to be modeled

statically. An example of this was shown by Lundqvist and

Stenstrom [56], where they demonstrated that for
dynamically scheduled processors, one cannot assume

that the worst case instruction execution time necessarily

corresponds to the worst case behavior. They propose code

modifications to eliminate this discrepancy, but to do so

they assume architectural support for explicit control of

cache state. One way used to overcome this anomaly

associated with these dynamic processors was to take

measurements of basic block execution times using the
actual processors [57], [58]. Alternatively, Burns and

Edgar [24] propose the use of extreme value estimation to

statistically model the variation induced by superscalar

architectural features. Despite this, the best of these

methods cannot estimate the effects of these features on

each other, nor can they hope to feasibly capture all effects

from local and global interactions.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 595



At this point, having obtained a likely worst case path,
and after having built a timing model for the instruction-

level code, the step remaining is to compute the time

needed to execute the program along this worst case path.

Healy and Whalley’s timing analyzer [59] uses control flow

and constraint information to generate a set of paths where

the range of iterations in one set do not overlap with other

sets. This information is then combined with cache simu-

lations and machine-dependent information to make tim-
ing predictions, choosing the longest time for the result.

Stappert et al. [60] came up with a solution using timing

graphs with nodes corresponding to basic blocks, annot-

ated with results from pipeline/cache analysis stages.

Lundqvist and Stentstrom also perform a path enumera-

tion, but they operate at the instruction level [44]. A dif-

ferent methodology for WCET estimation is adopted by

Colin and Puaut [61], who build a syntax tree represen-
tation of the program. Park and Shaw [62] employ an

integrated approach that computes time estimates for

atomic blocks. The timing technique then uses control

loops with the time measurements and loop control, and a

test loop that includes the program to be measured. The

execution time is the difference between the measured

times of the ontrol loop and the test loop. Bate et al. [63]

used an approach that computes the worst case execution
frequencies of Java virtual machine code for each program

being analyzed, which is then combined with a step ac-

counting for the target’s dependent hardware information.

Using this, however, they cannot account for instruction

dependencies.

The use of implicit path enumeration techniques ter-

minology can be initially credited to Li and Malik’s method

[64]. To build onto their use of linear constraints, they take
the conjunction of the functionality and structural con-

straints to form a combined constraint set of linear equa-

tions that are solved by an integer linear program (ILP)

solver. Puschner and Schedl [65] modified the ILP solver

to accept their T-graph representation of programs, in

which the nodes represent control flow, and the edges

signify code segments weighted by execution times of

these segments. Engblom and Ermedahl [66] extend this
approach to accept context specifications using scopes and

markers to obtain tighter bounds.

B. Performance Analysis by Design of Experiments
We propose the use of DOE [67] to build statistical

models of software execution time. DOE provides the

foundation for experimenters to systematically investigate

hypotheses about systems and processes. By outlining a
series of structured tests in which well-thought-out adjust-

ments are made to the controllable inputs of a process or

system, the effects of these changes on a predefined output

or response variable can be observed and their significance

evaluated.

There have been some attempts at approaching the

problem from a different perspective. In [68], Edgar and

Burns applied the Gumbel distribution to a random sample
of observations drawn from their simulations. This serves

as a limiting distribution for that independent sample.

Hence the user can identify the confidence level they wish

to achieve in their schedule and pick the value of the

distribution which corresponds to that level. This will

undoubtedly produce some loose bounds for the WCET.

Bernat et al. [69] devised a scheme using execution profiles

(EPs) to associate a piece of code with a representation of
the relative frequencies with which particular events occur.

Those events whose frequencies are kept in the EP are the

different execution times that some code may require.

Their work focused on how to use extreme value statistics

to combine these piecewise EPs and arrive at an execution

time biased towards the worst case and even pessimistic.

They then further developed their work to create the tool

support necessary to actually perform probabilistic worst
case execution time analysis (the tool was named pWCET)

[70]. A hybrid WCET analysis framework was suggested by

Colin and Petters [71] and by Kirner et al. [72]. Such a

solution will use the path analysis phase of static analysis to

extract the path of longest execution, and then combine

that with runtime measurements of the execution blocks

rather than the static processor models used by the initial

solutions. The advantages of doing so include the ability
to capture the behavior of the processor and its various

states of other components. These methods cannot deal

with interactions across boundaries of different blocks

and simply take execution time by constantly running the

simulation over and over, and finally taking the maximum

time observed.

Although DOE is widely used in both experimental

science and manufacturing, it has seen little use in em-
bedded software or computer architecture. The complex

interactions between separate system-wide components

demand a formal approach to gathering, analyzing, and

identifying significant factors influencing a system’s

behavior, and the use of those factors in quantitatively

characterizing that behavior. We believe that the applica-

tion of statistical tools, like DOE, which use empirical

evidence to reject hypotheses about the imputed efficacy of
the characterization of systems, is a valuable system design

tool. Statistical methods not only identify design problems

but also help optimize the observed system using the

remaining characterizations.

The following process contains a brief checklist of the

crucial decisions that must be made at each phase of, and

the flow through, the experiment. They are not indepen-

dent, and amendments can be made iteratively [67].
• Identify the experiment goals.

• Name the expected causes of variation. This

includes the treatment factors (i.e., the parameters

to be changed) and their levels, the covariates that

are observable but not controllable, and the

blocking factors used to block the experiments

into separate sets.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

596 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



• Choose the method used to assign the experimen-
tal units to the levels of the treatment factors. The

standard method is to do this randomly.

• Define the measurements to be made and the

experimental procedure or setup.

• Run a trial experiment first. This is necessary to

determine potential areas of difficulty.

• Designate the statistical model. This will represent

the expected relationship between the response
variable and the sources of variation from above.

The techniques available for analysis later on will

also depend on this.

• Outline the analysis. All hypothesis and tests to be

made should be declared in order to ensure

whether the data and model are sufficient.

• Calculate the number of observations needed. This

is also to guarantee validity of tests and to
minimize the required resources.

The analysis of variance (ANOVA) allows us to distinguish

whether a given treatment (a set of design parameters, for

example) has statistically significant effects.

Using the analysis performed by ANOVA, there are a

host of other tests that the user can apply. These include

asking for contrasts between specific levels of the treatment

only, or requesting for contrasts comparing the average of a
group of responses versus another group. Linear and

quadratic trends in the treatment effects can also be

estimated. For the case of multiple tests, one can perform all

pairwise comparisons, or compare all treatment means with

a control variable, or do the same with the best treatment.

We propose an iterative process encompassing the

design and analysis principles established by DOE. This

iterative procedure would work on producing fine-grain
incremental refinements to the WCET estimate until

achieving the target. The DOE utilization will prove its

value when the decision needs to be made as to how to

modify future iterations.

Fig. 6 shows our DOE-based software performance

methodology. The initial step of generating random num-

ber values for the program inputs serves a twofold

purpose. For this stage of the analysis, each input is
considered as a treatment factor, and each randomly

selected value of the input is considered as a level of that

respective factor. This analysis allows us to model the

variability of the effects of all the possible levels in the

factor without needing to produce inputs for every

possible value of the variable. The role of the user at this

juncture is to analyze the results of the random effects to

determine which inputs will be maintained during further
analysis and which ones can be discarded. While that

decision can obviously be made in software, the more

critical role of the user remains to designate which type of

analysis needs to be performed in the following stage.

Since at this point the variance in output data can be

verifiably attributed to the difference in input values, we

can now proceed to establish the manner by which each

input affects the response and what is the exact nature of

its effect on the response. Depending on the process being

analyzed and the type of treatments specified, the user will

also determine the stopping criteria of the iterative stage

later on. The next step chooses the treatment factors and

their levels. These differ from the factors used in the initial
random setup in that they do not symbolize a one-to-one

correspondence with the task inputs; rather, they repre-

sent the types of treatments applied to the chosen inputs

in an attempt to pinpoint the desired worst case settings.

Their levels are the differing degrees to which the

treatments can be used.

Once the treatment factors and their levels have been

chosen, we can proceed with the main iterative process.
The input generator depends on the treatment factors and

their levels to create the proper stimulus for the experi-

ments. Prior to entering this loop, we have already

Fig. 6. DOE-based software performance estimation methodology.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 597



determined which inputs significantly affect the response
and the ways in which they do so. An additional con-

firmation can then be made by carrying out an analysis of

variance to determine whether our assumptions of influ-

ential treatments were the correct ones to begin with.

Now, having fixed the factors and their levels, we can

systematically apply them to manipulate the inputs,

generating test vectors for the process, which will lead

us on the path of observing increasing execution time.
Each set of simultaneous inputs generated must be run

through the simulator and subject to analysis. The ANOVA

package determines which levels of the factors have the

most impact on our response within the bounds of our

current test. A lack of impact can be established for two

different situations in our case here: if the factor exhibits

no significant differences between any of its levels; and

where some of the treatment levels effect on the response
is significantly less than the effect of other levels. Hence,

when choosing these factor levels wisely, we are able to

modify the inputs in the direction of greatest ascent, and

can continue to do so until we reach the limits of our

coverage or until the response stops growing.

It is simple to determine when the expected response

has ceased increasing; however, the bounds of the current

test coverage area are resolved by examining the initial
input value against the permissible factor levels. For ex-

ample, if an input is a scalar integer and we determine the

critical factor to be a scaling coefficient with fixed levels,

then when we reach the maximum or minimum value to

which the integer can be scaled, those levels those become

the bounds of the coverage area. At this point, we might

have either reached our maximum expected response

value, or just the limits of our current experiment, and the
stopping criteria as defined by the user will be the deter-

mining factor in this issue. Some examples of a stopping

criterion can simply be a fixed number of iterations; or, for

more accuracy, we can utilize the statistics again to test for

when a desired number of consecutive iterations resulted

in no significant increase in the expected response value.

All that remains now is to either continue on with the loop

passing on the state of the previous iteration to the
treatment selection stage for further input generation or

exiting with the result. The following sections describe the

application of this method to some example code, and some
of the results of the analysis and conclusions drawn from

these experiments.

The framework needed to perform the experiments

presented here was built in the Matlab environment. The

simulator used in these experiments is the open source

model SimpleScalar, simulating the ARM instruction set

along with all of the possible architectural features found

in modern processors, such as cache behavior, the pipe-
line, branch prediction, and even out-of-order issue.

We chose to test the proposed methodology on three

tasks from the same general class of algorithms, namely,

that of sorting. The three chosen were insertion sort, from

the normal linear class of sorting algorithms; quick sort,

from the divide and conquer algorithm category; and

finally heap sort to represent the other class of sorting

procedures. This class of routines was chosen for the depth
of analytical work already available for them as a means to

verify the experimentation procedure in use here, in other

words, the worst case inputs have been identified and can

be used for comparison purposes.

The first step is to feed the simulator the executables

along with the random valued variables for input. In all

three cases, the identified input variables were the input

arrays to be sorted. In each experiment performed, the
WCET estimate sought was for the execution of one of the

programs with a fixed size array as input. The amount of

input arrays produced by the random input generator were

four times the chosen array size, where each element in

the vector is chosen randomly, hence limiting the pos-

sibility of choosing two similar arrays. The other measure

used to minimize the likelihood of that occurring was the

large range allowed for each element. Each separate input
was then designated as a level of the variable factor.

Table 1 displays the results for the random effects ana-

lysis performed for an array size of 64 elements. This test

and all subsequent tests were performed with the signi-

ficance level � set to 0.05; this parameter specifies what

level of effect is necessary to be meaningful. The results for

each different algorithm are referred to by its name under

the source column. The other columns from left to right
are sum of squares, degrees of freedom, and mean square,

respectively. We want to determine whether the critical

Table 1 Initial Random Effects Analysis for Arrays of Size 64

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

598 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



value of the F-test is greater than the ratios of the mean

sums of squares.

Here in all three cases, results confirm the near

impossibility of the event that a Type I error occurs, where

we could commit a Bfalse positive[ or, in essence, choose to

reject the null hypothesis that the different input arrays
have no effect on the execution time when that is in fact

true. Thus we can say with all confidence that the input

array does have a significant effect on the measured

response time.

Given that verification, we now need to provide the

procedure with the treatment factors that can represent

the sources of that input’s effect on the response. Identify-

ing the fact that a fixed size array’s only source of change is
either in the ordering of the elements with respect to one

another or a scaling of the elements, we create two random

effect factorsVBorder[ and Bscale[Vto measure the sig-

nificance of these types of changes on the response va-

riable. The random values assigned to the factors are each

considered one of the infinitely possible levels of that

factor, and the designated analysis portion of this stage of

the procedure becomes a two-way random-effects full
model. The results corresponding to that analysis are listed

in Table 2, with the first set of tests done for the insertion

sort, the second for quick sort, and the third for the heap

sort. Again, we can immediately examine the p-values for

evidence of significant effects. Bearing in mind that we are

striving for � ¼ 0:05 level significance, then any test re-

porting a p-value greater than that will not be considered

significant enough to reject the null hypothesis. The third
term here is the scale/order interaction term; it is a test of

whether the effect of order/scale on the response variable

changes with the changing values of the other one. If the

interaction terms displayed significance, then we would

not be able to adjust the input variables independently of

one another. For all three cases, the only term displaying

any significance is the Border[ treatment factor.

At this point, we discard the other negligible terms and

focus on a factor to treat the level of ordering in the array.

Figs. 7–9 show the results of order factor tests for insertion

sort, quicksort, and heapsort, respectively. In these figures,

the y-axis labeled as the order factor levels represents the

degree of order in the array. The factor levels signify
decreasing order in the array as the factor level increases

from one upwards. The lines on the plot imply significance

for any two centered lines that have no overlap; then there

is a significant difference at �-level of 0.05 between the

expected execution time of those factor levels. Since we

already know that this is the major source of variance in

the response variable, we focus on it. When we allowed the

procedure to run on the different algorithms for varying
array sizes, for both insertion sort and quick sort, the worst

case input was the reverse-sorted array, confirming what

we know about the two algorithms.

Fig. 7. Order factor test for insertion sort.

Table 2 Two-Way Random-Effects Full Model Results

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 599



IV. CONCLUSION

Modern hardware/software codesign methodologies must

take into account a wide variety of both technical and
nontechnical constraints. Technical constraints from

control law considerations to Internet security. Nontech-

nical constraints on vehicular electronics include long

product lifetimes and reliance on independent suppliers

of components and subsystems. Traditional hardware/

software codesign methodologies have been adapted to

the requirements of vehicle design. Hardware archi-

tectures are built largely from predefined components
and subsystems, which are then customized with

software. Because most vehicle designs rely on software
for most system functions, it is very important to de-

termine the functional and performance-correctness of

software modules. The growth of Internet-enabled ve-

hicles puts new demands on system designers who want

to capture the benefits of Internet connectivity (access

to information, online diagnostics, etc.) while keeping

the vehicle safe from online attacks. We expect that

hardware/software codesign methodologies will continue
to evolve as electronics components advance in com-

plexity and the demands on vehicular systems continue

to evolve. h

REF ERENCE S

[1] W. H. Wolf, BHardware-software co-design of
embedded systems,[ Proc. IEEE, vol. 82,
pp. 967–989, Jul. 1994.

[2] R. K. Gupta and G. De Micheli,
BHardware-software cosynthesis for digital
systems,[ IEEE Des. Test Comput., vol. 10,
pp. 29–41, Sep. 1993.

[3] R. Ernst, J. Henkel, and T. Benner,
BHardware-software cosynthesis for
microcontrollers,[ IEEE Des. Test Mag.,
vol. 10, pp. 64–75, Dec. 1993.

[4] C. M. Christensen, The Innovators Dilemma.
Cambridge, MA: Harvard Business School
Press, 1997.

[5] C. H. Fine, Clock Speed: Winning Industry
Control in the Age of Temporary Advantage.
New York: Basic Books, 1998.

[6] G. Berry and G. Gonthier, BThe esterel
synchronous programming language: Design,
semantics, implementation,[ Sci. Comput.
Program., vol. 19, no. 2, pp. 87–152, 1992.

[7] J. Backus, BCan programming be liberated
from the Von Neumann style? A functional
style and its algebra of programs,[ Commun.
ACM, vol. 21, no. 8, Aug. 1978.

[8] G. R. Hellestrand, BMODAL: A system for
digital hardware description and simulation,[
in Proc. 4th Int. Conf. Hardware Description
Lang., Palo Alto, CA, 1979, pp. 131–137.

[9] J. McCarthy, BRecursive functions of symbolic
expressions and their computation by
machine, part I,[ Commun. ACM, vol. 3, no. 4,
pp. 184–195, 1960.

[10] N. G. Leveson, Safeware. Reading, MA:
Addison-Wesley, 1995.

[11] RTCA, Inc., ‘‘Software considerations in
airborne systems and equipment
certification,’’ RTCA/DO-178B, Dec. 1992.

[12] National Research Council, An Assessment of
Space Shuttle Flight Software Development
Processes. Washington, DC: National
Academies Press, 1993.

[13] D. A. Peled, Software Reliability Methods.
New York: Springer, 2001.

[14] G. F. Franklin, J. D. Powell, and
A. Emami-Naeni, Feedback Control of Dynamic
Systems. Reading, MA: Addison-Wesley,
1986.

[15] The Spin Model CheckerVPrimer and
Reference Manual, Addison-Wesley,
Reading, MA, Sep. 2003.

[16] P. R. Gluck and G. J. Holzmann, BUsing
spin model checking for flight software
verification,[ in Proc. 2002 IEEE Aerosp.
Syst. Conf., Big Sky, MT, Mar. 2002.

[17] S. Owre, N. Shankar, and J. Rushby,
PVS: A Prototype Verification System
From CADE 11, Saratoga Springs, NY,
Jun. 1992.

[18] A. Galdino, C. Muñoz, and M. Ayala,
BFormal verification of an optimal air traffic
conflict resolution and recovery algorithm,[
in Proc. 14th Workshop Logic, Lang., Inf.
Comput., 2007.

[19] R. W. Floyd, BAssigning meanings to
programs,[ in Proc. Symp. Appl. Math. Aspects
Comput. Sci., vol. 19, J. T. Schwartz, Ed.,
Providence, RI, Dec. 1967, vol. 19, pp. 19–32.

[20] C. A. R. Hoare, BAn axiomatic basis for
computer programming,[ Commun. ACM,
vol. 12, no. 10, pp. 576–583, Oct. 1969.

[21] P. Cousot, R. Cousot, J. Feret, A. Miné,
D. Monniaux, L. Mauborgne, and X. Rival,
BThe ASTRÉE analyzer,[ in Proc. 14th Eur.
Symp. Program. (ESOP 2005), vol. 3444,
S. Sagiv, Ed., Edinburgh, Scotland, UK,
Apr. 4–8, 2005, vol. 3444, pp. 21–30.

[22] E. Feron and F. Alegre, BControl software
analysis, Part I and II,’’ Tech. Rep. arXiv:
0809.4812, Oct. 2008.

[23] M. Rinard, ‘‘Credible compilation,[
Lab. for Computer Science, Massachusetts
Inst. of Technology, Cambridge, MA,
1999.

[24] R. Kirner and P. Puschner, BClassification
of WCET analysis techniques,[ in Proc. IEEE
Int. Symp. Object-Oriented Real-Time Distrib.
Comput., Seattle, WA, May 18–20, 2005,
pp. 190–199.

Fig. 9. Order factor test for heapsort.Fig. 8. Order factor test for quicksort.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

600 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



[25] R. Chapman, A. Burns, and A. Wellings,
BIntegrated program proof and worstcase
timing analysis of spark ada,[ in Proc. ACM
Workshop Lang., Compiler, Tool Support for
Real-Time Syst. (LCRTS ’94), Jun. 1994.

[26] P. Altenbernd, BOn the false path problem in
hard real-time programs,[ in Proc. IEEE 8th
Euromicro Workshop Real-Time Syst., L’Aquila,
Italy, Jun. 12–14, 1996, pp. 102–107.

[27] F. Stappert and P. Altenbernd, BComplete
worst-case execution time analysis of
straight-line hard real-time programs,[
Euromicro J. Syst. Architect., vol. 46, no. 4,
pp. 339–355, Feb. 2000.

[28] T. Lundqvist and P. Stenstrom, BAn integrated
path and timing analysis method based on
cycle-level symbolic execution,[ Real-Time
Syst., vol. 17, no. 2–3, pp. 183–207,
Nov. 1999.

[29] A. Ermedahl and J. Gustafsson, BDeriving
annotations for tight calculation of execution
time,[ in Proc. 3rd Int. Euro-Par Conf. Parallel
Process., 1997, pp. 1298–1307.

[30] C. Ferdinand, R. Heckmann, M. Langenbach,
F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm, BReliable and
precise wcet determination for a real-life
processor,[ in Proc. First Int. Workshop Embed.
Software (EMSOFT 2001), Jan. 1, 2001,
pp. 469–485.

[31] C. Healy, M. Sjodin, V. Rustagi, and
D. Whalley, BBounding loop iterations for
timing analysis,[ in Proc. IEEE Real-Time
Technol. Applicat. Symp. (RTAS ’98), Denver,
CO, Jun. 3–5, 1998, pp. 12–21.

[32] C. Healy, M. Sjodin, V. Rustagi, D. Whalley,
and R. V. Engelen, BSupporting timing
analysis by automatic bounding of loop
iterations,[ Real-Time Syst., vol. 18, no. 2–3,
pp. 129–156, May 2000.

[33] C. Healy and D. Whalley, BTighter timing
predictions by automatic detection and
exploitation of value-dependent constraints,[
in Proc. IEEE Real-Time Technol. Applicat.
Symp. (RTAS’99), Vancouver, BC, Jun. 2–4,
1999, pp. 79–88.

[34] A. Colin and I. Puaut, BWorst case execution
time analysis for a processor with branch
prediction,[ Real-Time Syst., vol. 18, no. 2–3,
pp. 249–274, May 2000.

[35] N. Holsti, T. Langbacka, and S. Saarinen,
BWorst-case execution-time analysis for
digital signal processors,[ in Proc. EUSIPCO
Conf. (X Eur. Signal Process.), Sep. 2000.

[36] D. Ziegenbein, F. Wolf, K. Richter, M. Jersak,
and R. Ernst, BIntervalbased analysis of
software processes,[ in Proc. ACM SIGPLAN
Workshop Optim. Middleware Distrib. Syst.,
Snowbird, UT, 2001, pp. 94–101.

[37] F. Wolf and R. Ernst, BExecution cost interval
refinement in static software analysis,[
Euromicro J. Syst. Architect., vol. 47, no. 3–4,
pp. 339–356, Apr. 2001.

[38] J. Engblom, P. Altenbernd, and A. Ermedahl,
BFacilitating worst-case execution times
analysis for optimized code,[ in Proc. IEEE
10th Euromicro Workshop Real-Time Syst.
(EWRTS ’98), Berlin, Germany, Jun. 17–19,
1998, pp. 146–153.

[39] R. Kirner and P. Puschner, BTransformation
of path information for wcet analysis during
compilation,[ in Proc. IEEE Euromicro Conf.
Real-Time Syst. (ECRTS ’01), Delft,
The Netherlands, Jun. 13–15, 2001, pp. 29–36.

[40] C. Healy and D. Whalley, BTighter timing
predictions by automatic detection and
exploitation of value-dependent constraints,[
in Proc. IEEE Real-Time Technol. Applicat.
Symp. (RTAS ’99), Vancouver, BC, Canada,
Jun. 2–4, 1999, pp. 79–88.

[41] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee,
S. L. Min, C. Y. Park, H. Shin, K. Park,
S.-M. Moon, and C. S. Kim, BAn accurate
worst case timing analysis for RISC
processors,[ IEEE Trans. Softw. Eng., vol. 21,
pp. 593–604, Jul. 1995.

[42] S.-K. Kim, S. L. Min, and R. Ha, BEfficient
worst case timing analysis of data caching,[ in
Proc. IEEE Real-Time Technol. Applicat. Symp.
(RTAS ’96), Brookline, MA, Jun. 10–12, 1996,
pp. 230–240.

[43] Y.-T. S. Li, S. Malik, and A. Wolfe, BCache
modeling for real-time software: Beyond
direct mapped instruction caches,[ in Proc.
IEEE Real-Time Syst. Symp. (RTSS ’96),
Los Alamitos, CA, Dec. 4–6, 1996,
pp. 254–263.

[44] T. Lundqvist and P. Stenstrom, BAn integrated
path and timing analysis method based on
cycle-level symbolic execution,[ Real-Time
Syst., vol. 17, no. 2–3, pp. 183–207,
Nov. 1999.

[45] G. Ottosson and M. Sjodin, BWorst-case
execution time analysis for modern hardware
architectures,[ in Proc. ACM SIGPLAN
Workshop Lang., Compiler, Tool Support
Real-Time Syst. (LCRTS ’97), 1997.

[46] C. Ferdinand, F. Martin, and R. Wilhelm,
BApplying compiler techniques to cache
behavior prediction,[ in Proc. ACM SIGPLAN
Workshop Lang., Compiler, Tool Support
Real-Time Syst. (LCRTS ’97), Jun. 1997,
pp. 37–46.

[47] F. Mueller, BTiming predictions for
multi-level caches,[ in Proc. ACM SIGPLAN
Workshop Lang., Compiler, Tool Support
Real-Time Syst. (LCRTS ’97), 1997, pp. 29–36.

[48] R. White, F. Mueller, C. Healy, D. Whalley,
and M. Harmon, BTiming analysis for data
caches and set-associative caches,[ in Proc.
IEEE Real-Time Technol. Applicat. Symp.
(RTAS ’97), Montreal, PQ, Canada, Jun. 9–11,
1997, pp. 192–202.

[49] F. Stappert and P. Altenbernd, BComplete
worst-case execution time analysis of
straight-line hard real-time programs,[
Euromicro J. Syst. Architect., vol. 46, no. 4,
pp. 339–355, Feb. 2000.

[50] A. Colin and I. Puaut, BWorst case execution
time analysis for a processor with branch
prediction,[ Real-Time Syst., vol. 18, no. 2–3,
pp. 249–274, May 2000.

[51] S. P. G. Farber, BMaking worst-case execution
time analysis for hard realtime tasks on state
of the art processors feasible,[ in Proc. IEEE
Int. Conf. Real-Time Comput. Syst. Applicat.
(RTCSA ’99), Hong Kong SAR, China,
Dec. 13–15, 1999, pp. 442–449.

[52] S. Petters, BBounding the execution time of
real-time tasks on modern processors,[ in
Proc. IEEE Int. Conf. Real-Time Comput. Syst.
Applicat. (RTCSA ’00), Cheju Island,
Dec. 12–14, 2000, pp. 498–502.

[53] F. Wolf and R. Ernst, BExecution cost interval
refinement in static software analysis,[
Euromicro J. Syst. Architect., vol. 47, no. 3–4,
pp. 339–356, Apr. 2001.

[54] A. Colin and I. Puaut, BA modular and
retargetable framework for tree-based wcet
analysis,[ in Proc. IEEE 13th Euromicro Conf.
Real-Time Syst. (ECRTS ’01), Delft,
The Netherlands, Jun. 13–15, 2001, pp. 37–44.

[55] J. Schneider and C. Ferdinand, BPipeline
behavior prediction for superscalar processors
by abstract interpretation,[ in Proc. ACM
Workshop Lang., Compilers, Tools Embed. Syst.
(LCRTS ’99), vol. 34, ser. ACM SIGPLAN
Notices, May 1999, pp. 35–44.

[56] T. Lundqvist and P. Stenstrom, BTiming
anomalies in dynamically scheduled

microprocessors,[ in Proc. IEEE Real-Time
Syst. Symp. (RTSS ’99), Phoenix, AZ,
Dec. 1–3, 1999, pp. 12–21.

[57] S. P. G. Farber, BMaking worst-case execution
time analysis for hard realtime tasks on state
of the art processors feasible,[ in Proc. IEEE
Int. Conf. Real-Time Comput. Syst. Applicat.
(RTCSA ’99), Hong Kong SAR, China,
Dec. 13–15, 1999, pp. 442–449.

[58] S. Petters, BBounding the execution time of
real-time tasks on modern processors,[ in
Proc. IEEE Int. Conf. Real-Time Comput. Syst.
Applicat. (RTCSA ’00), Cheju Island,
Dec. 12–14, 2000, pp. 498–502.

[59] C. Healy and D. Whalley, BTighter timing
predictions by automatic detection and
exploitation of value-dependent constraints,[
in Proc. IEEE Real-Time Technol. Applicat.
Symp. (RTAS ’99), Vancouver, BC, Canada,
Jun. 2–4, 1999, pp. 79–88.

[60] F. Stappert and P. Altenbernd, BComplete
worst-case execution time analysis of
straight-line hard real-time programs,[
Euromicro J. Syst. Architect., vol. 46, no. 4,
pp. 339–355, Feb. 2000.

[61] A. Colin and I. Puaut, BA modular and
retargetable framework for tree-based wcet
analysis,[ in Proc. IEEE 13th Euromicro Conf.
Real-Time Syst. (ECRTS ’01), Delft,
The Netherlands, Jun. 13–15, 2001, pp. 37–44.

[62] C. Y. Park and A. Shaw, BExperiments with a
program timing tool based on source-level
timing schema,[ IEEE Trans. Comput., vol. 24,
pp. 48–57, May 1991.

[63] I. Bate, G. Bernat, G. Murphy, and
P. Puschner, BLow-level analysis of a portable
java byte code WCET analysis framework,[ in
Proc. IEEE 7th Int. Conf. Real-Time Comput.
Syst. Applicat. (RTCSA ’00), Cheju Island,
Dec. 12–14, 2000, pp. 39–46.

[64] Y.-T. S. Li and S. Malik, BPerformance
analysis of embedded software using
implicit path enumeration,[ IEEE Trans.
Computer-Aided Design, vol. 16,
pp. 1477–1487, Dec. 1997.

[65] P. P. Puschner and A. V. Schedl, BComputing
maximum task execution timesVA graph
based approach,[ Real-Time Syst., vol. 13,
no. 1, pp. 67–91, Jul. 1997.

[66] J. Engblom and A. Ermedahl, BModeling
complex flows for worst-case execution time
analysis,[ in Proc. IEEE Real-Time Syst. Symp.
(RTSS ’00), Orlando, FL, Nov. 27–30, 2000,
pp. 163–174.

[67] A. Dean and A. Voss, Design and Analysis of
Experiments. New York: Springer-Verlag,
1999.

[68] S. Edgar and A. Burns, BStatistical analysis of
WCET for scheduling,[ in Proc. IEEE
Real-Time Syst. Symp. (RTSS ’01), London,
U.K., Dec. 3–6, 2001, pp. 215–224.

[69] G. Bernat, A. Collins, and S. Petters, BWcet
analysis of probabilistic hard real-time
systems,[ in Proc. IEEE Real-Time Syst. Symp.
(RTSS ’02), Austin, TX, Dec. 3–5, 2002,
pp. 279–288.

[70] G. Bernat, A. Colin, and S. Petters, BPwcet:
A Tool for Probabilistic Worst-Case Execution
Time Analysis of Real-Time Syst.,[ University
of York, U.K., Tech. Rep. YCS-2003-353,
Jan. 2003.

[71] A. Colin and S. Petters, BExperimental
evaluation of code properties for WCET
analysis,[ in Proc. IEEE Real-Time Syst. Symp.
(RTSS ’03), Cancun, Mexico, Dec. 3–5, 2003,
pp. 190–199.

[72] R. Kirner, P. Puschner, and I. Wenzel,
BMeasurement based worst-case execution
time analysis using automatic test-data

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 601



generation,[ in Proc. Int. Workshop Worst-Case
Execution Time Analysis (WCET ’04), Catania,
Italy, Jun. 29–Jul. 2, 2004, pp. 67–70.

[73] C. A. Wargo and C. Chas, BSecurity
considerations for the e-enabled aircraft,[ in
Proc. IEEE Aerosp. Conf., Big Sky, MT,
Mar. 2003, vol. 4, pp. 4-1533–4-1550.

[74] P. Polishuk, BAutomotive industry in europe
takes the lead in the introduction of optical
data buses,[ Wiring Harness News,
Nov. 2001.

[75] P. Koopman, J. Morris, and P. Narasimhan,
BChallenges in deeply networked system
survivability,[ in NATO Adv. Res. Workshop
Security Embed. Syst., Aug. 2005, pp. 57–64.

[76] J. Ray and P. Koopman, BData management
mechanisms for embedded system gateways,[
in Proc. Depend. Syst. Netw. Conf. (DSN’09),
Estoril, Portugal, Jun. 2009, pp. 175–184.

[77] C. Szilagyi and P. Koopman, BA flexible
approach to embedded network
authentication,[ in Proc. Depend. Syst. Netw.

Conf. (DSN’09), Estoril, Portugal, Jun. 2009,
pp. 165–174.

[78] R. Wilhelm, J. Engblom, A. Ermedahl,
N. Holsti, S. Thesing, D. Whalley,
G. Bernat, C. Ferdinand, R. Heckmann,
T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström,
BThe worst-case execution time
problemVOverview of methods and survey
of tools,[ ACM Trans. Embed. Comput. Syst.,
vol. 7, no. 3, Apr. 2008.

ABOUT THE AUT HORS

Ahmed Abdallah received the B.S. degree in

computer engineering from the University of

Maryland, College Park, in 2002 and the M.A. and

Ph.D. degrees in electrical engineering from

Princeton University, Princeton, NJ, in 2005 and

2008, respectively.

His research interests are in working on

developing methodologies that employ empirical-

ly based approaches to create a structured

process for designing and optimizing embedded

system platforms. He is currently working at Embedded Systems

Technology, San Carlos, CA, on the same subject.

Eric M. Feron received the M.S. degree in

computer science from Ecole Polytechnique and

Ecole Normale Supérieure, France, and the Ph.D.

degree in aeronautics and astronautics from

Stanford University, Stanford, CA, in 1990 and

1994, respectively.

Following an engineering appointment with

the Ministry of Defense, France, he was on the

faculty of the Massachusetts Institute of Technol-

ogy in the Department of Aeronautics and Astro-

nautics from 1993 to 2005. He is currently the Dutton-Ducoffe professor

of aerospace software engineering at the Georgia Institute of Technol-

ogy, Atlanta. He is a co-author of the monograph Linear Matrix

Inequalities in System and Control Theory (SIAM, 1994), and the English

translation of Bézout’s famous General Theory of Algebraic Equations

(Princeton, 2006). His research interests are the application of computer

science, control and optimization theories to important aerospace

problems, including flight control systems and air transportation.

Graham Hellestrand (Fellow, IEEE) received the

B.Sc. (Hons.), Ph.D., and Exec. M.B.A. degrees from

the University of New South Wales, Australia, and

the M.B.A. degree from the University of Sydney,

Australia.

He is Founder and CEO of Embedded Systems

Technology, San Carlos, CA, his third startup. He is

also Emeritus Professor of Computer Science and

Engineering, University of New South Wales. He

has published more than 100 papers in interna-

tional conferences and journals, and is the principal author of two

patents.

He is a Fellow of the Institution of Engineers, Australia. He is a

member of the Australian Government’s Information Technology Indus-

try Innovation Council and a Director of National ICT Australia Ltd

(NICTA). He has held a number of Board positions in IEEE CAS between

1994 and 2010. He has lived in Silicon Valley for the past 12 years.

Philip Koopman (Senior Member, IEEE) received

the B.S. and M.Eng. degrees in computer engi-

neering from Rensselaer Polytechnic Institute,

Troy, NY, in 1982. After serving as a U.S. Navy

submarine officer, he received the Ph.D. degree in

computer engineering from Carnegie Mellon Uni-

versity, Pittsburgh, PA, in 1989.

During several years in industry, he was a CPU

designer for Harris Semiconductor and an embed-

ded systems researcher for United Technologies.

He joined the Carnegie Mellon faculty in 1996. His research interests

include dependability, safety-critical systems, distributed real-time

embedded systems, secure embedded systems, and embedded systems

education.

Prof. Koopman is a Senior Member of the ACM.

MarilynWolf (Fellow, IEEE) received the B.S., M.S.,

and Ph.D. degrees in electrical engineering from

Stanford University, Stanford, CA, in 1980, 1981,

and 1984, respectively.

She was with AT&T Bell Laboratories from 1984

to 1989. She was on the faculty of Princeton

University from 1989 to 2007. She is currently

Farmer Distinguished Chair and Georgia Research

Alliance Eminent Scholar at the Georgia Institute

of Technology, Atlanta. Her research interests

include embedded computing, embedded video and computer vision,

and VLSI systems.

Prof. Wolf is a Fellow of the ACM and an IEEE Computer Society Golden

Core member. She has received the ASEE Terman Award and the IEEE

Circuits and Systems Society Education Award.

Abdallah et al. : Hardware/Software Codesign of Aerospace and Automotive Systems

602 Proceedings of the IEEE | Vol. 98, No. 4, April 2010



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


