
Continuous Learning Approach to Safety Engineering

Rolf Johansson
Astus AB

Mölndal, Sweden
rolf@astus.se

Philip Koopman
Carnegie Mellon University

Pittsburgh, USA
koopman@cmu.edu

Abstract— A phase change moment is upon us as the
automotive industry moves from conventional to highly
automated vehicle operation, with questions about how to assure
safety. Those struggles underscore larger issues with current
functional safety standards in terms of a need to strengthen the
traceability between required practices and safety outcomes.
There are significant open questions regarding both the efficiency
and effectiveness of standards-based safety approaches, including
whether some engineering practices might be dropped, or whether
others must be added to achieve acceptable safety outcomes. We
believe that rather than an incremental approach, it is time to
rethink how safety standards work. We propose that real-world
field feedback for an initially safe deployment should support a
DevOps-style continuous learning approach to lifecycle safety.
Safety engineering should trace from a safety case to engineering
practices to safety outcomes. Such an approach should be
incorporated into future safety standards (including ISO 26262) to
improve safety engineering efficiency and effectiveness.

Keywords—continuous assessment, automotive, safety case,
continuous integration, integrity level

I. INTRODUCTION

Following industry safety standards for Electrical and
Electronic (E/E) systems, and especially functional safety
standards such as IEC 61508 and its derivatives, is an
established approach to creating safe systems. We have a
reasonable basis from decades of deployed systems in a variety
of domains to conclude that such standards tend to help ensure
safety. But we don’t know exactly how they accomplish this,
nor the degree to which safety outcomes are influenced by the
specific activities required by standards vs. a less direct
relationship such as merely incentivizing the hiring of safety
engineers to be part of a product team. This results in continual
pressure to eliminate engineering activities that some feel are
superfluous, with such arguments typically based more on
intuition or a desire to reduce costs rather than a data driven
argument that safety outcomes will not be impaired by skipping
steps in safety engineering. Moreover, increasing software
content and adoption of novel technologies such as machine
learning are dramatically increasing the complexity of deployed
safety critical systems. The role of current integrity-level based
approaches is in doubt for such future systems without
significant changes.

The general approach of E/E system safety has been to
require certain process and architectural measures based on
expert opinion enshrined in standards. The implicit safety case

made is that systems that reasonably follow such requirements
will be acceptably safe. Depending on what integrity level is
required by operational context and associated risks, different
process measures are prescribed in these standards, with more
rigorous processes used for higher integrity levels.

Even though these standards are to be updated every few
years to track evolving technology, such updates are still based
more on expert opinion than on direct, evidenced-based
assessments of safety outcomes. Any knowledge base used for
such updates is opaque to anyone not on the standards writing
committees (and even then some updates are more a matter of
opinion and politics than objective engineering data).

Despite decades of use and multiple revisions of key
industry safety standards, core questions remain open. How do
we know that a certain set of engineering activities and design
patterns will achieve a desired level of integrity? And how can
we be sure that a given level of integrity will really impart the
safety attributes needed for a particular project? (To be sure, we
believe that following safety standards is still a best practice
and should be done for all safety critical system designs until
better practices are identified. The aim of this paper is to
encourage the safety community to take steps to further
improve the basis and application of such standards.)

We claim that there are significant practical limits to
understanding of how safe any particular automotive E/E
design is even if a suitable functional safety standard has been
followed. There might be a significant number of crashes and
incidents attributed to human drivers which could have been
avoided or fixed via better system or software design. Currently
prescribed measures might be insufficient to guarantee intended
safety integrity due to uncertainty as to the predictive power of
integrity level engineering practices vs. real-world safety
outcomes. There are likely to be some aspects in which current
standards are not as rigorous as they should be, resulting in
higher than acceptable losses. On the other hand, there might
also be a number of process measures prescribed in the
standards that are too onerous for ensuring a particular level of
integrity compared to alternatives. Some activities required by
the standards might even have essentially no effect on safety.
We might at the same time be both too loose and too tough in
the prescriptions in the standards. Nobody really knows for
sure.

Over time, products are constantly becoming significantly
more complex, and design methodologies are changing in many
ways. These trends further erode any argument that what has

PREPRINT: Critical Automotive Applications: Robustness & Safety / CARS@EDCC2022

worked well for industry in the past is likely to continue to keep
working in the future.

The advent of autonomous vehicle technology is injecting a
huge discontinuity into automotive safety processes and
standards. No longer can automotive safety engineers count on
a human driver to take up the slack for loose ends in safety by
exercising “controllability.” And no longer can the automotive
industry “blame” drivers and human error in general for causing
crashes or failing to mitigate technical failures by avoiding
crashes. This discontinuity will bring to a head the issues and
inefficiencies inherent in current safety standards.

Our message is that we must rethink how safety standards
work. We start by noting that there has been an implicit safety
case for system safety engineers all along. (If nothing else, the
safety case is “if we follow this safety standard our product will
be safe.”) We believe that making the safety case more explicit
will form a better basis for a continuous learning approach to
understanding why a particular autonomous vehicle is believed
to be safe. That more explicit understanding will in turn form
the basis for measuring which analysis and architectural
patterns are providing how much contribution to safety
outcomes – and which engineering rigour techniques required
by standards might be omitted with negligible safety effect.

II. OBSERVED SAFETY FROM THE FIELD
For a manually driven road vehicle, safe operation is

dependent on both the human driver and on the E/E
implemented features controlled by and supporting the human
driver. Significant contributing causes to crashes are human
driver mistakes, insufficiencies in E/E features, other types of
vehicle equipment failures, and road features that are in some
way incompatible with road user safety.

A key factor in evaluating E/E contributions to road safety
is determining the relative contributions of root causes between
E/E issues vs. other sources. Analysing all crashes can be
difficult and expensive. More importantly, crash analysis is
subject to confirmation bias in which human drivers tend to be
blamed for crashes even when there is credible evidence of
significant E/E issues that could have contributed to or even be
the primary cause of a crash. Such bias toward blaming driver
error has been institutionalised and is pervasive [1]. Bias toward
blaming driver error can create a large discrepancy between
what we think is the integrity of the E/E feature and the real-
world safety outcomes.

While general analyses of road vehicle crashes tend to have
a driver error bias, some data suggests we might have
systematic issues with E/E failures. One such indication comes
from comparing software-related safety recalls for passive
safety airbag features (SRS) with other software recalls. [2]
shows that the frequency of safety recalls for SRS-related
software defects is much higher than for software defects with
other vehicle features. Moreover, similar failure modes repeat,
calling into question the effectiveness of any process learning
from previous field failures. If the resulting integrity for all the
features following the same standards should be the same, this
large difference is hard to understand. And if true it would be
hard to defend the applicability of the used standards. However,
there are confounding factors likely to be at work here,

including uneven application of standards across different
companies and different features, and the observation that it is
more difficult to blame airbag malfunctions on driver error.

Because of confounding factors in application of standards
practices and root cause analysis bias we conclude that we do
not have enough evidence today to confidently trace any
specific engineering activity according to SIL requirements to
safety outcomes. Nonetheless, there is broad experiential data
that integrity-based safety standards are generally working in
other domains, especially aviation, rail, and industrial controls.
So we are left in a situation in which the availability of expert
opinion-based engineering standards seems to be yielding safe
outcomes – but we are unable to confidently state any causal
relationship between the standards and the outcomes.

III. SAFETY INTEGRITY LEVELS AND THEIR ROLE IN A
SAFETY CASE STRUCTURE

Every safety-critical E/E-related feature has what we will
call, for lack of a better term, a safety story. That is some sort
of narrative to explain to stakeholders why that feature is
acceptably safe for its intended purpose. The formality and
soundness of the story varies considerably, from a naive
unwritten internal monologue for a lone software developer to
a detailed written safety case that includes claims, arguments,
and evidence or the like. The default safety story for a
standards-based engineering approach is that having followed a
set of relevant safety standards will necessarily result in safety.
The lack of established causal linkages between the contents of
functional safety standards and safety outcomes calls any such
safety story into question even if best practices are followed.

We consider the minimum acceptable safety story that will
be compatible with establishing a causal relationship between
engineering practices and safety outcomes to be a safety case
that comprises a structured argument, supported by evidence,
showing that design and implementation ensures acceptable
safety according to domain-relevant safety expectations of
stakeholders and real-world use cases. Essentially, we have
three aspects to each safety-relevant driver feature: a) determine
what being safe implies regarding how sure we need to be (what
integrity level) that certain possible failure modes cannot occur,
b) distribute the responsibility in the E/E system such that the
task of each part of the system element is sufficient to reach
overall safety, and c) find a valid argument for each distributed
responsibility as to why it can be deemed to have been fulfilled.

Inside most safety standards the prescribed way to connect
these three perspectives is by means of Safety Integrity Levels
(SILs) or closely related concepts, which are denoted: SIL
(ISO/IEC 61508), DAL (ARP 7454 & DO 178), ASIL (ISO
26262), etc. In some cases the approach uses quantitative
integrity targets (ISO 21448). The important thing is that these
SIL perspectives can be separated and argued independently of
each other. Another way to depict the different pieces needed
in a safety case is according to the concept of a layered model
for structuring safety arguments as outlined in [3]. In this paper
we have a focus on the Conformance and Means claims and
how they relate to continuous learning, leaving out the aspect
of the core rationale claim in the DevOps context, which is
elaborated in e.g. [4].

The question of interest to us is how we can know that the
engineering techniques required by a standard to attain a
particular SIL are (a) actually resulting in the risk mitigation
benefits the standard attributes to the SIL, and (b) do not contain
fluff activities that are not actually contributing to achieving a
SIL in any meaningful way. For now, this is done via the expert
opinion of the standards writers.

We would prefer a data-driven approach to associating
engineering rigor to safety outcomes. However, we recognize
that every E/E system and its use case is different. Moreover,
the safety needs for any E/E system change over its lifetime as
both risks and operational environments evolve. Therefore we
believe that simply using expert opinion to do a one-time update
of E/E safety practices associated with any particular standard’s
approach to SILs will not be enough.

The state-of-the art today is that every safety critical E/E
feature should have an associated safety case. A claim
regarding safety is supported by an argument and evidence.
That argument will in large part be supported by sub-claims that
certain engineering approaches have been used, and evidence
that the engineering approaches have been applied according to
the requirements of a SIL-based standard. Aspects which are
not covered by a standard will be argued as might seem
appropriate to the design team.

When the safety case includes all necessary safety claims
and is thought to be sound (i.e., all claims are believed to be
true via adequate supporting arguments and evidence), it is time
to release the product – and not before. The important point is
that to the degree designers have been following a traditional
integrity-based approach the designers merely think that the
safety case is sound – as far as they know. They have no way to
argue the predictive power of their safety case for real world
safety outcomes other than experts say following prescribed
engineering rigor requirements should be OK.

The industry should admit that legacy safety standards
amount to a best practice argument rooted in expert opinion.
Rather than blindly trust expert opinion that continually erodes
in relevance as technology advances, we should apply best
known engineering practices (e.g., existing standards), and then
plan to iterate both the system and the standards as we learn
more from experience. We propose to do that by wedding safety
cases and safety standards to a DevOps approach.

IV. AGILE, CI/CD AND DEVOPS
An increasingly important trend in the automotive domain

is to continuously deploy new customer features onto existing
vehicles rather than releasing a fixed feature set at the start of
production (SOP) of a given vehicle model. Applying the agile
pattern of CI/CD (Continuous Integration, Continuous
Deployment) and DevOps opens opportunities to design for
continuous learning. For example [5] proposes a SafeOps
concept for continually improving deployed system safety.

CD continually pushes newly validated, released versions
of software to road vehicles. Careful “Ops” field engineering
feedback data collection can then provide feedback for design
and development of future coming versions, i.e. the Dev part of
the DevOps. Each release is associated with a complete and
self-contained safety case showing that the version is safe via

meeting all safety claims. (Significant tooling support will be
required for rapid release qualification. Given the need to track
changes in the operational design domain and resolve long tail
issues discovered only after deployment there is no choice but
to do this for autonomous vehicles.) When the deployment has
been fulfilled, the next round of Ops data collection starts. In an
efficient DevOps loop, there will be a rather high pace of new
versions, but with every version having a validated safety case
with a predictive power to tell that this release candidate will
behave safely when deployed in the road vehicles.

V. DESIGN FOR OPS DATA FOR SAFETY INTEGRITY
Data collected from each deployment in the DevOps cycle

is fed back to improve not only future deployments, but also the
quality and completeness of future safety cases. The question is
what data to feed back. We must do better than the current recall
system under which the number of software defects escapes is
increasing quickly [2]. Moreover, we want to apply DevOps
and CI/CD in such a way that we can plan for Ops data learning
without needing physical vehicle crashes to occur to provide the
feedback. It is important that the Ops data is collected at a pace
high enough for CI/CD, but yet any crashes are few enough to
attain acceptable safety. Note that we do not propose fielding
systems that fall short of current safety standard validation
requirements. Rather, we acknowledge that we need to do better
than we have been at safety engineering continuous learning.

If we use the terminology of the concept of a layered model
for structuring safety arguments [3], we can say that the Ops
data shall be collected to monitor the conformance claims of
pieces of the E/E system. Quantitative conformance claims
must be measurable with field data. (In some situations it might
be necessary to use quantitative proxies for conformance
claims. This is not an inherent limitation of this approach,
because any validation accomplished via testing or analysis
must necessarily also use a quantitative proxy to determine test
pass/fail criteria for the associated conformance claim.)

Whether or not the means claims and environment claims
are satisfied is something we determine statically at design
time, while Ops data collection is done dynamically at run time.
In the ISO/IEC 61508 there is an explicit connection between
the SIL attribute values and corresponding quantitative failure
rates. In ISO 26262 this bridging is done more implicitly. In any
case, if we are to continuously evaluate and calibrate the impact
of qualitative measures, we need to be able to connect this to
the real observable world of quantitative events. This might be
done, for example, via setting project-specific quantitative
failure rate targets informed by ASILs for every safety
requirement when using ISO 26262.

VI. OPS DATA AND SAFETY PERFORMANCE INDICATORS
Our vision indicates two phases, where the first has a

separate focus to make sure that we have a sound base in what
is claimed in safety standards as required for each integrity
level. We claim that we have a significant knowledge gap there
today. In a second phase, emphasis is on continuous
improvement of the relevant knowledge in standards, and also
collecting Ops datasets for each developing organisation.

In the first phase much of the learning would preferably be
done by means of Safety Performance Indicators (SPIs). For the

second phase the data collection strategy needs to be more
elaborate, because there is no longer a clear-cut falsifiable
hypothesis in the form of a product safety case top level claim.

For the first phase, we propose using a specific formulation
of a Safety Performance Indicator (SPI) as a quantitative
measure for claim satisfaction: An SPI is a metric supported by
evidence that uses a threshold comparison to condition a claim
in a safety case [6]. Any quantitative computations are
encapsulated into a threshold comparison, and the result is a
logic value related to the truth of the associated claim.

The appeal of this SPI formulation is that it permits
instrumenting all types of claims of a safety case and mapping
the results to whether the safety argument has been falsified on
a claim by claim basis, including not only primary claims, but
also sub-claims. If the design team can figure out a way to
detect that a claim has been falsified during design time or run
time, it can be instrumented with an SPI. Moreover, partial
monitors that approximate satisfaction situations can be
implemented as SPIs. For example, if a particular measurement
approach can only detect some claim falsifications but not all
claim falsifications, that can still provide useful feedback
regardless of its incomplete nature.

SPIs and supporting claims as they are used in ANSI/UL
4600 not only support safety, but are also used in a defeasible
reasoning approach to attempt to defeat claims of safety [7].
This encourages designing SPIs to monitor ways in which a
primary claim might be made false by violating assumptions or
sub-claims as well as identifying safety case gaps or logic
errors. Any SPI threshold violation shows that the safety case
is unsound even if vehicle behavior seems safe.

An important benefit of an SPI approach is concentrating
feedback on reasons why the product is not as safe as expected
rather than on just fixing implementation defects. It is just as
important in a safety-critical system to understand how to
prevent the next defect via addressing means and environment
claims beyond just implementation defects.

VII. Safe Continual Learning
The main goal in the second learning phase is not observing

SPI violations to detect safety case falsifications, but rather
providing a convincing safety case with predictive power for
every version that the deployment is safe. This means that we
carefully design our system such that we can achieve a
continuous learning and collection in each version, to be used
in the safety cases of the following versions. We also extract
general knowledge from evidence to integrate learnings across
the industry to derive updates of what is considered as needed
evidence for each integrity level. Those learnings are used to
continually improve safety standards.

There are several ways this can be accomplished, all of
which should be used in combination. Each way is described in
terms of an operational environment and data collection
approach to observing something that could be described as
“generalised SPI violations” (the trigger conditions for data
collection does not have to indicate a safety case violation).

A first approach is to monitor “generalised SPIs” during
design and validation before deployment. This includes

monitoring “generalised SPIs” associated with environment
and means, as well as conformance and rationale layers during
simulation testing and other validation. In this strategy the point
of testing is to attempt to trigger “generalised SPI violations”
that are a larger set of learning candidate conditions than just to
falsify claims in one particular safety case.

Another approach is to operate in some manner of shadow
mode. There are several patterns on how to generate the ground
truth information for which the shadow mode is evaluated. One
example is hybrid approaches such as dependable upgrade
applications of the Simplex architecture [8]. Another example
is exploiting ASIL B(D) decompositions to find situations in
which partial results such as object lists differ between
dissimilar channels to indicate a potential design insufficiency.
There are many more ways to use shadow mode, with clever
design for safety shadow mode Ops data collection being a key
part of fast knowledge building.

VIII. CONCLUSIONS AND FUTURE WORK
Debates about the value of engineering activities required

by standards yearn for comparisons across different projects to
prove (or not) that a specific analysis or engineering techniques
provide benefits for safety, code quality, or the like. However,
it is almost impossible in practice to arrange such a comparison
that produces generally useful process rigor guidance.

Rather than attempting a universal process rigor
investigation, we propose a two-phase approach. First,
implement requirements for an appropriate integrity level based
on available best practices such as standards, then monitor
safety outcomes via SPIs to see if acceptable safety has indeed
been achieved. Second, monitor the data sources used for SPIs
for learning that can be extended to other safety cases and be
used to improve safety standards.

The ability of traditional integrity-based approaches to
ensure safety has already begun to degrade in the face of
increasing system complexity and non-traditional software
technology use. Switching to the approach we outline based on
continuous deployment of instrumented safety cases with
feedback can provide a way to ensure that the right amount of
engineering effort is being expended while neither under-
shooting nor over-shooting the amount of engineering rigor
required to achieve an acceptable level of safety.

REFERENCES
[1] Koopman, P., "Practical Experience Report: Automotive Safety Practices

vs. Accepted Principles," SAFECOMP, Sept. 2018.
[2] Koopman, P., “Automotive software defects,”

https://betterembsw.blogspot.com/p/potentially-deadly-automotive-
software.html accessed June 16, 2022.

[3] Birch, J et al., ‘A Layered Model for Structuring Automotive Safety
Arguments’, in Proceedings of the Tenth European Dependable
Computing Conference (EDCC), 2014.

[4] Warg, F et al., ‘A Continuous Deployment for Dependable Systems with
Continuous Assurance Cases’, in Proceedings of the 2019 IEEE Int.
Symp. on Software Reliability Engineering Workshops (ISSREW).

[5] Fayollas et al., “SafeOps: a concept of continuous safety,” EDCC 2020,
pp. 65-69.

[6] Koopman & Kane, A more precise definition of ANSI/UL 4600 Safety
Performance Indicators, 2021, https://bit.ly/3HvLsTe accessed June 16,
2022.

[7] ANSI/UL 4600, Evaluation of Autonomous Products, 2nd Edition,
Underwriters Laboratories Standards, March 15, 2022.

[8] Sha, A Software Architecture for Dependable and Evolvable Industrial
Computing Systems, CMU SEI Tech. Report 95-TR-005, 1995.

https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html
https://betterembsw.blogspot.com/p/potentially-deadly-automotive-software.html
https://bit.ly/3HvLsTe

	I. Introduction
	II. Observed safety from the field
	III. Safety Integrity Levels and their role in a safety case structure
	IV. Agile, CI/CD and DevOps
	V. Design for Ops Data for Safety integrity
	VI. Ops data and Safety Performance Indicators
	VII. Safe Continual Learning
	VIII. Conclusions And Future Work
	References

