
1© 2020 Philip Koopman

Safety Requirements

“I cannot conceive of any vital disaster
happening to this vessel. Modern
shipbuilding has gone beyond that.”

– EJ Smith (Captain of the RMS Titanic)

Prof. Philip Koopman

These tutorials are a simplified
introduction, and are not sufficient on
their own to achieve system safety.
You are responsible for the safety of
your system.

2© 2020 Philip Koopman

 Anti-Patterns for Safety Requirements:
 No specifically identified safety requirements
 All functional requirements are safety critical
 Safety requirements can’t be validated

 Specifying safety:
 Safety goals: “working” is not the same as “safe”

– How hazards are avoided at system level
– Can involve correctness, backup systems, failsafes, …
– Often what the system does not do is as important as what it does

 Safety requirements:
– More detailed safety-specific requirements allocated to subsystems

Safety Requirements

3© 2020 Philip Koopman

Overly-simplistic approach:
 Start with system requirements
 Annotate critical system requirements
 Then, annotate supporting requirements
 Problem:

Most requirements can become critical

 Too many system components
promoted to highest criticality level
 Allocating even one critical requirement

to component makes whole thing critical

Identifying Safety-Related Requirements
Requirement Annotation Approach:

4© 2020 Philip Koopman

 Safety Envelope:
 Specify unsafe regions for safety
 Specify safe regions for functionality

– Deal with complex boundary via:
» Under-approximate safe region

(reduces permissiveness)
» Over-approximate unsafe region

 Trigger system safety response
upon transition to unsafe region

Partition the requirements:
 Operation: functional requirements
 Failsafe: safety requirements (safety functions)

Safety Envelope Requirements Approach

5© 2020 Philip Koopman

 “Doer” subsystem
 Implements normal functionality
 Allocate functional requirements to Doer

 “Checker” subsystem
 Implements failsafes (safety functions)
 Allocate safety requirements to Checker

 Checker is entirely responsible for safety
 Doer can be at low SIL (failure is lack of availability)
 Checker must be at high SIL (failure is unsafe)

– Often, Checker can be much simpler than Doer

Architecting A Safety Envelope System
Doer/Checker Pair

Low SIL

High SIL
Simple
Safety
Envelope
Checker

6© 2020 Philip Koopman

 Doer/Checker pattern
 Functional requirements allocated to low-SIL Doer
 Safety requirements allocated to high-SIL Checker

 Good safety requirements
 Trace to system-level safety goals

– Orthogonal to normal functional operation if possible
 Make safety simple to validate (test, peer review)

– Safety testing mostly exercises the Checker box

 Pitfalls:
 Tradeoff between simplicity and permissiveness

– Doer optimality costs Checker validation effort
 Fail-operational functions may require multiple Doer/Checker pairs

Safety Requirements Best Practices

Do
er

 R
eq

ui
re

m
en

ts
Ch

ec
ke

r
Re

qu
ire

m
en

ts

Low SIL

High SIL

https://xkcd.com/1992/

	��Safety Requirements�� ��
	Safety Requirements
	Identifying Safety-Related Requirements
	Safety Envelope Requirements Approach
	Architecting A Safety Envelope System
	Safety Requirements Best Practices
	Slide Number 7
	Historical Perspective: Apollo 11 Lunar Landing
	Video of Apollo 11 Landing
	Slide Number 10
	Slide Number 11
	Slide Number 12

