C o Electrlcal&Com uter
Mé(lall.ﬂ:;l gle «) ENGINEERING

University

Race Conditions

“The race is not always to the swift, nor the
battle to the strong, but that's the way to bet.”
an Hugh E. Keough © 2020 Philip Koopman 1

Al e
Carnegie

Race Conditions ‘ L ST

PATIENT
THERAC25 TREATMENT
poverswich TABLE

m Anti-Patterns for Race Conditions:
e Unprotected access to shared variables
e Shared variables not declared volatile
e Not accounting for interrupts and task
switching in timing analysis
e Ignoring non-reproducible faults S
® Race condition: multiple threads compete

nnnnnnnnnnn

e Computation outcome depends upon timing 2
— Usually it is infrequent and hard to debug

yyyyyy

e Concurrent access to shared variable (1985 — 1987) THERAC 25
— Need to lock shared resources Software-Controlled Radiation Therapy Mishaps

e Not accounting for multi-taskin Problems included:
i 2 1 g - Operators “too fast” on keyboard (8 second window)
~ Task switch or interrupt causes delays - Bypassed safety checks when counter rolled over to 0

— “Starvation” and priority inversion © 2020 Philip Koopman 2

Carnegie
Concurrency Management Bugs ety

Global

m CPU switches among its tasks (multi-tasking) 7esk1 variable Task2
e What if switching happens at the wrong time?

® Concurrency bugs due to shared resources @ |

e Example: shared global variable, two tasks
— Task 1 reads shared variable and computes new value
— Task 2 preempts task 1, updates shared variable
— Task 1 resumes, over-writing task 2's update

e Results of concurrency bug depend upon ordering
— Usually bug won't manifest (example: 9) | i
— Sometimes bug will result in wrong value (example: 6, 8)

<«—ouy
=
v
A
) 7
(0]

© 2020 Philip Koopman 3

Carnegie

Mutex For Concurrency Management e
. Global
m Easy solution for concurrency bug: Task1 Variable Task2
e Disable interrupts when touching shared variable EGE @ i
A g . Sy, ! :
Inhibits task switches ! !
. g 3 oo P 1 |8 1 1
— But, need to keep it very brief to avoid timing problems % !
| BE : :
B To hold resources longer, use a mutex / |
e “Mutual Exclusion” flag; True=busy / False=available @ i i
3

e To access shared resource: T - |
— Get the mutex (wait for it to be false, then set to true) { i | o W :
— Access shared resource i i SUsy i

— Other tasks will wait while mutex is locked (resource busy) TASK SWITCH |
— When done, set mutex to false to release resource %Mi i
e Mutexes are themselves a special type of shared variable i/? é i
— And therefore subject to race conditions! %ﬁrg :
I :)(:

— Getting them right is tricky; let the RTOS do this for you " ©2020 Philip Koopman 4

Bounded Priority Inversion

® Minimize time interrupts are disabled
e Disabled task switching

Carnegie
Mellon
University

Bounded Priority Inversion

- - TASK s

dlelayl/j tasl.(valtchlng o
o B.oc Ing Tlme. High F M

high priority tasks >

can miss deadlines

Low M M
»
= Mutexes indirectly SR o 3 =
" 5 N | utex Locke Fails T

cause blocking time Exocution | M | (Critical Section) | F | Gt Mutex

e Priority Inversion:

low priority task blocks high priority task
— Locked mutex prevents high priority task from making progress
— Only affects tasks that actually use mutex, not all tasks
— BUT... there is a critical problem (next slide)

© 2020 Philip Koopman 5

Al e
Carnegie

Unbounded Priority Inversion G

® Priority inversion can be unbounded for three tasks:
e Medium priority task blocks high task without ever touching mutex:

Unbounded Priority Inversion

TASK i S e s Y
PRIORITY:
High F M
Med
Low M M // M
>

TIME

Normal M Mutex Locked F Fails To
Execution (Critical Section) Get Mutex

© 2020 Philip Koopman 6

N e
Carnegie

Priority Inheritance ‘ Niclon

University

m Solution to unbounded priority inversion: priority inheritance
e Task priority elevated when locking mutex; restored when frees mutex
e This is complicated! Let the RTOS handle it

TASK Bounded Priority Inversion
PRIORITY: ——
Low: Hoisted M a
| A
High F M
>
DELAYED
>
PRIORITY INCREASED
Low M WHILE USING MUTEX kg
TIME

Normal M Mutex Locked E Fails To
Execution (Critical Section) Get Mutex © 2020 Philip Koopman 7

Carnegie

Mars Pathfinder InC|dent %lﬁgo;my
N JuIy4 1997 — Pathflnder Iands on Mars AR e T e

m But, a few days later...

e Multiple system resets occur via VxWorks RTOS
— Watchdog timer saves the day! Sets system to safe state
— Reproduced on ground; patch uploaded to fix it

e Scenario pretty much identical to High/Medium/Low priority picture
— Developers didn’t have Priority Inheritance turned on!

— Why? “The data bus task executes very frequently and is time-critical -- we shouldn't
spend the extra time in it to perform priority inheritance” [Jones07]

So;ourner Rover

=+ https://goo.gl/W5wHrU
© 2020 Philip Koopman 8

N .
Carnegie

Best Practices Avoiding Race Condition eI

m Always consider task interactions ——
e What if task switches at a bad time?
e What if tasks read data at different times?
e What if half-formed data structure is read?
e What if multiple writers compete for data?
e Use RTOS services to help

m Pitfalls:

e Failing to use interrupt masking or mutexes
— Failing to deal with unbounded priority inversion
— Failing to declared shared variables volatile

e Assuming that non-reproducible problems aren't bugs
e Trying to write your own bullet-proof concurrency services

https://goo.gl/AjS3cX

18-348 Lecture explaining mutex operation at: https://goo.gl/wH9Q44 Y0 Pl

	��Race Conditions�� ��
	Race Conditions
	Concurrency Management Bugs
	Mutex For Concurrency Management
	Bounded Priority Inversion
	Unbounded Priority Inversion
	Priority Inheritance
	Mars Pathfinder Incident
	Best Practices Avoiding Race Conditions
	Slide Number 10

