
1© 2020 Philip Koopman

Race Conditions

“The race is not always to the swift, nor the
battle to the strong, but that's the way to bet.”

– Hugh E. Keough

Prof. Philip Koopman

2© 2020 Philip Koopman

 Anti-Patterns for Race Conditions:
 Unprotected access to shared variables
 Shared variables not declared volatile
 Not accounting for interrupts and task

switching in timing analysis
 Ignoring non-reproducible faults

 Race condition: multiple threads compete
 Computation outcome depends upon timing

– Usually it is infrequent and hard to debug
 Concurrent access to shared variable

– Need to lock shared resources
 Not accounting for multi-tasking

– Task switch or interrupt causes delays
– “Starvation” and priority inversion

Race Conditions

(1985 – 1987) THERAC 25
Software-Controlled Radiation Therapy Mishaps

Problems included:
- Operators “too fast” on keyboard (8 second window)
- Bypassed safety checks when counter rolled over to 0

3© 2020 Philip Koopman

 CPU switches among its tasks (multi-tasking)
 What if switching happens at the wrong time?

 Concurrency bugs due to shared resources
 Example: shared global variable, two tasks

– Task 1 reads shared variable and computes new value
– Task 2 preempts task 1, updates shared variable
– Task 1 resumes, over-writing task 2’s update

 Results of concurrency bug depend upon ordering
– Usually bug won’t manifest (example: 9)
– Sometimes bug will result in wrong value (example: 6, 8)

Concurrency Management Bugs

4© 2020 Philip Koopman

 Easy solution for concurrency bug:
 Disable interrupts when touching shared variable

– Inhibits task switches
– But, need to keep it very brief to avoid timing problems

 To hold resources longer, use a mutex
 “Mutual Exclusion” flag; True=busy / False=available
 To access shared resource:

– Get the mutex (wait for it to be false, then set to true)
– Access shared resource
– Other tasks will wait while mutex is locked (resource busy)
– When done, set mutex to false to release resource

 Mutexes are themselves a special type of shared variable
– And therefore subject to race conditions!
– Getting them right is tricky; let the RTOS do this for you

Mutex For Concurrency Management

5© 2020 Philip Koopman

 Minimize time interrupts are disabled
 Disabled task switching

delays task switching
 Blocking Time:

high priority tasks
can miss deadlines

 Mutexes indirectly
cause blocking time
 Priority Inversion:

low priority task blocks high priority task
– Locked mutex prevents high priority task from making progress
– Only affects tasks that actually use mutex, not all tasks
– BUT… there is a critical problem (next slide)

Bounded Priority Inversion

6© 2020 Philip Koopman

 Priority inversion can be unbounded for three tasks:
 Medium priority task blocks high task without ever touching mutex:

Unbounded Priority Inversion

7© 2020 Philip Koopman

 Solution to unbounded priority inversion: priority inheritance
 Task priority elevated when locking mutex; restored when frees mutex
 This is complicated! Let the RTOS handle it

Priority Inheritance

8© 2020 Philip Koopman

 July 4, 1997 – Pathfinder lands on Mars
 First US Mars landing since Vikings in 1976; first rover

 But, a few days later…
 Multiple system resets occur via VxWorks RTOS

– Watchdog timer saves the day! Sets system to safe state
– Reproduced on ground; patch uploaded to fix it

 Scenario pretty much identical to High/Medium/Low priority picture
– Developers didn’t have Priority Inheritance turned on!
– Why? “The data bus task executes very frequently and is time-critical -- we shouldn't

spend the extra time in it to perform priority inheritance” [Jones07]

Mars Pathfinder Incident

Sojourner Rover

https://goo.gl/W5wHrU

9© 2020 Philip Koopman

 Always consider task interactions
 What if task switches at a bad time?
 What if tasks read data at different times?
 What if half-formed data structure is read?
 What if multiple writers compete for data?
 Use RTOS services to help

 Pitfalls:
 Failing to use interrupt masking or mutexes

– Failing to deal with unbounded priority inversion
– Failing to declared shared variables volatile

 Assuming that non-reproducible problems aren’t bugs
 Trying to write your own bullet-proof concurrency services

18-348 Lecture explaining mutex operation at: https://goo.gl/wH9Q44

Best Practices Avoiding Race Conditions

https://goo.gl/AjS3cX

	��Race Conditions�� ��
	Race Conditions
	Concurrency Management Bugs
	Mutex For Concurrency Management
	Bounded Priority Inversion
	Unbounded Priority Inversion
	Priority Inheritance
	Mars Pathfinder Incident
	Best Practices Avoiding Race Conditions
	Slide Number 10

