
;f

Bresenham· Line~Drawing
Algorithm

Phil Koopman, Jr.
North Kingstown, Rhode Island

The task of drawing a straight line
on a graphics screen is a fundamen
tal building block for most computer
graphics applications. Unfortunately,
this capability is not included in many
Forth implementations and, for that
matter, is not included in the ROM
support programs for many personal
computers. This article will show you
how to draw lines on almost any
graphics display, and gives complete
listings in MVP-FORTH.

The CRT Display Layout

First, let's establish some conven
tions. I will assume that the graphics
display on your computer-is addressed
using (X,Y) Cartesian.coordinate pairs,
where X and Y are both non~negative
integers (see Figure One). The point
(0,0) - also called the origin """':- is
the upper-left corner of the computer
screen. Each addressable point on the
screen is called a pixel (short for "pic
ture element"). The X coordinates
represent columns of pixels (horizontal
distance from the origin), and the y
coordinates represent rows of pixels ·
(vertical distance from the origin).

The exact number of pixels on your
computer's display screen is·hard~are
dependent. However, some representa
tive values are: 320 x 200 pixels (320
horizontal and 200 vertical pixels) for
a PC-style, four-color color graphics
adapter (CGA) display; 640 x 200
pixels for a PC-style, two-color CGA
display; and 640 x 350 pixels for a PC
style sixteen-color enhanced graphics
adapter (EGA) display.

The mechanics of setting the graphics
display mode desired and plotting a
single point on the display are
hardware-dependent, and will be left to
the user to determine. Screens 3 and 4
of the ;:i.ccompanying listing contain all
the machine-specific prirp.itives for PCs

SCREEN #3 · .
0 \·"PC·" COMPATIBLE EGA, CGA, AND TEXT MODES
1 HEX \ Mach;ine specific-,- change for your machine!!
2 CODE SET-CGA-MODE (->) · \ Set mode and clear screen
3 AX , I 0004 MOY 10 INT \ 320 x 200 iri 3 colors
4 NEXT JMP END-CODE
5 CODE SET-CGA-,HIRES-MODE (->) \Set mode and clear· screen
6 AX ~· # 0006 MOV 10 INT \ 640 x 200 in 2 colbrs
7 NEXT JMP END-CODE
8 CODE.SET-EGA-MODE (->) \Set mode·andclear screen
9 AX , # 0010 MOV 10 INT \ 640 x .350 in 16 colors

10 NEXT. JMP END-CODE· ..
11 ' '
12 CODE SET.-TEXT...;MODE (->) \ 80 column text
13 AX , .# 0003 MOV 10 INT
14 • NEXT jMp END-COPE
15 DECIMAL ..

SCREEN U
0 \ "PC" COMPATIBLE POINT PLOT FOR EGA ANDCGA
1 HE:X _ \ Mach;ine specific -- . change for your machine!!
2 \ Note 'that fancier direct screen access assembly language
3 \ programming can .*SIGNIFICANTLY*.speed up point plotting
4 \ at the cost of loss of generality.
5
6
7
8
9

_10

CCiPE PLOT-POINT (·X Y COLOR
'AX pqp ,, DX POP 'ex POP.

AH , # OC MOV 10 INT
NEXTJMP END-CODE

1.1_ DECIMAL

->) \ Plot a single point
BX , BX XOR- (page 0 for EGA)

12 \ XMAX, YMAX deli.mit screen boundaries
13 319 CONSTANT XMAl< \ Change to 639 fOr EGA or CGA/HI'.RES
14 199 CONSTANT YMAX \ Change to 349 for EGA
15 4 CONSTANT #COLORS \ Change to 16 for EGA , 2 for CGA/HIRES.

SCREEN#5
·O \VARIABLE DECI,ARATIONS, MOVE-CURSOR, sPEClAL BRESENHAM POINT
j_ PECIMAI.
2 VARIABLE XNOW
3 VARIABLEYNOW
4 VARIABI,E COI,.OR
5 1 COLOR !

\ (XNow;YNOW) is. cq·rrent cursor location
\ · (0,0). is top left corner of CRT
\ current line draw color

.. 6 \ Vari!i!.bles per Foley & Van Dam, Fund. of I.CAD,· 1st ed. p 43.5.•
7 V~I.ABLE INCRl VARIABLE INCJ'l.2
8 VARIABLE DX VARIABLE ·DY
9

10
11
12
13
14.
15

MOVE-CURSOR (X Y ->)
YNOW ! - XNOW ! ;

POINT (X Y ->) .
COLOR @ PLOT-POINT ;

B-POINT (X Y DELTA ->
>R DDUP POINT R> ;

\ Move cursor location before a draw

\ Point plot us:ing CQ:t.OR variable

\ For Bresenham line drawinq use

and clones with compatible BIOS ROM
chips. They are formatted to use the
public-domain 8088 assembler citedl.
These screens will obviously have lo be .. ·.· ··

·modified for use on other machines.

FORTH Dimensions 12 Volume VIII, No. 6

SCREEN #6
0 \ BRESENHAM LINE DRAW
1 DECIMAL
2 +X (Xl Yl DELTA ->
3 ROT 1+ ROT ROT ;
4
5 -x (Xl Yl DELTA ->
6 ROT 1- ROT ROT ;
7
8 +Y (Xl Yl DELTA ->
9 SWAP l+ SWAP ;

10
11 -Y (Xl Yl DELTA ->
12 SWAP 1- SWAP ;
13
14
15

SCREEN #7

PRIMITIVES +X

X2 Y2 DELTA

X2 Y2 DELTA

X2 Y2 .DELTA

X2 Y2 DELTA) -

0 \ BRESENHAM LINE FOR 0 _ <- SLOPE < _ 1

+Y -x -Y

1 DECIMAL \Assume DX and DY are.already set up
2 LINEO<M<l (NEWX NEWY ->)
3 DY @ 2* INCRl ! DY @ DX @ - 2* INCR2
4 (Pick min x) OVER XNOW @ >
5 IF (current cursor at min x DDROP XNOW @ YNOW -@ THEN
6 DDUP POINT
7 (Compute D) INCRl @ DX @ - \ Stack: (X Y DELTA ---)
8 DX @ 0 DO
9 IF (D

10 ELSE (D
11 LOOP
12 DROP DDROP
13
14
15

SCREEN #8

DU_P_. ___ 0(
< 0)
>= 0)

+X
+X +Y

B-POINT
B-POINT

0 \ BRESENHAM LINE FOR 1 <= SLOPE < INFINITY

INCRl @ +
INCR2 @ +

1 DECIMAL \ Assume DX and DY are already set up
2 LINEl<M<Z (NEWX NEWY ->)
3 DX @ 2* INCRl l DX @ DY @ - 2* INCR2
4 (Pick min y) DUP YNOW @ >

THEN

5 IF -(current cursor at min y DDROP XNOW @ YNOW @ THEN
6 DDUP POINT
7 (Compute D) INCRl @ DY @ - \ Stack: (X Y DELTA ---)
8 DY @ 0 _DO DUP 0 <
9 IF (D < 0)

10 ELSE (D ->= 0)
11 LOOP
12 DROP DDROP
13
14
15

SCREEN #9

+Y
+X +Y.

B-POINT
B-POINT

0 \ BRESENHAM LINE FOR ~l (SLOPE < 0

INCRl @ +
INCR2 @ +

1 DECIMAL \ Assume DX and DY are already set up
2 LINE-l<M<O (NEWX NEWY ->)
3 DY @ 2* INCRl ! DY @ DX @ - 2* INCR2
4 (Pick min x) QVER XNOW @ >

THEN

5 IF (current cursor at min_x DDROP XNOW@ YNOW@ THEN
6 DDUP POINT
7 (compute D l INCRl @

DUP 0<
D < 0 -)

8 DX @ 0 DO
9 IF (

1
0 ELSE (

- _1;

4

LOOP
DROP DDROP

D >= 0)

5

DX @ -

+X
+X -Y

\ Stack:

B-POINT
B-POINT

(X Y DELTA ---)

INCRl @ +
INCR2 @ + THEN

<--+~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~-

13 

Straightfol'Ward Line-Drawing 
Algorithms 

Now that we can assume the availa
bility of a point~plotting word, how 
can we draw lines? Horizontal and 
vertical lines are relatively straightfor
ward. For. example: 

: HORIZONTAL-TEST -- (--- ) 

100 0 DO 110 POINT LOOP; 

shows. that horizontal lines -are drawn 
by merely incrementing an x value for 
a constant Y value. Similarly, forty
five-degree lines may be drawn by 
using a word that simultaneously incre-
ments both X and Y values, such as: __ _ 

: DIAGONAL-TEST ( -- ) 

100 0 DO 

_ I I POINT LOOP ; 

Buf what about lines_ that are in
between? -A line which spans twice as 
many -X points as Y points would be 
drawn by: -

: X:2_*V ( -- ) 

0 100 0 DO 

DUP I POINT 1 + 
DUP I POINT 1 + LOOP 

DROP; 

For a generalized line-drawing word 
with a slope between zero and one 
(meariingthat the X distance of the line 
is greater than the Y distance, and that 
both distances are drawn from smaller 
to larger numbers), we would have: 

: GENERAL-LINE ( Xl Yl X2 Y2 -- ) 
SWAP 4_ PICK - SWAP 

3 PICK - >R. >R 100 * R> R> 

100 3 PICK */ SWAP 1 + - 0 

DO 3 PICK 3 PICK 100 I POINT 

SWAP OVER+ 

ROT 1 + _SWAP ROT LOOP 

DROP 100 I POINT; 

The above word takes two (X, Y) co
ordinate pairs as.an input, and scales all 
Y values by 100 to allow for non-integer 
increments of Y. While this line-drawing 

_ algorithm is conceptually · straightfor-

FORTH Dimensions 



Find Out Ho To Implement 
Real-Time Sys ems In: 

• Oig1tal Signal Process111g 
• nuf octunng Process 

C.OOtrol 
• Machine V1slon 
• Roboties 
. . . on ftme and under 
budget. 

For The Ans s To Your 
QuesflonS, C.011 our 
Engineering Answe<Une 
Today 

93, 

FORTH. Inc., 111 N Sepulveda 
Btvdv nhattan Beach. CA 
90266 

FORTH, Inc. 
FORTH Dimensions 

Sample GODSEYE output. 

ward, it does require a lot of arith
metic. Even if clever scaling factors 
were chosen to replace most multiplies 
and divides with shifts and byte-moves, 
the initial division of the difference 
between Xl and X2 (sometimes called 
"delta X" or just plain ''DX") by the 
difference between Yl and Y2 ("DY") 
is unavoidable. Another problem ·· is 
that sixteen-bit ·scaled integers are not 
big enough for use on high-resohition 
screens. In this example,liries that span 
more than 100 pixels horizontally are 
improperly drawn. -

The Bresenham Algorithm 

The Bresenham line-drawing algo
rithm2 requires only sixteen-bit integers 
with addition, subtraction and multi
plication by two (shift left) to draw 
lines. Instead of · a scaled, non-integer 
Y value, the algorithm shown on screen 
7 uses the error accumulation term 
DELTA andinteger X and Y values. For 
lines with a slope between zero and 
one, the algorithm increments the X 
value for each point, and increments 
the Y value only if the DELTA value is 
negative. If DELTA is negative, a posi
tive value of DY is added to form the 
new DELTA value. If DELTA is positive, a 

14 

negative value based on both DX and 
DY is used to form a new DELTA value . 

Of course, slight variations of this 
algorithm are needed to account for 
lines with slopes that are not between 
zero and one. Screens 5 through 13 
contain a complete Bresenham line
drawing vocabulary for all line slopes. 
Horizontal and vertical lines are treat
ed as special cases for greater speed 
and simplicity. 

The vocabulary for using this draw~ 
ing package is: 

SET·CGA•MODE ( -- ) 

Places the display in graphics mode. 
This word may be redefined or i:eriamed 
as appropriate for your computer. 

SET·TEXT"MODE ( -- ) 

Returns the display to an eighty-column 
text mode. This word may be redefined 
of renamed as appropriate for your 
computer. 

PLOT·POINT ( X Y color -- ) 
Plots a single point on the graphics 
screen. This word may be redefined as 
appropriate for . your computer. 

Volume VIII, Nci,6 



SCREEN #10 
0 \ BRESENHAM LINE FOR -INFINITY < SLOPE < -1 
1 DECIMAL \ Assume DX and DY are already set up 
2 LINE-Z<M<-1 ( NEWX NEWY -> ) 
3 DX @ 2 * INCRl ! DX @ DY @ - 2* INCR2 
4 ( Pick min y ) DUP YNOW @ > 
5 IF ( current cursor at min y DDROP XNOW @ 
6 . DDUP POINT 
7 ( Compute D ) DY @ - \ Stack: ( x 
8 DY @ 0 DO 
9 IF ( D 

INCRl @ 
DUP O< 

< 0 ) +Y B-POINT INCRl 
10 ELSE ( D >= 0 ) -X +Y B~POINT INCR2 
11 LOOP 
12 DROP DDROP 
13 
14 
15 

SCREEN #11 
0 \ LINE FOR SLOPE = INFINITY Vertical ) 
1 DECIMAL \ Assume DX and DY are already set up 
2 LINEZ ( NEWX NEWY -> ) 
3 ( Pick min y ) DUP YNOW @ > 

YNOW @ THEN 

y DELTA ---) 

@ + 
@ + THEN 

4 IF ( current cursor at min y ) DDROP XNOW @ YNOW @ THEN 
5 DDUP POINT 0 dummy DELTA value ) 
6 DY @ 0 DO +Y B_;POINT LOOP 
7 DROP DDROP 
8 
9 

10 
11 
12 
13 
14 
15 

SCREEN #12 
0 \ LINE FOR SLOPE = 0 ( Horizontal ) 
1 DECIMAL \ Assume DX and DY are already set up 
2 LINEO ( NEWX NEWY -> ) 
3 ( Pick min x ) OVER XNOW @ . > 
4 IF ( current cursor at min x ) DDROP XNOW @ YNOW @ THEN 
5 DDUP POINT 0 ( dummy DELTA value 
6 DX @ 0 DO +X B-POINT LOOP 
7 DROP DDROP ; 
8 
9 

10 
11 
12 
13 
14 
15 

SCREEN #13 
0 \ BRESENHAM 
1 DECIMAL 

PROLOGUE & CALLING ROUTINE 

2 LINE ( XNEW YNEW -> ) 
3 DDUP ( Extra copy u·sed for final MOVE-CURSOR ) 
4 OVER 
5 XOR 

XNOW @ - DUP ABS DX ! OVER YNOW @ - DUP ABS DY 
O< ( Determine if signs are different ) 

6 DY @ IF DX @ IF ( Not horizontal or vertical 
7 IF ( Negative slope ) 
8 DX 

ELSE 
DX 

THEN 

@ DY @ > IF LINE-l<M<O ELSE LINE-Z<M<-1 THEN 
9 

10 
11 
12 
13 
14 
15 

( Positive slope ) 
@ DY @ > IF LINEO<M<l 

ELSE Vertical ) DROP 
ELSE ( Horizontal ) DROP 

· MOVE-CURSOR ; 

LINEZ 
LINEO 

Volume VIII; No. 6 

ELSE 

THEN 
THEN 

LINEl<M<Z THEN 

15 

FEATURES 
-FORTH-79 Standard Sub-Set 
-Access to 8031 features 
-Supports FORTH and machine 

code interrupt handlers 
-System timekeeping maintains 

time and date with leap 
year correction 

-Supports ROM-based self
starting applications 

COST 
130 page manual -s 30.00 
BK EPROM with rnanual-5100.00 

Postage paid in North America. 
· Inquire for license or quantity pricing. 

Bryte Computers, Inc. 
P.O. Box 46, Augusta, ME 04330 

(207) 547-3218 

FORTH Dimensions 



( X Y~-'-)' 
Same .a~ POINT, bu{ wiih6ui: a color ··. -· SCREEN ·u 4 

•o \ ·:aRESENHAM LINE DRAWING TEST PICTURE -~ GODSEYE 
vitlue for consistency with LIN~· ·. 1 DECIMAL . 

·POINT·. 

. • 2 : GODSEYE 

MOVE-CUR~OR,; ';· ( x -y .. ~~ ) ' ' -: . ~ET~C~~~MO~EI - . cciLg-~a~ge r u~:T~~~!-~~~: ~~~ ~~: fGA' etc~ 
· Move_the current drawing cursodoca~· 5:\ 1. !:> bo< . ~. -i COLOR. 1 (..use this line for CGA/HIRES 

tiontothepoint(X,Y)-'Thiswoidisrtot ·.~· \ 1~600~g~15 17~ /~LOR ! ·. (Use this line for EGA l 
called MOVE because ofpossible naming .. ·.. 8 . 150 OVER 2* .,. .10.0. MOVE~CURSOR • 
conflicts iri'some Forth dialects. 9 . 150 OVER ·;25 + - -LINE_ ·· 

" l(l _· • 150·. ;OVER 2* .. + . 100. LINE 
-Ii.- - - ISO i' 100 ..,_.LINE .. 

LINE - ( x y -- ) 12 .' . 150 . OVER 2* . ..:. .- . 100 LINE 

Draw a line from the last cutsot posi- :· .. i~ . ~~~~t~!r:+L~~~RT" BREA!< IN GODSEYE" 
tion (set by. eitheJ;" a MOVi:..CURSOR OJ:' a 15 · .. ·. - ~-LOOP . . $ET•TEXT:-MODE - ; , .. 

. LINE word): to the poiIJt'-fX,Y). The 
color of the lineis cleterminec,l:by the 
value of the 'variable coL.01t •·.·. 

The de(nonstration progr:ail1 GODSEVE 
··not oniydteiws·a-preity-picture, butis a 

good· test . for :the line~dra:wing algo
rithm, since it. uses lines•fr6m each of.·. 

·- th_e ._ different slope,-range .. cases of the · · 
ljne-drawing program; · · 

.· Condusion ._ ..... 

The Bresenham line~dra:wing algo
rithm is an effident -way to dra:w 
straight lines. The ·unes cari be drawn 
even faster than \iiith the example pro
grams by u~iri,g· }echniques such as 
direct screen~meinory access instead,. of 
BIOS ROM - function. calls, · and by · 
writing optimized assembly language ·.· 

.·. • pro grains that keep variables in regis~ 
ters instead' of hi memory. For more 
information cm computer-grapµiCs (in
cluding · · niatheinatical · derivations •of 
the ·Bresenham algorithm); please see 
the recomrriended·reading list: .. · 

In the rtextissue of Forth Dimensions, · 
I will show. you how to use t!!e.se ·line~ · 

co,o>----x __ 

·. '. (60,20) 

• (20;60). 

·. drawing words to. draw fractal~based 
landscapes. 

. Figure One. Pixel layout on a graphics screen with example points. 

Recommended Reading 

Fundamentqls of Interactive Computer. • 
Graphics, J:D, Foley, and A. Van 
Dam, Addison~ Wesley, Reading. MA, 
1982. . . . .. . 

References -
Principles· , of Interactive · Cotnputer . ·. 

··.Graphics, W.M. Newman and R.F. 1. 
,Sproull, McGraw-Hill, New· York, 
1979. 

MVP-FORTi-f Integer and 
Floating~Poiht Math; P~ Koopman, 
MountainView Press, 1985. 

16 

2. · "Algorithm for .Computer Control 
. of a Digital Plotter,''_ J.E. Bresen~ 

ham, IBMSystems Journal, Vol. 4, 
No. 1, pp. 25-30-, 1965~ 

Volume VIII; No. 6 



.. , Dimensions 

7776 Lim rick 

Bresenham 
Line-Drawing 

I verse Video a d Tl· 0 

tat of the tandard 

Check um More 

' ' 


