Bresenham Line- Drawmg
Algorithm

Phil Koopman, Jr. ,
North Kingstown, Rhode Island

" The task of drawing -a straight line
on a graphics screen is a fundamen-
tal building block for most computer
graphics applications. Unfortunately,
this capability is not included in many
Forth implementations and, for that
matter, is not included in the ROM
support programs for many personal
computers. This article will show you
how to draw lines on almost any
graphics display, and gives complete
listings in MVP-FORTH.

The CRT Display Layout.

First, let’s establish some conven-
tions. I will assume that the graphics

display on your computer-is addressed"

using (X,Y) Cartesian coordinate pairs,
where X and Y are both non-negative
integers (see Figure One). The point
(0,0) — also ‘called the origin — is
the upper-left corner of the computer
screen. Each addressable point on the
screen is called a pixel (short for *“pic-
ture element’’). The X coordinates
represent columns of pixels (horizontal
distance from the origin), and the Y

coordinates represent rows of . pixels -

(vertical distance from the origin).
The exact number of pixels on your
computer’s display screen is- hardware-

dependent. However, some representa-:

tive values are: 320 x 200 pixels (320
horizontal and 200 vertical pixels) for
a PC-style, four-color color graphics
adapter (CGA) display; 640 x -200
pixels for a PC-style, two-color CGA
display; and 640 x 350 pixels for a PC-
style sixteen-color enhanced graphics
adapter (EGA) display.

The mechanics of setting the graphics

display mode desired and plotting a

single point on the display are

hardware-dependent, and will be left to
the user to determine. Screens 3 and 4 | *

of the accompanying listing contain all

the machine-specific primitives for PCs - -

and clones with compatible BIOS ROM
chips. They are formatted to use the
public-domain 8088 assembler cited!.

SCREEN #3
-0 \: "PC" .COMPATIBLE EGA, CGA AND TEXT 'MODES
1 HEX- \ Machine spec1f1c»-— change for your machine!!
2 CODE .SET-CGA-MODE . (=>)~ .\ Set mode and clear screen
3 - AX , # 0004 MOV .10 INT \ 320 x 200 in 3 colors
4 NEXT JMP . -END~CODE -
5 CODE SET-CGA-HIRES~-MODE ' (=>) \ Set mode and clear screen’
6 AX , ¥ 0006 MOV . 10 INT . \" 640 x 200 in 2 colors
7 NEXT JMP END-CODE : .
8 CODE- SET<EGA-MODE (->) \ Set mode and clear screen
9 _AX , # 0010 MOV 10 INT \ 640 x 350 in 16 colors
10 NEXT. IJMP END—CODE
11 o . :
12 CODE SET-TEXT-MODE. (=>) \ 80. column text
13 AX , #0003 MOV 10 INT :
14 .. . NEXT JMP £ END=CODE
15 DECIMAL —
SCREEN #4 '
0\ "pc" COMPATIBLE POINT PLOT FOR EGA AND' CGA
.1 HEX \ Machine specific -- change for ‘your machlne"
2.\ Note that fancier direct screen access assembly language
" 3 \ . programming .can *SIGNIFICANTLY* speed up 901nt plottlng
4 \. at the cost “of loss of generallty.
5
6 CODE PLOT-POINT (-X Y COLOR ->) '\ Plot. a single p01nt
7 AX POP DX POP CX POP. = BX , BX XOR. (page 0 for EGA)
8 AH , # 0C MOV 10 INT : ‘ : ‘
9 NEXT JMP.. - END-CODE
10
ll_DECIMAL
12\ XMAX,YMAX delimit screen boundarles))
13 319 .CONSTANT XMAX \ Change to 639 for EGA or CGA/HIRES
14 199 CONSTANT YMAX \' Change to 349 for EGA ‘
~15°:. 4 CONSTANT #COLORS \ Change to 16 for EGA , 2 for CGA/HIRES
'SCREEN #5'
‘O \ VARIABLE DECLARATIONS, MOVE-CURSOR, SPECIAL BRESENHAM POINT
1 DECIMAL -
" 2 VARIABLE XNOW \ (XNOW, YNOW) ‘is current cursor 1ocat10n
3 VARIABLE. YNOW .-\ : (0,0). is top left corner of CRT
‘4 VARIABLE COLOR \ current line draw color
5 1 'COLOR ! -
.6 \ Variables per Foley & Van Dam, Fund. of ICAD, 1st ed. p 435.
7 VARIABLE. INCR1 el VARIABLE INCR2 .
'8 VARIABLE DX - VARIABLE DY
110 : *MOVE-CURSOR (X Y =>") \ Move cursor. 1ocatlon before a draw
11z YNOW: !" - XNOW ! ; . .
12 : POINT (XY =>) \ Point plot using COLOR varlable'
13 COLOR @ PLOT-POINT ;))
14 ;' B=POINT (X Y DELTA ->) \ For Bresenham line drawing use
Is : . y

>R DDUP POINT R> ;

These screens will obviously have'to be . - o

“modified for use on other machines.

FORTH Dimensions

12 . : » _ _ Volume ViHi], No. &

SCREEN #6
0 \ BRESENHAM LINE DRAW
1 DECIMAL

2 : +X (X1 Y1 DELTA ->
3 ROT 1+ ROT ROT ;
4 .
5 : -X (X1 Y1 DELTA ->
6 ROT 1- ROT ROT - ;
7
8 : +Y (X1 Y1 DELTA ->
9 SWAP 1+ SWAP ;
10
11 : -Y (X1 Y1 DELTA ->
12 SWAP 1- SWAP ;.
13 IR _
14
15
SCREEN #7

0 \ BRESENHAM LINE FOR
1 DECIMAL
2 : LINEO<M<1

PRIMITIVES +X +Y =X -Y

X2 YZ‘QELTA)
X2 Y2 DELTA)
X2 Y2 DELTA }

X2 Y2 DELTA)~

0 < SLOPE < 1

\ Assume DX and DY are already set up
(NEWX NEWY =->)

DY @ DX @ - 2*

Straightforward Line-Drawing
Algorithms ‘

Now that we can assume the availa-
bility of a point-plotting word, how
can we draw lines? Horizontal and
vertical lines are relatively straightfor-
ward. For example: ' :

: HORIZONTAL-TEST ~(—-)
1000 DO 110 POINTLOOP; -

shows that horizontal lines-are drawn
by merely incrementing an X value for
a constant Y value. Similarly, forty-
five-degree lines may be drawn by
using a word that simultaneously incre-
ments both X and Y values, such as: .

3 DY @ 2* INCR1 ! INCR2 !

4 (Pick min x) OVER XNOW @ >

5 IF (current cursor at min x) DDROP XNOW @ YNOW €@ THEN : DIAGONAL-TEST (-—-)

6 DDUP POINT S) 100 6 DO

7 (Compute D) INCRL @ DX @ - \ Stack: (X Y DELTA ---) o

8 DX @ 0 DO DUP... 0< 11 POINT LOOP;

9 IF (D<O0) +X B-POINT INCRL @ + ‘ _

10 ELSE (D >= 0) +X +Y B-POINT INCR2 @ + THEN But what about lines that are in-
11 LOOP : b n? A li hich spans twi

12 DROP DDROP ; - etween? A line which spans twice as
13 many X points as Y points would be
14 drawn by: ' '
1 drawn by

SCREEN #8 1 X=2Y (--)

0 \ BRESENHAM LINE FOR 1 <= SLOPE < INFINITY o 1000 DO

1 DECIMAL \ Assume DX and DY are already set up

2 : LINEI<M<Z (NEWX NEWY =->) , . ' DUP 1POINT 1+

3 DX @ 2* INCRL ! DX @ DY @ - 2% INCR2 ! :

4 (Pick miny) DUP YNOW @ > : DUP 1POINT 1+ LOOP

5 IF { current cursor at min 'y) DDROP XNOW @ YNOW @ THEN DROP ;

6 DDUP POINT :

7 (Compute D) INCRl1 @ DY @ - \ Stack: (X Y DELTA ---) - e . .

8 DY @ 0 DO DUP 0< .For a generalized line-drawing word

9 IF (D <0) 124 B-POINT INCRL @ + with a slope between zero and one
ig LOOIL;LSE (D>=0) +X +Y. B-POINT INCR2 @ + THEN (meaning that the X distance of the line
12 DROP DDROP ; is greater than the Y distance, and that
13 both distances are drawn from smaller
ig to larger numbers), we would have:
' SCREEN #9 - v : GENERAL-LINE (X1 Y1 X2Y2)

0 \ BRESENHAM LINE FOR -1 < SLOPE < 0 - ' :

1 DECIMAL \ Assume DX and DY are already set up SWAP 4.PICK - SWAP

2 : LINE-1<M<O0 (NEWX NEWY ->) : 3 PICK - >R >R 100 * R> R>

3 DY @ 2* INCRl ! DY @ DX @ - 2% INCR2 ! .- ,

4 (Pick min x) OVER XNOW @ > _ 1003 PICK */ SWAP 1+ -0

5 IF (current cutrsor at min x) DDROP XNOW @ YNOW @ THEN DO 3 PICK 3PICK 100/ POINT

6 DDUP POINT .) . .

7 (Compute D) INCR1 @ DX @ - \ Stack: (X.Y DELTA ---) SWAP OVER + _ .

8 DX @ 0 DO DUP 0< ‘ ROT 1+ SWAP ROT LOOP

9 IF (D<O0.) .. +X B-POINT INCRL @ + .

10 ELSE (D >= 0) +X -Y B-POINT INCR2 @ + THEN DROP 100/ POINT;
11 LOOP . o : :

g DROP DDROP ; The above word takes two (X,Y) co-
" ordinate pairs as.an input, and scales all
15 Y values by 100 to allow for non-integer

increments of Y. While this line-drawing
- algorithm is conceptually straightfor-

Vdlume Vill, No. 6 13 FORTH Dimensions

o

' FORTH, Inc

AL wwy

X s

4.0
assa

N
1

4

Jou3

LEN

ra #s ¥ 0K

et

Sample GODSEYE output.

‘vward it does require a lot of arlth-

metic. Even if clever scaling factors
were chosen to replace most multiplies
and divides with shifts and byte-moves, -

the initial division of the differénce -lines w
“zero and one. Screens -5 through 13
contain a complete Bresenham line-

between X1 -and X2 (sometimes called

; ““delta X’ or just plain ““DX”’) by the
difference between Y1 and Y2 (“DY”)

is unavoidable. Another problem is

~ that sixteen-bit scaled integers are not
‘big eriough for use on high-resolution

screens. In this example, lines that span

" more than 100 pixels horizontally are
" improperly drawn.,

The Bresenham Algorithm

- The Bresenham line-drawing algo-
rithm? requires only sixteen-bit integers

with addition, subtraction and multi-

plication by two (shift left) to draw
lines. Instead of a scaled, non-integer-
Y value, the algorithm shown on screen
7 uses the error accumulation term

' DELTA and integer X and Y values. For

lines with a slope between zero and

- one, the algorithm increments the X
- value for each point, and increments

the Y value only if the DELTA value is
negative. If DELTA is negative, a posi-
tive value of DY is added to form the
new DELTA value. If DELTA is positive, a

PLOT-POINT

_ negative value based on both DX and |

DY is used to form a new DELTA value.
Of course, slight variations of this

algorithm are needed to account for

lines with slopes that are not between

drawing vocabulary for all line slopes.
Horizontal and vertical lines are treat-
ed as special cases for greater speed
and simplicity.

The vocabulary for usmg this draw-
ing package is:

SET-CGA:MODE (-

Places the display in graphics mode.
This word may be redefined or renamed .
as appropriate for your computer.

SET-TEXT-MODE ~ (—)
Returns the display to an eighty-column

" text mode. This word may be redefined
~or renamed -as approprlate for your

computer.

(XY color ——)
Plots a single point on the graphics

screen. This word may be redefined as ..
appropriate for your computer.

FORTH Dlmenslons

14

Volume VIil, No: 6

3
A

o%;

322

SCREEN #10
0 \ BRESENHAM LINE FOR -INFINITY < SLOPE < -1 =
1 DECIMAL \ Assume DX and DY are already set up
2 : LINE-Z<M<-1 (NEWX NEWY ->)

3 DX @ 2* INCR1 ! DX @ DYy @ - 2* INCR2 !]
4 (Pick min y) DUP YNOW @ > :] :
5 IF (current cursor at -min y) DDROP XNOW @ YNOW @ THEN B
6~ DDUP POINT : : %
7 (Compute D) INCR1 @ DY @ - \ Stack: (X Y DELTA ---) E:
8 DYy @ 0 DO DUP 0K : . &
9 IF (D<O0) +Y - B=POINT ‘INCR1 @ + ?

10 ELSE (D >= 0) -X +Y B=POINT INCR2 @ + THEN kS

11 LOOP) : g

12 DROP DDROP ; -

13 E

14 X

15 g

. SCREEN #11 #
0 \ LINE FOR SLOPE = INFINITY ' (Vertical) X

020X

1 DECIMAL \ Assume DX and DY are already set up

2 : LINEZ (NEWX NEWY =->)

3 (Pick min y) DUP YNOW @ >

4 IF (current cursor at min y) DDROP XNOW @ YNOW @ THEN
5 DDUP POINT 0 (dummy DELTA value)
6
7
8
9

22

e

25X

DY @ 0 DO +Y B-POINT LOOP

v b oo | B MlCRO'

SCREEN #12 .

0 \ LINE FOR- SLOPE = 0 (Horizontal)
1 DECIMAL \ Assume DX and DY are already set up
2 : LINEO (NEWX NEWY ->)

3 (Pick min x) OVER XNOW @ >

4 IF (current cursor at min x) DDROP XNOW @ YNOW @ THEN
5 DDUP POINT 0 (dummy DELTA value)
6
7
8
9

e *d%%"%
SRR SRIIAE

0=0-0670°004%4 948420,

DX @ 0 DO +X B-POINT LOOP
DROP DDROP ; FEATURES .
- i —FORTH-79 Standard Sub- Set
10 ’ i : —Access to 8031 features
i1 : ? —Supports FORTH and machine]
12 ’ code interrupt handlers
13 ' : . —System timekeeping maintains 3%
14 - ".time and date with leap 3
15 i ; o year correction 3
: = —Supports ROM-based self-
SCREEN #13 ' ’ ' » - 3 stamng apphcatxons
0 \ BRESENHAM PROLOGUE & CALLING ROUTINE 3
1 DECIMAL]
2 : LINE (XNEW YNEW ->) E ‘ o
3 DDUP (Extra copy used for final MOVE-CURSOR) . CcOST)
g OVER OXNOV(V @ - DUP ABS DX ! OVER YNOW @)- DUP ABS DY ! # 130 page manual —$ 30.00
XOR < Determine if signs are different : : —
6 DY @ IF DX @ IF (Not horizontal or vertlcal) 8K EPROM with manual $100.00
7 IF (Negative slope) w Postage paid in North America.
8 B DX @ DY @ > IF LINE-1<M<0 ELSE LINE-Z<M<-1 THEN ‘Inquire for license or quantity pricing.
9 ELSE (Positive slope) . ;
10 DX @ DY @ > IF LINEOKM<1 . ELSE LINE1<M<Z - THEN 2
11 - . THEN 2
12 ELSE (Vertical) DROP LINEZ THEN

13 ELSE (Horizontal) DROP LINEO THEN
14 nMOVE-CURSOR H

Bryte Computers, Inc.
P.O. Box 46, Augusta, ME 04330
(207) 547-321»8

S}n...

tats

%0760 0%0%07070 07070707670 %0 "0 %0 "0 "0 0”0 "6 %% "a "s%a % e e el a %% % % %% % Ve '-'-‘.s

Volume VIll; No.6) S 15 R R " FORTH Dimensions

" POINT

Same as POINT but w1thout a color)

,value for consxstency w1th LINE.

MQVE-cunson 7; (X Y -)

 Move the éﬁrrent drawmg curs_or_ locaf;:
tion to the point (X,Y). This word is not
called MOVE because of possible naming .|

~conflicts in some Forth dialec_ts.-_ ‘

LNE = (XY-—)"

color of the line-is determined by the

- value of the variable COLOR.
The demonstration: -program GODSEYE
" not only draws & pretty picture, butisa

good test for ‘the hne-drawmg algo- E
 rithm, since it uses lines from each of
- the. dlfferent slope-range cases of the
T hne-drawmg program .

: Conclusnon .

"The Bre’senham lineédrawing algo-

rithm is an efficient way to draw - -
straight lines. The lines can be drawn -~
even faster than with the example pro- . .- -

~ grams by using’ techniques such as
direct screen-memory access instead of

BIOS- ROM - function calls, and by -
~writing optimized assembly langUage_,
.. programs that keep variables in regis- .

- ters instead of-in ‘memory. For more

information on computer graphics (in-
cluding ‘mathematical - derivations of -
the ‘Bresenham algorithm), please see -

the recommended reading list.
In the next issue of Forth Dzmenszons,

I will show you how to use these line- -

" SCREEN #14

. 0 \ BRESENHAM LINE DRAWING TEST PICTURE -- GODSEYE_

.,1 DECIMAL g _ .

2 :. GODSEYE . - ' . e
3 SET-CGA—MODE ~ \ Change to SET EGA-MODE for the EGA, etc.',
4 -0 DO 31~ . COLOR ! . (Usé this line for CGA)
5.\ - 1 0-DO- ... -1 "COLOR ! (- Use this line for CGA/HIRES)
6\ 16 0 DO 15 I - COLOR ". (Use’ thls 11ne for EGA)
7 .:76.0 DO - 75 L= '
8 "-150 OVER 2* - .100° MOVE-CURSOR
9. 150 .OVER ..25-#% .- .LINE. -

[10 - 150 .OVER 2% + - 100 LINE .
‘11.- . 150 I 100 +. LINE
12 - 150 " OVER 2* =.. 7100 . LINE

1 13 . DROP* "3 “+LOOP :
Draw a line from the last cursor p031- EEVEE ‘?TERMINAL ABORT" BREAK IN’ GODSEYE..

- tion (set by. either a MOVE-CURSOR or a |
- LUNE word) to the point(X,Y). The -

_drawing words to draw. fractal-based

- landscapes.

Recommended Reading

: Fundamentals of Interactzve Computer, .

‘Graphics, J.D. Foley and A. Van
Dam, Addlson-Wesley, Readmg MA,
1982,

Principles' of ‘Int‘evr"activ_e ' Cornpnter_.
-Graphics, W.M.. Newman and R.F.

~ Sproull, McGraw-Hill, New - York,
01979, - o L

References

15 “..»;Loop - SET-TEXT-MODE ;..
00— %X,
i ®(60,20)

. .‘(2.'0,‘60)»‘. Lo

- Figure One; Pixel layout on a graphics screen with 'examplé points.

72. : “V‘Algorithm for Computer Control
1. MVP- FOR TH Integer and . of a Digital Plotter,”” J.E. Bresen-
Floating-Point Math P. Koopman, ham, IBM Systems Journal, Vol. 4,

_Mo_unt_alp View Press,.v 1985. i No. 1, pp. 25-30, 1965.

'FORTH Dimensions

16 T) Volume VIiI, No. 6

MarchlApfi_I $159(8)
~ Dimensions
resenham
Line-Drawing
|

