FORTH-79

FRACTAL
LANDSCAPES

PHIL KOOPMAN, JR.- NORTH KINGSTOWN, RHODE ISLAND

I n the last issue of Forth Dimensions,
I presented a program that used the
Bresenham algorithm to draw lines on a
computer graphics display. Now I will
build upon those definitions to create a
program that draws pseudo-randomly
generated fractal landscapes with height-
based coloring (including a sea-level) and
hidden-surface elimination.

What’s a Fractal?

The word fractal is short for “fractional
dimension,” and is used to describe var-
ious geometrical shapes that are not
strictly one, two, or three-dimensional
objects. Interestingly enough, most na-
turally occurring objects (such as
coastlines) and natural phenomena (such
as Brownian motion) are best described by
fractal geometry!.

To get a better feel for what a fractal
is, consider the western coastline of the
United States. From far away in space,
the coastline looks more-or-less straight;
that is, it looks like a one-dimensional
line having a fractional dimension near 1.
As an observer gets closer, the perceived
length of the coastline and its fractional
dimension increases as more details such
as inlets and peninsulas become visible.
In fact, with a very close look at an area
like San Francisco Bay, the coastline
becomes a two-dimensional object with a
fractional dimension near 2.

How To Draw Random Fractals

To use the fractal concept to draw a
landscape, let’s first look at how a fractal
can be used to draw a shape, starting from
a line. We will look at a random fractal
line, but of course there are other ways to
draw fractal lines (see the recommended
reading list).

||
SCREEN #15
0 \ Special 32-bit unsigned multiply
1 DECIMAL
2 \ This is a special-purpose unsigned multiply that returns only
3\ the low-order 32 bits. For a more generalized multiply,
4\ see: P. Koopman, MVP-FORTH INTEGER & FLOATING POINT MATH
5\ MVP-FORTH series Vol. 3 (revised), Mountain View Press
6
7 : XD* (UD1 UD2 -> UD3)
8 OVER 5 PICK U* >R >R
9 4 ROLL U* DROP >R

10 U* DROP
11 0 Swap
12 R> R> D+ ;

R> 0 SWAP D+

SCREEN #16
0 \ 32-BIT BASED LINEAR CONGRUENT RANDOM NUMBER GENERATOR

1 DECIMAL \ From Knuth's Art of Computer Prog. vol., 2, page 170
2 DVARIABLE SEED \ High 16-bits of SEED are actual random]
3 \ Store all 32-bits initially to re-seed generator
4 3141592653. SEED D!
5
6 : RNDF (-> N)
7 SEED D@ 3141592621. XD* 1. D+
g DUP ROT ROT SEED D! ;
10 \ The below random number generator is very poor, but
11\ produces interesting smoothed/rounded rolling hills
12 \ : RNDF (-> N)
ii \ [SEED 1+] LITERAL @ 31417 U* 1. D+ DUP ROT ROT SEED D! ;
15
SCREEN #17
0 \ FRACTAL LAYOUT
1 DECIMAL
2 \ SQUARE Pl4—mmmmeeee +P2
3 \ LAYOUT: ! 11 111 Roman #'s are square #'s
4\ === mm——— X Pl..P4 are corner point #'s
5\ 1 IV ! III !}
6 \ L 1p3
7 \ In the recursive routines, Pl..P4 are the address of the
8\ points within the layout array
9 \ Each recursion calculates the new "x" point height values
10 : WALL ; \ Useful point for FORGETting
11 : RECURSE
12 LATEST PFA CFA , ; IMMEDIATE
13
14 : CELL* 2* ; \ Change to fit bytes/cell of your machine
15 : CELL+ 2+ ; \ Change to fit bytes/cell of your machine

Forth Dimensions

12 Volume IX, Number 1

First, consider the straight line segment
shown in Figure One-a. We will take the
midpoint of that line segment and pull it
to one side, as shown in Figure One-b.
Next, we will recursively take each
midpoint of the resulting line segments
and pull them randomly to one side or the
other as shown in Figures One-c and One-
d. As you can see, this process quickly
results in a wandering line. For the most
pleasing shape, the amount of “pull”
applied is cut in half at each level of
recursion, forming a smooth result.

In order to extend this concept to an
area instead of a line, the “Landscape”
program on screens 15-28 forms a two-
dimensional array. Each cell in the array
holds the height of a point above or
below sea level. The word CALCU-
LATE-SERVICE recursively breaks
this array into smaller and smaller
squares, using the addresses of the four
corners of the array instead of four pairs
of (X,Y) coordinates. SET-HEIGHTS
sets the heights for the array cells at the
midpoints of the sides of the current
square and for the center of the current
square, then breaks the square up into four
sub-squares (see the diagram on screen 17
for a description of the nomenclature used
by the subdividing algorithm). After the
data array has a height associated with
each point, the program uses the SEA-
LEVEL word to reassign all negative
heights to sea level.

After the heights are computed, the
landscape is drawn on the screen. As each
point of the array is drawn, it is assigned
a color based on height and the number of
colors available.

Screen-Drawing Tricks

I have used several tricks in
“Landscape” to speed up the screen-
drawing time. This drawing time would
be prohibitively long if conventional,
three-dimensional graphics techniques
were used.

The most time-consuming part of
many graphics drawing programs invol-
ves 3-D transformations, especially rota-
tions. On the other hand, a top or side
view of a fractal landscape would not be
terribly exciting. I solved this speed-
versus-prettiness dilemma using two
techniques: a “sleazy” rotation to elevate
the rear of the picture, and an

Forth Dimensions

SCREEN #18
0 \ FRACTAL DATABASE
1 DECIMAL
2 5 CONSTANT #LEVELS \ Number of recursion levels
3 65 CONSTANT SIZE \ array size = 1 + 2**(§LEVELS+1)
4 \ NOTE: Change SIZE to 129 and #LEVELS to 6 for EGA
S \ SQUARE-P1 is a 2D array that holds heights of all grid points
6 CREATE SQUARE-P1 SIZE SIZE * CELL* ALLOT
7 SIZE 1- CELL* SQUARE-Pl1 + CONSTANT SQUARE~-P2
8 SIZE SIZE * 1~ CELL* SQUARE-Pl + CONSTANT SQUARE-P3
9 SIZE SIZE 1~ * CELL* SQUARE-P1 + CONSTANT SQUARE~-P4
10
11 : SCALE 2* 2* ; \ Scale value of pixels per data array point
12 1 SCALE CONSTANT DELTA
13 : AVE (U1 U2 -> UAVE) \ unsigned average of 2 addresses
14 \ NOTE: This is a prime candidate for machine code speed-up!
15 0 SWAP 0 D+ 2 U/MOD SWAP DROP ;
SCREEN #19
0 \ SPECIAL LINE DRAWS FOR FRACTAL LANDSCAPES
1 DECIMAL
2 : Y-CONVERT (HEIGHT Y1 -> Y2)
3 \ Por now, assume tilted up 30 degrees in back, no X change
4 \ Inputs are x/y data points & height, outputs screen coords
5 + 2/ NEGATE YMAX + 3
6 : P~MOVE (X HEIGHT Y-INDEX ->)
7 \ Use the code on the next line for tracing if desired
8 \ ." MOVE:*™ SWAP U. U. CR ?TERMINAL ABORT" F-MOVE" ;
9 SCALE Y-CONVERT MOVE-CURSOR ;
10 : F-LINE (X HEIGHT Y-INDEX ->)
11 \ Use the code on the next line for tracing if desired
12 \ ." LINE:" SWAP U. U. CR ?TERMINAL ABORT" F-~LINE" ;
13 SCALE Y-CONVERT DUP 0<
14 IF (Clip line that is off screen) DDROP
15 ELSE LINE THEN ;
SCREEN #20
0 \ INITIALIZE THE HEIGHT ARRAY & CALCULATE COLOR POR A HEIGHT
1 HEX
2 : INITIALIZE-SQUARE (->)
3 \ Fill all initial heights with 8181 for a recognizable tag
4 SQUARE-P1 SIZE 0
5 DO DUP SIZE CELL* 81 FILL SIZE CELL* + LOOP DROP
6 20 SQUARE-P3 ! \ Initial values to slant landscape
7 18 SQUARE-P4 ! \ "forward"” for a better view
8 -15 SQUARE-P1 ! -10 SQUARE-P2 ! ;
9. : SET-COLOR (HEIGHT ->) \ Figure color for given height
10 \ Adjust the "40" on the line below to individual taste.
11 \ In particular, change to a "18" for EGA
12 DUP 8 < IF (near sea level) DROP 1
13 ELSE 40 / #COLORS 2- MOD 2+ THEN COLOR ! ;
14 \ Redefine as : SET-COLOR DROP 1 COLOR ! ; for CGA/HIRES
15 DECIMAL
SCREEN #21
0 \ DRAW THE HEIGHT ARRAY ON THE CRT DISPLAY
1 DECIMAL
2 : DRAW-SURFACE { =>) \ Draw from bottom to top on screen
3 SIZE 2- 0 DO (column) I SIZE + CELL* SQUARE-P1 +
4 10000 (initial min Y value) SIZE 1- 1 DO (row)
5 \ Test for hidden surface removal
6 OVER € I SCALE Y-CONVERT DDUP >
7 IF (new min y value means visible point) SWAP DROP
8 \ Add a 2* where indicated when using CGA/HIRES mode
9 OVER @ SET-COLOR J SCALE (2*)
10 DUP DELTA (2*) + 4 PICK SIZE CELL* -~ CELL+ €@ I 1- F-MOVE
11 DUP 4 PICK eI F-LINE
12 DELTA (2*) + 3 PICK SIZE CELL* + CELL+ € I 1+ F-LINE
13 ELSE (hidden) DROP THEN '
14 SWAP SIZE CELL* + SWAP 1 /LOOP
15 ?TERMINAL ABORT" BREAK" DDROP 1 /LOOP ;
14 " Yolume IX, Number 1

unconventional point-connection scheme
to eliminate the need for spinning the
picture.

A standard rotation of a landscape to
elevate the rear of the picture involves
using the equation:

NEWY = yvalue * sin(angle)
+ height * cos(angle)

for each height data point in the landscape
array. In order to eliminate the scaled
integer or floating-point arithmetic
involved, I chose my rotation angle to be
30 degrees and changed the “* sin(angle)”
term to a division by two. Then, to get
rid of the cosine term, I decided to
approximate cos(30)=.866 by 0.5 (div-
ision by two) and increased the original
height value on line 7 of screen 28 to
compensate. The elevation using this
strategy is accomplished by Y-
CONVERT on screen 19.

Even with the rear of the picture
elevated, the result is pretty unexciting if
points are connected by columns and
rows. You would only see regularly
spaced vertical lines with landscape
profile lines wiggling horizontally across
the screen. In order to fix this, lines 10
through 12 of screen 21 connect points in
sideways “V” patterns to form a picture
composed of diagonal lines instead of
mostly horizontal and vertical lines. The
lines are drawn and colored by columns of
points, front to back.

It turns out that hidden-surface
elimination, a major computational drain
on many graphics programs, comes at
almost no charge when using the drawing
technique described above. Since points
are drawn from front to back, lines 5 - 7
of screen 21 simply ensure that each new
Y value for a point to be displayed is
further up on the screen than any previous
Y values for that column.

Running The Program

Simply type LANDSCAPE from the
Forth “OK” prompt. The program will
draw a landscape and wait for a keystroke
on a PC-compatible machine with a
Color Graphics Adapter (CGA) display. If
you change the constants on lines 2 - 3 of
screen 18, redefine the coloring word on
lines 9 - 14 of screen 20, and substitute
(Continued on page 11.)

Volume IX, Number 1

SCREEN #22
0 \ SET-HEIGHT -- Set height of a point for recursive processing
1 HEX
2 : SET-HEIGHT (DH LEVEL PX VALUE PY VALUE -> DH LEVEL)

3 ROT + 2/ ROT ROT AVE
4 DUP € 8181 =
5 IF (store) SWAP 4 PICK RNDF +- + SWAP !
6 ELSE DDROP THEN ;
7
8 DECIMAL
9
i0
11
12
i3
14
15
SCREEN #23

0 \ SET HEIGHTS FOR ALL THE "x" POINTS TO MAKE SUB-SQUARES
1 DECIMAL

2 : SET-HEIGHTS (Pl P2 P3 P4 DELTA-H LEVEL# ~> <unchanged>)
3 \ PFollowing 2 lines are debug/trace code to watch recursion
4 \ CR 6 PICK U. 5 PICK U. 4 PICK U. 3 PICK U. OVER U. DUP U.
5\ ?TERMINAL ABORT" SET-HEIGHTS"
6 (ave P1/P2) 6 PICK DUP @ 7 PICK DUP € SET-HEIGHT
7 (ave P2/P3) 5 PICK DUP @ 6 PICK DUP € SET-HEIGHT
8 { ave P3/P4) 4 PICK DUP @ 5 PICK DUP @ SET-HEIGHT
9 (ave P1/P4) 6 PICK DUP @ 5 PICK DUP @ SET-HEIGHT
10 (ave P1/P3) 6 PICK DUP @ 6 PICK DUP € SET-HEIGHT ;
11
12
13
14
15
SCREEN $#24 :

0 \ WORD TO SET UP PARAMETERS FOR SUB-SQUARES # 1-2
1 DECIMAL -
2 : SQUAREl (Pl P2 P3 P4 DELTA~-H LEVEL} -> <2.copies>)

3 6 PICK DUP 7 PICK AVE
4 OVER 7 PICK AVE 9 PICK 7 PICK AVE
5 6 PICK 2/ 6 PICK 1~ ;
6
7 : SQUARE2 (P1 P2 P3 P4 DELTA-H LEVEL# -> <2.copies>)
8 6 PICK 6 PICK AVE 6 PICK
9 DUP 7 PICK AVE OVER 7 PICK AVE
10 6 PICK 2/ 6 PICK 1- ;
11
12
13
14
15
SCREEN #25

0 \ WORD TO SET UP PARAMETERS FOR SUB-SQUARES # 3-4
1 DECIMAL
2 : SQUARE3 (P1 P2 P3 P4 DELTA-H LEVEL# -> <2.copies>)

3 6 PICK 5 PICK AVE 6 PICK 6 PICK AVE
4 6 PICK DUP 7 PICK AVE
-5 6 PICK 2/ 6 PICK 1- ;
6
7 : SQUARE4 (PL P2 P3 P4 DELTA-H LEVEL# -> <2.copies>)
8 6 PICK 4 PICK AVE 6 PICK S PICK AVE
9 6 PICK 6 PICK AVE 6 PICK
10 6 PICK 2/ 6 PICK 1- ;
11
12
13
14)
15 (Screens continued of next page.)

15 Forth Dimensions

SRR AR " SR SE s .M

2
: 5
¥ 8
SCREEN #26 : 3
0 \ RECURSIVE PROCEDURE TO SET HEIGHTS FOR RANDOM 3~D TERRAIN 3 :
1 DECIMAL \ BASED ON SUB-DIVIDED SQUARE FRACTALS E ﬁ
2 : CALCULATE-SURFACE (Pl P2 P3 P4 DELTA-H LEVEL# ->) E ®
3 SET-HEIGHTS k %
4 DUP ?TERMINAL ABORT" BREAK IN CALCULATE-SURFACE" i e
5 IF (non-zero level) = 3
6 SQUARE1 RECURSE %
7 SQUARE2 RECURSE %
8 SQUARE3 RECURSE :
9 SQUARE4 RECURSE E
10 THEN E
11 DDROP DDROP DDROP ; x 3
i2 3
13 3
SCREEN #27
0 \ SEA-LEVEL -- SET SEA LEVEL FOR NEGATIVE HEIGHT POINTS
1 DECIMAL ¥ ;
2 : SEA-LEVEL (=>) b3 %
3 SQUARE-P1 SIZE 0 DO 2 2
4 SIZE. 0 DO]
5 DUP € DUP 0< é
6 IF (below sea level -- add fudge factor for waves) 2
7 1AND I J+ + 7 AND OVER ! 2
8 ELSE DROP THEN
9 CELL+ LOOP 3
10 LOOP DROP ; & %
11

LIRSS

2 DVARIABLE SEED-SAVE \ Saves random seed. Placing the saved

1 DECIMAL \ BASED ON SUB-DIVIDED SQUARES CONTROLLER

\ value back into SEED will re-create the same landscape

)
SCREEN #28 & M 'CRO -
0 \ MASTER PROCEDURE TO DRAW A RANDOM 3-D FRACTAL g

3
4 : LANDSCAPE (->)
5 SEED D@ SEED~SAVE D! INITIALIZE~-SQUARE
6 CR ." Computing new heights"
7 SQUARE-P1 SQUARE-P2 SQUARE-P3 SQUARE-P4 r
8 YMAX 2/ #LEVELS CALCULATE-SURFACE
9 CR ." Computing sea level™ SEA-LEVEL

10 SET-CGA-MODE \ Change to SET-EGA-MODE or SET-CGA-HIRES-MODE

11\ SEED-SAVE D@ CR ." SEED=" D. { Optional SEED display)

12 DRAW-SURFACE

13 CR ." Press any key to continue™ KEY DROP

14 SET-TEXT-MODE ; -

R8s

FEATURES
—FORTH-79 Standard Sub-Set
—Access to 8031 features
—Supports FORTH and machine

code interrupt handlers
—System timekeeping maintains
time and date with leap
year correction
—Supports ROM-based self-
starting applications

Pt
w
'a%?
SEEASSAEAARE S

Q ‘b:}v‘it ;§\»
v X Ay
\ “\& \\\\\\\N
0)9# Why \\\ ‘ B “‘\‘\0‘;"‘;’,
"& ‘ \‘ ’<3‘ \\‘\‘*“\.‘,;-,-e\:a ‘\\\?‘v X
K “" R %s‘;k'r-:?ét_‘ AR
'lir l’ a’, o,@\’ \ ‘\\:\‘:‘ ‘ \g' ‘f‘ "“ o\ \\\‘ "‘:\“ﬁ“}\(‘\ﬁ ;‘ A A %
T ““ Y9 '\ \' & ARG R
o /,f:,,w.,;\») v \ RN

0 050T00000;

,.\\\.

COST
130 page manual —$ 30.00
8K EPROM with manuai—$100.00
Postage paid in North America.
Inquire for license or quantity pricing.

2
3

.“ \‘\\ \ ‘ \’ oo mne s S SRS SRS
0N \\\\ ‘\v\ \ g A
. A ”0’0‘\\“‘ \‘“ ‘w\\\
’/‘ ‘\\‘ n\": AR 3‘ 3Ad Bryte Computers, Inc.

P.O. Box 46, Augusta, ME 04330
(207) 547-3218

." "ﬁ\‘ \\ ’

»‘o > o' ..

o
'

” 2%
.h..W-‘ﬁ'h‘f-‘o'.'-'-’mff-‘hv.‘-‘-'.‘-‘;‘fmf-‘-“’-\‘-’.'.'fﬂ-v-'-‘“‘

e

Forth Dimensions 16 Volume IX, Number 1

