In the last issue of Forth Dimensions, I presented a program that used the Bresenham algorithm to draw lines on a computer graphics display. Now I will build upon those definitions to create a program that draws pseudo-randomly generated fractal landscapes with heightbased coloring (including a sea-level) and hidden-surface elimination.

What's a Fractal?

The word fractal is short for "fractional dimension," and is used to describe various geometrical shapes that are not strictly one, two, or three-dimensional objects. Interestingly enough, most naturally occurring objects (such as coastlines) and natural phenomena (such as Brownian motion) are best described by fractal geometry ${ }^{1}$.

To get a better feel for what a fractal is, consider the western coastline of the United States. From far away in space, the coastline looks more-or-less straight; that is, it looks like a one-dimensional line having a fractional dimension near 1. As an observer gets closer, the perceived length of the coastline and its fractional dimension increases as more details such as inlets and peninsulas become visible. In fact, with a very close look at an area like San Francisco Bay, the coastline becomes a two-dimensional object with a fractional dimension near 2.

How To Draw Random Fractals

To use the fractal concept to draw a landscape, let's first look at how a fractal can be used to draw a shape, starting from a line. We will look at a random fractal line, but of course there are other ways to draw fractal lines (see the recommended reading list).

```
SCREEN #15
    \ Special 32-bit unsigned multiply
    DECIMAL
        This is a special-purpose unsigned multiply that returns only
    \ the low-order 32 bits. For a more generalized multiply,
        see: P. Koopman, MVP-FORTH INTEGER & FLOATING POINT MATH
                                    MVP-FORTH series Vol. 3 (revised), Mountain View Press
    XD* ( UD1 UD2 -> UD3 )
        OVER 5 PICK U* >R >R
        4 ROLL U* DROP >R
        U* DROP
        O SWAP R> 0 SWAP D+
        R> R> D+ ;
    SCREEN #16
    \ 32-BIT BASED LINEAR CONGRUENT RANDOM NUMBER GENERATOR
    DECIMAL \ From Knuth's Art of Computer Prog. vol. 2, page 170
    DVARIABLE SEED \ High 16-bits of SEED are actual random #
            \ Store all 32-bits initially to re-seed generator
    3141592653. SEED D!
    : RNDF ( -> N )
        SEED D@ 3141592621. XD* 1. D+
        DUP ROT ROT SEED D! ;
        The below random number generator is very poor, but
            produces interesting smoothed/rounded rolling hills
    \ : RNDF ( }->\textrm{N}\mathrm{ )
    \ [ SEED 1+ ] LITERAL @ 31417 U* 1. D+ DUP ROT ROT SEED D! ;
SCREEN #17
        \ FRACTAL LAYOUT
    DECIMAL
    \ SQUARE
        \ LAYOUT:
        P1+----x-----+P2 R ! II ! Roman #'s are square #'s
    ! I ! II ! Roman #'s are square #'s 
    ! IV ! III !
P4!----x-----!P3
        In the recursive routines, P1..P4 are the address of the
        points within the layout array
    \ Each recursion calculates the new "x" point height values
    : WALL ; \ Useful point for FORGETting
    : RECURSE
            LATEST PFA CFA , ; IMMEDIATE
        : CELL* 2* ; \ Change to fit bytes/cell of your machine
                            \ Change to fit bytes/cell of your machine
```

First, consider the straight line segment shown in Figure One-a. We will take the midpoint of that line segment and pull it to one side; as shown in Figure One-b. Next, we will recursively take each midpoint of the resulting line segments and pull them randomly to one side or the other as shown in Figures One-c and Oned. As you can see, this process quickly results in a wandering line. For the most pleasing shape, the amount of "pull" applied is cut in half at each level of recursion, forming a smooth result.

In order to extend this concept to an area instead of a line, the "Landscape" program on screens $15-28$ forms a twodimensional array. Each cell in the array holds the height of a point above or below sea level. The word CALCU-LATE-SERVICE recursively breaks this array into smaller and smaller squares, using the addresses of the four corners of the array instead of four pairs of (X,Y) coordinates. SET-HEIGHTS sets the heights for the array cells at the midpoints of the sides of the current square and for the center of the current square, then breaks the square up into four sub-squares (see the diagram on screen 17 for a description of the nomenclature used by the subdividing algorithm). After the data array has a height associated with each point, the program uses the SEALEVEL word to reassign all negative heights to sea level.

After the heights are computed, the landscape is drawn on the screen. As each point of the array is drawn, it is assigned a color based on height and the number of colors available.

Screen-Drawing Tricks

I have used several tricks in "Landscape" to speed up the screendrawing time. This drawing time would be prohibitively long if conventional, three-dimensional graphics techniques were used.

The most time-consuming part of many graphics drawing programs involves 3-D transformations, especially rotations. On the other hand, a top or side view of a fractal landscape would not be terribly exciting. I solved this speed-versus-prettiness dilemma using two techniques: a "sleazy" rotation to elevate the rear of the picture, and an

```
SCREEN #18
    \ FRACTAL DATABASE
    DECIMAL
    5 CONSTANT #LEVELS \ Number of recursion levels
        65 CONSTANT SIZE \ array size = 1 + 2**(#LEVELS+1)
            NOTE: Change SIZE to }129\mathrm{ and #LEVELS to }6\mathrm{ for EGA
    \ SQUARE-P1 is a 2D array that holds heights of all grid points
    CREATE SQUARE-P1 SIZE SIZE * CELL* ALLOT
    SIZE 1- CELL* SQUARE-P1 + CONSTANT SQUARE-P2
    SIZE SIZE * 1- CELL* SQUARE-P1 + CONSTANT SQUARE-P3
    SIZE SIZE 1-* CELL* SQUARE-P1 + CONSTANT SQUARE-P4
10
11 : SCALE 2* 2*; \Scale value of pixels per data array point
12.1 SCALE CONSTANT DELTA
: AVE ( U1 U2 -> UAVE ) \ unsigned average of 2 addresses
        NOTE: This is a prime candidate for machine code speed-up!
        O SWAP 0 D+ 2 U/MOD SWAP DROP ;
SCREEN #19
    O \ SPECIAL LINE DRAWS FOR FRACTAL LANDSCAPES
    DECIMAL
    : Y-CONVERT (HEIGHT Y1 -> Y2 )
        \ For now; assume tilted up 30 degrees in back, no }X\mathrm{ change
        \ \text { Inputs are x/y data points \& height, outputs screen coords}
        + 2/ NEGATE YMAX + ;
    : F-MOVE ( X HEIGHT Y-INDEX - ) Cl.
    \ Use the code on the next line for tracing if desired
    \ " MOVE:" SWAP U.U.CR ?TERMINAL ABORT" F-MOVE" ;
        SCALE Y-CONVERT MOVE-CURSOR ;
    : F-LINE ( X HEIGHT Y-INDEX }->\mathrm{ ) 
    \ Use the code on the next line for tracing if desired
    \ " LINE:" SWAP U. U.OCR ?TERMINAL ABORT" F-LINE" ;
        SCALE Y-CONVERT DUP O<
        IF (Clip line that i| off screen) DDROP
        ELSE LINE THEN: T
SCREEN #20
    O INITIALIZE THE HEIGHT ARRAY & CALCULATE COLOR FOR A HEIGHT
    HEX
    : INITIALIZE-SQUARE (->)
        \ ~ F i l l ~ a l l ~ i n i t i a l ~ h e i g h t s ~ w i t h ~ 8 1 8 1 ~ f o r ~ a ~ r e c o g n i z a b l e ~ t a g
        SQUARE-P1 SIZE 0
        DO DUP SIZE CELL* 81 FILL SIZE CELL* + LOOP DROP
        20 SQUARE-P3! I Initial values to slant landscape
        1 8 \text { SQUARE-P4 ! \ "forward" for a better view}
        -15 SQUARE-P1 ! -10 SQUARE-P2 ! ;
    : SET-COLOR (HEIGHT ->) \Figure color for given height
    \ Adjust the "40" on the line below to individual taste.
    \ In particular, change to a "18" for EGA
        DUP 8 < IF (near sea level) DROP 1
            ELSE 40/ #COLORS 2- MOD 2+ THEN COLOR ! ;
    | Redefine as : SET-COLOR DROP 1 COLOR ! ; for CGA/HIRES
    DECIMAL
SCREEN #21
    \ ~ D R A W ~ T H E ~ H E I G H T ~ A R R A Y ~ O N ~ T H E ~ C R T ~ D I S P L A Y ~
    DECIMAL
    : DRAW-SURFACE ( }->)\mathrm{ ) Draw from bottom to top on screen
        SIZE 2- 0 DO (column ) I SIZE + CELL* SQUARE-P1 +
        10000 ( initial min Y value) SIZE 1- 1 DO (row )
        \ Test for hidden surface removal
        OVER @ I SCALE Y-CONVERT DDUP >
        IF ( new min Y value means visible point ) SWAP DROP
            \ Add a 2* where indicated when using CGA/HIRES mode
            OVER @ SET-COLOR J SCALE ( 2* )
        DUP DELTA ( 2*) + 4 PICK SIZE CELL* - CELL+ @ I 1- F-MOVE
        DUP 4 PICK I F-LINE
        DELTA ( 2*) + 3 PICK SIZE CELL* + CELL+ @ I 1+ F-LINE
        ELSE (hidden) DROP THEN
        SWAP SIZE CELL* + SWAP 1 /LOOP
    ?TERMINAL ABORT" BREAK" DDROP 1/LOOP;
```

unconventional point-connection scheme to eliminate the need for spinning the picture.

A standard rotation of a landscape to elevate the rear of the picture involves using the equation:
NEWY $=$ yvalue $*$ sin (angle) + height * cos (angle)
for each height data point in the landscape array. In order to eliminate the scaled integer or floating-point arithmetic involved, I chose my rotation angle to be 30 degrees and changed the "* $\sin ($ angle)" term to a division by two. Then, to get rid of the cosine term, I decided to approximate $\cos (30)=.866$ by 0.5 (division by two) and increased the original height value on line 7 of screen 28 to compensate. The elevation using this strategy is accomplished by \mathbf{Y} CONVERT on screen 19.

Even with the rear of the picture elevated, the result is pretty unexciting if points are connected by columns and rows. You would only see regularly spaced vertical lines with landscape profile lines wiggling horizontally across the screen. In order to fix this, lines 10 through 12 of screen 21 connect points in sideways "V" patterns to form a picture composed of diagonal lines instead of mostly horizontal and vertical lines. The lines are drawn and colored by columns of points, front to back.

It turns out that hidden-surface elimination, a major computational drain on many graphics programs, comes at almost no charge when using the drawing technique described above. Since points are drawn from front to back, lines 5-7 of screen 21 simply ensure that each new Y value for a point to be displayed is further up on the screen than any previous \mathbf{Y} values for that column.

Running The Program

Simply type LANDSCAPE from the Forth "OK" prompt. The program will draw a landscape and wait for a keystroke on a PC-compatible machine with a Color Graphics Adapter (CGA) display. If you change the constants on lines 2-3 of screen 18, redefine the coloring word on lines 9-14 of screen 20, and substitute (Continued on page 11.)

```
SCREEN: #22
    \ SET-HEIGHT -- Set height of a point for recursive processing
    HEX
        : SET-HEIGHT ( DH LEVEL PX VALUE PY VALUE -> DH LEVEL )
                ROT + 2/ ROT ROT AVE
                DUP @ 8181 =
                IF ( store ) SWAP 4 PICK RNDF +- + SWAP !
                ELSE DDROP THEN ;
    DECIMAL
9
11
12
14
15
SCREEN #23
0 SET HEIGHTS FOR ALL THE "x" POINTS TO MAKE SUB-SQUARES
    DECIMAL
    : SET-HEIGHTS ( P1 P2 P3 P4 DELTA-H LEVEL# -> <unchanged> )
    \ Following 2 lines are debug/trace code to watch recursion
    \ CR 6 PICK U. 5 PICK U. 4 PICK U. }3\mathrm{ PICK U. OVER U. DUP U.
    \ ?TERMINAL ABORT" SET-HEIGHTS"
        (ave P1/P2 ) 6 PICK DUP @ 7 PICK DUP @ SET-HEIGHT
        (ave P2/P3) 5 PICK DUP @ 6 PICK DUP @ SET-HEIGHT
        ( ave P3/P4) 4 PICK DUP @ 5 PICK DUP @ SET-HEIGHT
        (ave P1/P4 ) 6 PICK DUP @ 5 PICK DUP @ SET-HEIGHT
        (ave P1/P3) 6 PICK DUP @ 6 PICK DUP@ SET-HEIGHT ;
SCREEN #24
    0 \ WORD TO SET UP PARAMETERS FOR SUB-SQUARES # 1-2
    DECIMAL
    : SQUARE1 (P1 P2 P3 P4 DELTA-H LEVEL# -> <2.copies> )
        6 PICK DUP }7\mathrm{ PICK AVE
        OVER 7 PICK AVE % PICK 1-9 PICK 7 PICK AVE
        6 PICK 2/ 6 PICK 1-;
    : SQUARE2 (P1 P2 P3 P4 DELTA-H LEVEL# -> <2.copies> )
        6 PICK 6 PICK AVE }6\mathrm{ PICK
        DUP 7 PICK AVE OVER 7PICK AVE
        6 \text { PICK 2/ 6 PICK 1-;}
SCREEN #25
    | WORD TO SET UP PARAMETERS FOR SUB-SQUARES # 3-4
    DECIMAL
        : SQUARE3 ( P1 P2 P3 P4 DELTA-H LEVEL# -> <2.copies>)
        6 PICK 5 PICK AVE 6 PICK 6 PICK AVE
```



```
        6 \text { (PICK 2/ 6 PICK 1-\%}
    : SQUARE4 (P1 P2 P3 P4 DELTA-H LEVEL# -> <2.copies> )
        6 PICK 4PPICK AVE N F PICK 5 PICK AVE
        6 PICK 6 PICK AVE 
        (Screens continued of next page.)
        6.PICK 4-PICK Pa P4 DELTA-H LEVEL# -> < <2.copies>
```


TOTALCONTROL with LMI FORTH"

For Programming Professionals: an expanding family of compatible, high-performance, Forth-83 Standard compilers for microcomputers

For Development:
Interactive Forth-83 Interpreter/Compilers

- 16-bit and 32-bit implementations
- Full screen editor and assembler
- Uses standard operating system files
- 400 page manual written in plain English
- Options include software floating point, arithmetic coprocessor support, symbolic debugger, native code compilers, and graphics support
For Applications: Forth-83 Metacompiler
- Unique table-driven multi-pass Forth compiler
- Compiles compact ROMable or disk-based applications
- Excellent error handling
- Produces headerless code, compiles from intermediate states, and performs conditional compilation
- Cross-compiles to 8080, Z-80, 8086, 68000, 6502, 8051, 8096, 1802, and 6303
- No license fee or royalty for compiled applications

For Speed: CForth Application Compiler

- Translates "high-level" Forth into in-line, optimized machine code
- Can generate ROMable code

Support Services for registered users:

- Technical Assistance Hotline
- Periodic newsletters and low-cost updates
- Bulletin Board System

Call or write for detailed product information and prices. Consulting and Educational Services a vailable by special arrangement.

山下
Laboratory Microsystems Incorporated
Post Office Box 10430, Marina del Rey, CA 90295 Phone credit çard orders to: (213) 306-7412

Overseas Distributors.
Germany: Forth-Systeme Angelika Flesch, Titisee-Neustadt, 7651-1665 UK: System Science Ltd., London, 01-248 0962
France: Micro-Sigma S.A.R.L., Paris, (1) 42.65.95.16
Japan: Southern Pacific Ltd.,' Yokohama, 045-314-9514
Australia: Wave-onic Associates, Wilson, W.A., (09) 451-2946
(Continued from page 15.)
the appropriate graphics-mode initialization word on line 9 of screen 28 you should be able to run this program with any graphics display. Playing with the scale factor on screen 18 and/or the horizontal scale factors commented out in screen 21 may make the pictures more pleasing on some displays.

References

1. Fractals: Form, Chance, and Dimension, B.B. Mandelbrot. W.H. Freeman and Company, San Francisco, 1977.

Recommended Reading

"3-D Fractals," M. van de Panne. Creative Computing, July 1985, pp. 7882.

Art of Computer Programming, D.E. Knuth. Addison-Wessley Publishing, Vol. 2, 1981 (includes a discussion of random number generators).
"Fractals," P.R. Sorensen. BYTE, September 1984, pp. 157-172.

The Fractal Geometry of Nature, B.B. Mandelbrot. W.H. Freeman and Company, San Francisco, 1983.
"IBM Fractal Graphics," P.W. Carlson. Compute!, March 1986, pp. 78-80.

Phil Koopman, Jr. is the vice-president and chief engineer for WISC Technologies. The program discussed in this article was originally developed as a demonstration for the WISC CPU/16.

```
SCREEN #26
    \ RECURSIVE PROCEDURE TO SET HEIGHTS FOR RANDOM 3-D TERRAIN
    DECIMAL \ BASED ON SUB-DIVIDED SQUARE FRACTALS
    : CALCULATE-SURFACE ( P1 P2 P3 P4 DELTA-H LEVEL# -> )
        SET-HEIGHTS
        DUP ?TERMINAL ABORT" BREAK IN CALCULIATE-SURFACE"
        IF ( non-zero level)
            SQUARE1 
        THEN
        DDROP DDROP DDROP ;
    SCREEN #27
    \ SEA-LEVEL -- SET SEA LEVEL FOR NEGATIVE HEIGHT POINTS
    DECIMAL
    : SEA-LEVEL ( ->)
        SQUARE-P1 SIZE O DO
            SIZE O DO
                    DUP @ DUP 0<
                    IF ( below sea level -- add fudge factor for waves )
                    1 AND I J + + 7 AND OVER !
                ELSE DROP THEN
            CELL+\cdots LOOP
        LOOP DROP ;
    \ MASTER PROCEDURE TO DRAW A RANDOM 3-D FRACTAL
    DECIMAL \ BASED ON SUB-DIVIDED SQUARES
    DVARIABLE SEED-SAVE \ Saves random seed. Placing the saved
        \ value back into SEED will re-create the same landscape
    : LANDSCAPE ( -> )
        SEED D@ SEED-SAVE D! INITIALIZE-SQUARE
        CR ." Computing new heights"
        SQUARE-P1. SQUARE-P2 SQUARE-P3 SQUARE-P4
            YMAX 2/ #LEVELS CALCULATE-SURFACE
        CR ." Computing sea level". SEA-LEVEL
        SET-CGA-MODE \ Change to SET-EGA-MODE or SET-CGA-HIRES-MODE
            SEED-SAVE D@ CR ." SEED=" D. ( Optional SEED display)
        DRAW-SURFACE
        CR ." Press any key to continue" KEY DROP
        SET-TEXT-MODE ;
```


FRACTAL LANDSCAPES • BY PHIL KOOPMAN, JR.
12
This program generates fractal landscapes, with height-based coloring and hidden-surface elimination. Fractals are used to describe various geometrical shapes, especially natural phenomena, that are not strictly one, two, or three-dimensional.

FORTH TO THE FUTURE • BY MITCH BRADLEY
 17

Our new columnist discusses the growing importance of 32-bit machines, and presents a proven scheme for implementing Forth on them. This method allows programs to run unchanged on either 16-bit or 32-bit machines without penalizing the newer architectures.

STARTING FORTH INC.• INTERVIEW WITH ELIZABETH RATHER

 27Michael Ham interviews the president of FORTH, Inc. about the history of Forth and of the first company to deal in Forth systems and applications. She speaks frankly of successes, lean times, and public perception.

RUN-TIME STACK ERROR CHECKING • BY CHARLES SHATTUCK 32

System-crashing stack errors make for frustrated students who aren't excited about getting over Forth's learning curve. Run-time stack checking is a good, temporary aid for Forth beginners plagued by mysterious system crashes.

PERPETUAL DATE ROUTINE • BY ALLEN ANWAY 34

Ever since humans began numbering days and years, devising a perennially accurate calendar has been a problem. This article presents definitions that calculate the Gregorian day and weekday in fixed-point, double-precision Forth.

HEADLESS COMPILER •BY DARREL JOHANSEN
 36

The headers of words that are needed only a few times, for definitions of higher-level words, just take up valuable dictionary space. This compiler can be loaded into any Forth-79 system, compiles code with or without headers, and can be forgotten when it is no longer needed.
EDITORIAL
4
LETTERS
5
ADVERTISERS INDEX
38
FIG CHAPTERS
42

