& HARRIS RTX 2010™

* PRELIMINARY

May 1990 Real Time Express™ Microcontroller
Features Description
* Fast 100ns Machine Cycle The RTX 2010 is a 16-bit microcontroller with on-chip timer,
¢ Single Cycle Instruction Execution an interrupt controller, a multiply-accumulator, and a barrel-

) . . shifter. It is particularly well suited for very high speed control
* Fas.t Arithmetic Opo.ratlons. tasks which must perform arithmetically intensive
> Single Cycle 16-bit Muitiply calculations, including floating point math.

» Single Cycle 18-bit Multiply Accumulate Pin compatible to the RTX 2 d RTX 2001A. thi
. ki " in compati o the 000, an , this pro-
> Single Cycle 32-bit Barrel Shift cessor incorporates two 256-word stacks with multitasking

> Hardware Floating Point Support capabilities, including configurable stack partitioning and
¢ C Software Development Environment over/underflow interrupt control.
* Direct Execution of Forth Language Instruction execution times of one or two machine cycles are
e Single Cycle Subroutine Call/Return achieved by utilizing a stack oriented, multiple bus

le Interrupt Latenc architecture. The high performance ASIC Bus, which is
* Four Cyc errupt La 4 unique to the RTX™ family of products, provides for extension
¢ On-Chip Interrupt Controller of the microcontroller architecture using off-chip hardware
¢ Three On-Chip 18-Bit Timer/Counters and application specific I/O devices.

* Two On-Chip 256 Word Stacks RTX Microcontrollers support the C and Forth programming
¢ Multitasking Stack Controller languages. The advantages of this product are further
* ASIC Bus” for Off-Chip Extension of Architecture enhanced through the use of the peripherals and develop-
* 1 Megabyte Total Address Space ment system support Harris provides for the RTX family.

e Word and Byte Memory Access Combined, these features make the RTX 2010 an extremely
o Low POWSrCMOS oo, SmA/MHz Typical powerful processor, serving numerous applications in high

performance systems.
e Fully Static............... DC to 10MHz Operation

« 84-Pin PGA or PLCC Package The RTX 2010 has been designed and fabricated utilizing the

Harris Advanced Standard Cell and Compiler Library. As part

® Available in the Harris Standard Cell Library of the Harris family of compatible cell libraries, the RTX 2010
* Pin Compatible to the RTX 2000%, RTX 2001A" architecture can also be incorporated into customer ASIC
Applications designs.

Embedded control; process control; digital filtering; image
processing; scientific instrumentation; optical scanners.

RTX 2010 Block Diagram

OFF CraP MAIN
PERIPHERALS MEMORY

%

wnis || RTX 2010
m GRAGURATI MEMORY
CONTROL PAGE
o CON;“
R I i RTX CORE [~L&&H

men | [PROCESSOR| e "

RTX®, RTX 2000, RTX 2001A", RTX 2010°, Rea! Time Express™M, and ASIC Bus® are Trademarks of Harris Corporation.
CAUTION: These devices are sensitive 10 electrostatic discharge. Proper |.C. handling procedures shouid be followed.
Copyright © Harris Corporation 1990

. (".I

e

HIX U1V -

RTX 201 0

TOP VIEW

'Nommmonpmjm@mmummmw;w o

| Pinouts o Do 2
s LT 84 PIN PGA PACKAGE A S : RN
A] B.[C | D | E | F |G| H | J|K]|L L K J H G F - E D C B ‘A
' o7{ubos) 02| MDOI|PCLK| UDS| GND [MA19|MA1E O O i
1|MDoa MDO7(MDOG GND | MDO2 MDO1|PC ° MA1S8 MA1S GND UDS PCLK MDO! MDO2 GND MDOS MDO7 MDOY -
1 T T R :] 10
10MD 11| MDOR| VCC '“°°&"°°"l NEW|BOOT| LDS MA18|MA17|MAT4] Mg4 u?w MCA>16 L?s 6901' N?w u?oa M?OS \gc MDOS MB 11| -
S h : wl O Q . 9
~ g|mD12 MD10 MDO4|MDOO| MR/ MA1S| vce VG MRS MR M300 MBos Moto.msz| *
8|MD14 MD13| [VIXE/[VINE] R P o , L LY A
7|GACOI MD1S|GAO MATOIMAOSE ImMA0e MA1O GND - GAO1 MD15 GAOd
ol anp waorimantl | O BOT TOM VIEW O .
8]TCLK GND |GA02 |4A1 Ao MAGs pING UP A0z GND Told
| S|INTA| NMi 1sup MAQS|MAOS] luAos MAGS MAGs » N _INTSUP NMI INTA
g 1 | 10 O S ‘ o O Ol
_4]vee| En maozmaca] | o _ B TARA
alee| e (' |aD14{GD11 GD10} D01| MAO1 o0 : O O O O Ofs
3 . ' , |Ma01 @po1 . . api0 GoI1 GDIe . e Ei2]
: ' ao aboslao ool |O O O O O O O O O O O]
2] €13 |RESET WAIT| GIO |GD13/GD12) GDOS °°°°r°°°3 GD02/GD0O} - 14500 GDoz GDO3 GDOS GDOS GD12 GD13 GIO WA RESET Ei3]
o] e et s ool o] [10 8 o B0 8, G G
| - _ -v “ . . - N _ .
“ale feclolelrlalw|J]KI]|L L kK J H @ F E D C B A
. - R . Lo o . . . - PN
% 2

o

RTX 20710

\

TABLE 1. PCA AND PLCC PIN/SIGNAL ASSIGNMENTS

PLCC PGA SIGNAL . PLCC PGA SIGNAL
LEAD PIN NAME TYPE LEAD PIN NAME TYPE
1 (o] GAO02 Output; Address Bus 43 Jé MAQO8 Output; Address Bus
2 A6 TCLK Output 44 J7 ‘GND Ground)
3 A5 INTA Output 45 L7 MAO9 Output; Address Bus
4 BS NMI Input . 46 K7 MA10 Output; Address Bug
5 C5 ~INTSUP Input 47 L6 MA11 Output; Address Bus
6 - A4 vCC Power : 48 L8 MA12 Output; Address Bus
7 B4 Ell Input) 49 K8 MA13 Output; Address Bus
8 A3 "El2 Input 50 L9 vCC Power
9 A2 | EI3 Input 51 - L10 MA14 Output; Address Bus
10 B3 -Eil4 Input - 52 K9 MA1S5 Output; Address Bus
11 A1l EI5 Input . 53 L1 MA16 Output; Address Bus
12 B2- RESET Input 54 K10 MA17 Output; Address Bus
13 c2 WAIT Input : 55 J10 MA18 Output; Address Bus -
14 B1 ICLK Input 56 K11 MA19 Output; Address Bus
15 cr GR/W- Output 57 | Jn GND Ground
16 D2 GIo Output 58 H10 | DS Output
17 - D1 GD15 - I/O; Data Bus 59 H11 ubs Output
18 E3 GD14 I/O; Data Bus 60 F10 NEW Output
19 E2 GD13 I/O; Data Bus - 61 G10 BOOT Output
- 20 E1 GND Ground . 62 G11 PCLK_ Output
S 21 F2 | GD12 - I/O; Data Bus 63 | a9 MR/W Output
22 F3 GD11 I/O; Data Bus] 64 F9 MDOO " | VO;DataBus
23 G3 . GD10 I/O; Data Bus 65 F11 MDO1 /O; Data Bus
24 G1 GDO09 I/O; Data Bus 66 En MDO2 I/O; Data Bus
25 G2 GDos8s I/O; Data Bus : 67 E10 MDO3 I/0; Data Bus
26 F1 GDo7 I/O; Data Bus) 68 E9 MDO4 I/O; Data Bus
27 H1 VvCC Power . 69 D11 | GND Ground
28 H2 GDO6 I/O; Data Bus , 70 D10 | mMDOs I/O; Data Bus
-29 J1 GDO5S I/Q; Data Bus 71 C11 MDoO6 . /O; Data Bus
30 K1 GDo4 I/0; Data Bus : 72 | B11 MDO7 I/O; Data Bus
31 J2 GDO3 /O; Data Bus . 73 c10 vCC Power
32 L1 GND -'| Ground : o - 74 Al MDo8 I/O; Data Bus
33 K2 GD02 - I/O; Data Bus 75 B10 MDOS . VO; Data Bus
34 K3 GDO1 I/O; Data Bus 76 B9 MD10 VO; Data Bus
35 L2 GDOO I/O; Data Bus .7 A10 MD11 I/O; Data Bus
36 L3 MAOQ1 Output; Address Bus) 78 A9 MD12 I/O; Data Bus
37 K4 MAQ2 Output; Address Bus 79 B8 MD13 - | 'VO; Data Bus
38 L4 MAOQO3 Output; Address Bus o 80 A8 MD14 1/0; Data Bus
39 J5 MAO4 Output; Address Bus 81 B6 GND) Ground
40 K5 MAOS Output; Address Bus 82 B7 MD15 I/O; Data Bus .
41 Ls MAO6 Output; Address Bus 83 A7 GAOO Output; Address Bus
42 K6 MAQ7 Output; Address Bus 84 Cc7 GAO1- .| Output; Address Bus
-TABLE 2. OUTPUT SIGNAL DESCRIPTIONS
PLCC. | RESET
SIGNAL | LEAD LEVEL DESCRIPTION
“OUTPUTS
NEW 60 1 NEW: A HIGH on this pin indicates that an Instruction Fetch is in progress.
BOOT 61 1 BOOT: A HIGH on this pin indicates that Boot Memory is being accessed. This pin can be set or reset by
&ccessing bit 3 of the Configuration Register. . o)
MR/W 63 1 MEMORY READ/WRITE: A LOW on this pin indicates that a Memory Write operation is in progress.
ubs 59 1 UPPER DATA SELECT: : A HIGH on this pin indicates that the high byte of memory (MD15-MD08) is
being accessed.
LDS 58 1 LOWER DATA SELECT: A HIGH on this pin indicates that the low byte of memory (MDO7-MDOO) is
being accessed.) . .
GIO 16 1 ASIC I/O: ALOW on this pin indicates that an ASIC Bus operation is in progress.
GR/W 15 1 ASIC READ/WRITE: A LOW on this pin indicates that an ASIC Bus Write operation is in progress.
PCLK 62 (o] PROCESSOR CLOCK: Runs at haif the frequency of ICLK. All processor Cycles begin on the rising edge
of PCLK. Held low extra cycles when WAIT is asserted. v]
TCLK 2 () TIMING CLOCK: Same frequency and phase as PCLK but continues running during Wait cycies,
INTA 3 0 INTERRUPT ACKNOWLEDGE: A HIGH on this pin indicates that an Interrupt Acknowiedge aycle is in
progress. . .

i
"

"~ RTX 20710

TABLE 3. INPUT SIGNAL, BUS, AND POWER CONNECTION DESCRIPTIONS

. o PLCC : R
SIGNAL LEAD DESCRIPTION
INPUTS L }

WAIT 13 | WAIT: A HIGH on this pin causes PCLK to be held LOW and the current cycle to be extended.

ICLK 14 INPUT CLOCK: internally divided by 2 to generate all oh—chip timihg (CMOS input levels).

"RESET | 12 'A HIGH level on this pin resets the RTX. Must be held high for at least 4 ICLK cycles (Schmitt trigger
T B . CMOS input ievels). ‘ .
EI2,El 8,7 EXTERNAL INTERRUPTS 2, 1: Active HIGH Ievel-sensmve mputs to the Interrupt Conh'oller Sampled on |

’ the rising edge of PCLK. See Timing Dnagrams for detail.

EIS-EI3 11-9 EXTERNAL INTERRUPTS 5, 4.'3: Dual purpose mputs, active HIGH levol—sonaahve Interrupt Controller

) inputs; active HIGH edge-sensitive Timer/Counter inputs. As un(enupt mpuia they are sampled on the
rising edge of PCLK. See Timing Dlaqrarns for detail. . . . i
NMI- .4 NON-MASKABLE INTERRUPT Active HIGH edge-sensmvc Interrupt Controiler input capable of
interrupting any processor cycle. See the Interrupt Suppreaacon Section (Schmm tngger CMOS input
} levels). |
INTSUP 5 INTERRUPT SUPPRESS A HIGH on this pm inhibits all maskabile interrupts, internal and exlemal
 ADDRESS BUSES (OUTPUTS) . v o

GA02 1 ASIC ADDRESS: 3-bit AsIC Address Bus, which carries address information for external ASIC devices.

GAO1 ‘84 ‘ ’ ’

GAOO | 83 . : . : : .
MA19-MA14 | 56-51 | MEMORY ADDRESS: 19—_bit Memory Address B\Js. whi¢h carries address iolormaﬁon for Main Memory.
MA13-MAO9 | 49-45 | - ' o ‘
MAOS-MAO1 | 43-38
DATA BUSES (I/0) , , .
GD15-GD13 | 17-19 | ASIC DATA: 16-bit bcdtrectlonal external ASIC Data Bus, which carrieg data to and from off-chip I/O

B devices. ’ o :
GD12-GDO7 | 21-26
GD06-GDO3 | 28-31 -
GD02-GD0O | 33-35 Lo » . : :
" MD1S 82 MEMORY DATA: 16~bit bidirectional Memory Data Bus, which carries data to and from Main Memory.
MD14-MDO8 | 80-74 ' ' ' ‘ o o
MDO7-MDOS | 72-70.
'MDO04-MDOO | 68-684
POWER CONNECTIONS , v . o .
vce 6,27, | Power supply +8 Voit connections. A 0.1yF, low impedance decoupling. capacitor should be placed
50,73 | beilween VCC and GND. ThnahouldbolocetodasdooatomRTXpackagoupoesablo. '
‘GND 20,32, | Power supply ground retum connections.
69,81

" RTX 2010

RTX 2010 Microcontroller

The RTX 201'0 is designed around the hTX Processor cqre',v

which is part of the Harris Standard Cell Library.

This"procéssor'core.has, eight 1'6-bit internal registers, an .

ALU, internal data buses, and control hardware to perform in-
struction decoding and sequencing.

On-chip peripherals ‘which the RTX 2016- includes are
Memory Page Controller, an Interrupt.Controller, three Timer/
Counters, and two Stack Controllers. Also included are a
Multiplier-Accumulator (MAC), a Barrel Shifter, and a
Leading Zero Detector for floating point support.

Off-chip user interfaces provide address and data access to
Main Memory and ASIC I/0 devices, user defined interrupt
signals, and Clock/Reset controls.

Figure 1 shows the data paths. between the core, on-chip
peripherals, and off-chip interfaces.

- The RTX 2010 microcontroller is based on a two-stack
“architecture. These two stacks, which- are Last-in-first-out
(LIFO) memories, are called the Parameter Stack and the
Return Stack. ’

OFF- CHIP
USER
INTERFACES

RTX 2010 [weacy s

Two - intemal registers, and [IFJE provide the top
two elements of the 16-bit wide Parameter Stack, while the -
remaining elements are contained in on-chip memory (“stack. -
memory”’). v '

The top element of the Retum Stack is 21 bits wide, and i
stored in registers [] and [EE while the remaining
elements are contained in stack memory. : :

The highly parallel architecture of the RTX is optimized for
minimal Subroutine Call/Return overhead. As a result, a
Subroutine Call takes one Cycle, while a Subroutine Return is
usually incorporated into the preceding instruction and does
not add any processor cycles. This parallelism provides for
peak execution rates during simultaneous bus Operations
which can reach the equivalent of 40 million Forth language
operations per second at a clock rate of 10MHz. Typical
execution rates exceed 10 million operations per second.

RESET CONTROL

\

PR
DPR
UPH
CPR

. UBH

-~ FIGURE 1. RTX 2010 FUNCTIONAL BLOCK«DIAGRAM-_ | v P
'Mmmmsmmbh(zo-wmmwdmdmnmw. S

ix

'RTX 2010

» I BEGIN

RTX 2010 Operatlon

Control of all data paths and the Program Counter Reg:ster,
(), is provided by the Instruction Decoder. This hardware.
determines what function is to be performed by looking at the

_contents of the Instruction Register, ([}), and subse-

quently determmes the sequehce of operations through data
path control.

Instructions which do not perform memory accesses execute
in a single clock cycle while the next instruction is bemg
fetched.

As shown in F'gure 2, the mstructlon is latched into Im at the
beginning of a clock cycle. The instruction is then decoded
by the processor. All necessary internal operations are
performed sumultaneously wuth fetching the next instruction.

 Instructions which access memory require two clock cycles

to be executed. During.the first cycle of a memory access
instruction, the instruction is decoded, the address of the
memory location to be accessed is placed on the Memory

| PCLK

‘Address Bus (MA1.9-MA01), and the memory data (MD15-
"MDOOQ), is read or written. During. the second cycle, ALU

operations are performed, the address of the next instruction”

to be executed is placed on the Memory Address Bus, and

the next instruction is fetched as mdncated in the bottom half

of Figure 2.
RTX Data Buses and Address Buses

The RTX core bus architecture provad_es for unidirectional
data paths and simultaneous operation of some data buses.

This parallelism aliows for maximum efficiency of data flow

internal to the core.

Addresses for acmsnng extemal (off-chlp) memory.or, ASIC
devices -are output via either the Memory Address Bus
(MA19-MAO1) or the ASIC Address Bus (GA02-GA00) See

Table 3. External data is transferred by the ASIC Data Bus -

(GD15-GDO00) and the Memory Data Bus (MD15-MDOO),
both of which are bidirectlonal

EXECUTION SEOUENCE WITH NO MEMOHY DATA ACCESS:

ENO OF .| BEGIN

cloex . © ' cowcuamenr cioox 5532“,,"’ :

creee 1 ' v OPERATIONS croLe | cree
B B PERFORM INTERNAL OPERATIONS AND | ’
| ALU OPERATIONS, AS REQUIRED |
| . . . Aooam O' I

INSTRUCTION : NEXT
' LATCHES INTO INSTRUCTION FETGH l
. B PLACED ONTO e . - l
l m MAIS- MO1
! ‘ ‘eus . v |
| N ~ ASIC BUS OPERATIONS |
EXECUTION SEQUENCE WITH MEMORY DATA ACCESS:

BEGN ‘ ‘ ‘ ENO OF I DEG'h ~ ENO OF l

st ooy | sheow R e |
| cveLe cYole | croLe | %%g‘“‘}w cvcn.g
' AoOAess oF , |] : PERFORM ALU OPERATIONS - o ||‘i
| ms::nﬂ:u . MEMORY C ‘ Al — .
I = ®PLACED ONTO| | MEMORY DATA | Next nsTRUCTION JFETCH NEXT -

11} MAle- MO : : 7 : . INSTRUCTION .

| s I onTo mate- Maot G -

' FIGURE 2. INSTRUCTION EXECUTION SEQUENCE

RIX 201U

RTX Internal Reglsters

The core of the RTX 2010 is a macrocell available through the
_Harris Standard Cell Library. This core contains eight

16-bit internal registers, which may be accessed implicitly or
explicitly, depending upon the regnster accessed and the
'functnon being performed.

I : The Top Register contains the top element of the
Parameter Stack. is the implicit data source or destina-
tion for certain instructions, and has no ASIC address assign-
ment The contents of this register may be directed to any I/O
device or to any processor register except the Instruction
Register. is also the T input to the ALU. Input to
must come through the ALU. This register also holds the most
significant 16 bits of 32-bit products and 32-bit dividends.

: The Next Register holds the second element of the
Parameter Stack. is the implicit data source or desti-
nation for certain instructions, and has no ASIC address
assignment. During a stack “push”, the contents of
are transferred to stack memory, and the contents of
are put into . This register is used to hold the least sig-

nificant 16 bits of 32-bit products. Memory data is accessed .

through , as described in the Memory Access section
of this document.

[Ii] : The Instruction Register is actually a latch which
contains the instruction currently being executed, and has no
ASIC address assignment. In certain instructions, an operand
can be embedded in the instruction code, making [[F] the
implicit source for that operand (as in the case of short liter-
als). Input to this register comes from Main Memory (see
Tables 12-24 for code information).

[€3} : The Configuration Register is used to indicate and
control the current status/setup of the RTX microcontroller,
through the bit-assignments shown in Figure 3. This register
is accessed explicitly through read and write operations,
which cause interrupts to be suppressed for-one cycle, guar-
anteeing that the next instruction will be performed before an
Interrupt Acknowledge cycle is ‘allowed to be performed.

: The Program Counter Register contains the address
of the next instruction to be fetched from Main Memory. At
RESET, the contents of are set to 0.

0 : The Index Register contains 18 bits of the 21-bit top
element of the Retum Stack, and is also used to hold the
count for streamed and loop instructions (see Figure 11). In
addition, [J can be used to hoid data and can be written from
. The contents of [] may be accessed in either the push/
pop mode in which values are moved to/from stack memory
as required, or in the read/write mode in which the stack
memory is not affected. The ASIC address used for [J deter-
mines what type of operation wil be performed (see

7

Table 11). When the Streamed Instruction Mode is used, a |
count is written to {1 and the next instruction is executed that |

- number of times plus one (i.e: count + 1)

[: The Multiply/Divide Register holds the divisor duririg -
Step Divide operations, while the 32-bit dividend is in
and I2{1 .] may also be used as a general purpose
scratch pad register.

El: The Square Root Register holds the intermediate
values used during Step Square Root calculations. E5] may
also be used as a general purpose 5cratch pad register.

On-Chip Peripheral Reglsters

The RTX 2010 has an on-chip Interrupt Controller, a Memory
Page Controller, two Stack Controllers, three Timer/Counters,
a Multiplier-Accumulator, a Barrel Shifter, and a Leading Zero
Detector. Each of these peripherals utilizes on-chip registers
to perform its functions.

TIMER/COUNTER REGISTERS

=Y, &1 . i3 : The Timer/Counter Registers are
16-bit read-only registers which contain the current count
value for each of the three Timer/Counters. The counter is
decremented at each rising clock edge of TCLK. Reading
from these registers at any time does not disturb. their
contents. The sequence of Timer/Counter operations is
shown in Figure 15 in the Timer/Counters section.

[]
18,14,13,12[11,10, 9, a 7,6 84[3,21,0

LRM Carry
R/W; Compiex Carry

R/W: Byw Order BR
Resets 10 0. Modes:
1= el T™

0« Motoroa™™ ke’
R /W: Boot

Drives output signal
10 select Boot ROM;

Write- ordy(Reads as 0);
Set interrupt Disable;
0 = Int. Ensbled;
1 = int. Dissbled

R d+
NMI MODE

1 = Retum from NM! possbie
0 = No retum fom NMI (RTX 2000 Mode)

"y ae

ARCE; ASIC Read Cycie Extend
when set extends cycie on
exiamal ASIC reads

Read Only; interrupt
Disable Status

Read Oniy; "
Interrupt Latch

FIGURE 3. BIT ASSIGNMENTS
Motorola™ is a registered trademark of Motorola Inc.
Intei™ is a registered trademark of Intel Corporation

* NOTE: Always read &3 "0". Shouid be set = O during Write operations.

.

 RTX 2010

| Figure 6 tor brt assignrnents tor this register.

- TP) : The Timer Preload Registers are

" write-only regrsters whrch contain the initial. 16-bit count”

vaiues which are written.to each timer. After a timer counts
down to zero, the’ preload register for that timer reloads its
initial count value to that timer register at the next rising clock -

edge, synchronously with. TCLK. ‘Writing to. these registers
causes the count to be loaded into the correspondrng Trmer/
Counter reglster on the followrng cycle.:

MULTIPLIER-ACCUMULATOR (MAC) REGISTERS. o

m The Multipher High Product Register holds the
most significant 16 bits of the 32-bit product generated by

‘the RTX Multiplier. If the IBC register's ROUND bit is set, this -

register contains the rounded 16-bit output of the muttiplier.

In the Accumulator context, this regrster holds the mcddle 16
-bit of the MAC. N

: The Multlplter Lower Product Regrstor holds the .
- least srgnrﬁcant 16 bits of the 32-bit product generated by
“the RTX Multiplier. It is also the register which holds the least
’sugnmcant 16 bits of the MAC Accumulator..

‘ : The MAC Extension Register holds the most _
signifucant 16 bits of the MAC Accumulator. When using the

Barrel Shifter, this register holds the shift count. When using

* the Leading Zero Detector the leadrng zero oount is stored in .
~ this register. -

f INTERRUP‘I‘ CONTROI.LER REGISTERS

. : The Interrupt Vector Registeris a read-only register
: whlch holds the current lnterrupt Vector value See Figure 4
. and Table 7. ' , .

:The. lnterrupt Beso/Control Reglotor is used to store:

_ the Interrupt Vector base address and to specify configura-

tion information for the prooessor ‘as mdrcated by the bit

. assrgnments in Figure 5.

IMR B The Interrupt Mask Reglstor has a bit assigned tor

- each maskable interrupt which can occur. When a bit is set,
. the interrupt corresponding to that bit will be masked. Only

the Non-Maskable Interrupt (NMI) cannot be masked See

Mo 15
e [LREE
MMor 13
13108 bit]2 -
IBC be’tl

11¢. b.'id_

: (Sn Table. 7)

. FIGURE 4 D@ e ASSIGNMENTS

siaiaia[o9 8|7,6.5.4
v=ai T

Vector Address

Parameter Stack. Fatal Errér — N
Return Stack Fatal Error —2— | - -
‘ IRA22108
15114,13,12|11.1o|9,al 7|6| 54 [a 21 |o S
pavadt L Read- only; Fatal -
Stack Error Flag ™

Read- o
Stack - Undyerﬂow Flag

Read- - ong- Return 1
Stack Underflow Flag ’

— Read- only; Parameter '
Shack Sidinow Fag

Read- 1
Stack Svorﬂow Flag . " |

-DPRSEL: Selects
Page Register for

- vDou Mem Access
1: select
= 0: seloct [

WROUND Muniplior-
Control bit; selects
" - Rounding of 16 x 18"~
bit multiplication =~ .-
= 1: Rounded 16- b -
. .product’
= 0: Unrounded .
32- bi ploduct

CYCEXT Allowe . A
extended cycle length. |-
for User Memory - -
Instruction cycles; see
Clock and Wait -~
‘Timing Diagrams -

_Select Timer/Counter
- input signals: TCLK - |-
: _evEls Ets(Tobloe) ‘

FIGURE 5. BIT ASSlGNMEN'I’S

Interrupt Vector
Base (see the -
- Interrupt s.ctlon) v

3i2;1,0f)
1 ”Rourvod"
: ’ : (Extunol lnput Pln)

- PSU, Ponmour Shck)
_Undoruo

: 4o ——— nsu Return Stack .
: _Underflow

P8V, Pqnmotov Stack ‘
Overtiow

. || =————— Rsv, Retum Stack -
n k L Overflow i :
| eee—— ‘,'wo._;..;_l,,"'
E [S E— 7"
1] &= ————————— T1C12.
1. : — EI3
- El4
=g
-SWI
: noumd'_f

nouns .. um BIT ASSIGNMENTS

* NOTE: Always read a8 "0". Should be set = O during Wrile operations.

Parameter | -

K3

15 14,8 12|11 10,9 8/7,6,5,4/3,2,1,0
- J\.

»‘ STACK CONTROLLER REGISTERS ‘
: The Stack Pointer Register holds the stack pointer

value for each stack. Bits O-7 represent the next available’
stack memory location for the Parameter Stack, while bits
8-15 represent the next avanlable stack memory location for

. the Return Stack. These stack pointer values must be
‘ accessed together, as . See Figure 7.

: The Stack Overflow Limit Register is a write-only
register which holds the overflow limit values (0 to 255) for

-the Parameter Stack (bits 0-7) and the Retumn Stack (bits 8-

15). These values must be written together. See Figure 8.

B : The Stack Underflow Limit Register holds the
underflow limit values for the Parameter Stack and the Retumn
Stack. In addition, this register is utilized to define the use of
substacks for both stacks. These values must be accessed
together. See Figure 9. '

- PSP, Parameter Stack

Pointer -

RSP, Returm Stack
Pointer

FIGURE 7. BIT ASSIGNMENTS

15,14,13/12/11%0,9,8(7,6,5,4/3,2,1,0
Y PVL: Parameter
Stack Overfiow Limit.
Number of words from
top of current substack
RVL: Return Stack
Overflow Limit
~ Number of words from
N top of current substack

FIGURE 8. BIT ASSIGNMENTS

15(14/13/12{1110/9,8]7,6,5,4][3,2, 1,0
S~

PSF: Parameter Stack
Start Fiag

Parameter Substack bits:
= 00: eight 32 word stacks
= 01: four 64 word stacks -

"= 10: two 128 word stacks

= 11:0ne 256 word stack

PSU: Parameter
Stack Underfiow Limit
0- 31 words from
bottom of substack

RSF: Return Stack
Start Flag

Return Substack bits:

= 00: eight 32 word stacks ~
01: four 64 word stacks
10: two 128 word stacks
11: one 256 word stack

RSU: Return Stack
Underflow Limit

0 - - 31 words from
bottom of substack

FIGURE 9. BIT ASSIGNMENTS

* NOTE: Always read as "0". Should be set = 0 during Write operations.

RTX 2010

MEMORY PAGE CONTROLLER REGISTERS

: The Code Page Register contains the value for the
" current 32K-word Code page. See Figure 10 for bit field
assngnments :

[IPR B The Index Pago Regls-ter extends the Index Reglster .

() by 5 bits; i.e. when a Subroutine Retumn is performed, the
[Id3] contains the Code page from which the subroutine was
called, and comprises the § most significant bits of the top
element of the Return Stack. See Figure 11. During non-
subroutine operation, writing to [] causes the current Code
page value to be written to [[3] . Reading or wrmng dlrectly
to [I3] does not push the Retumn Stack.

LI : The Data Page Register contains the value for the
" current 32K-word Data page. See anure 12 for bit field
assugnments i

Initialization of Reglsters

Initialization of the on-chip registers occurs when a HIGH
level on-the RTX RESET pin is held for a period longer than |

four ICLK cycles. While the RESET input is HIGH, the TCLK
and PCLK clock outputs are held reset in the LOW state

Table 4 shows |mt|ahzat|on values and ASIC addresses for .
the on-chip registers. As indicated, both the and the
are cleared and execution begms at page 0, word 0
when the processor is reset.

‘The RESET has a Schmitt trigger input, which allows the use

3 : The User Page Register contains the value for the-

current User page. See Figure 13 for bit field assignments.

[EL : The User Base Address Register contains the base
address for User Memory Instructlons See Fgure 13 for bit
field assxgnments

]
15.14.13.12I1mo.9 8/7,6,5,4/3,2,1,0]
Reserved * A '
MA19 €4—
MA18
MA17 <«
MA16 <

FIGURE 10. [&z] BIT ASSIGNMENTS

2 o

P

Bit Assignments During Sub

[oo

|20, 19,18,17, 8

15,14,13,12[11,10,0 8[7,6,5,4]3,2,1,0

— Type of Retum :
= 1: Interrupt Retums:

Defines Retum Address
$ Where DPRSEL Bit is

stored during lm.n\un
or Subrouuno Cak -

Bit Assignments During Non- Subroutine owmom

20,19, 18, 17,0 15,14, ﬂ|12l"|”|.i.|7|6|3|4|3|2|l []]

t—-> Used for temporary

= 0: Subroutine Retums: -

storage of variables,

loop counts, and
stream counts

p Current Code
Page valve .

FIGURE 11. [] AND [G3] BIT ASSIGNMENTS

°

of a simple RC network for generation of a power-on RESET
signal. This helps to minimize the circuit board space
required for the RESET circuit. '

To ensure reliable operation even in noisy embedded control
environments, the RESET input is filtered to prevent a reset
caused by a glitch of less than one ICLK cycle.

. 15,141312[1110/9.18[7,6,5,4]3,2 1,0
Rouwodv" . '
MA19 <
MA18
MA17 t
_MA16 <
FIGURE 12. BIT ASSIGNMENTS
 USER PAGE o
REGISTER 15,14,13;12I1mo |e|7. 15,4]3.2,1.0]
Reserved * i
MA19
MA18 ¢—
MA17 ¢—
‘MA16 ¢—
UsshRase o
REGISTER 15141131211110:19 18[7,8,5 4]3,2,1,0
" MA15- MA0S ¢————
MAOS 4——(1 L
MAO4 4——@ §
R -]
MAO03 <——G =
Maoz «——C
MAO1 <————<Z
' 'Not used to generate
this ddgou
A i . '
15'1411312/1110'9 '8|7'6'5'4[3 727170
INSTRUCTION | 3h2hiio . L
REGISTER

FIGURE 13. [I3] AND [I[ITT] BIT ASSIGNMENTS

* Note: Always read a8 “0". Should be set = O during Wrike operations

10

ia

RTX 2010

TABLE 4. REGISTER INITIALIZATION AND ASIC ADDRESS ASSIGNMENTS

| mex ~ INITIALIZED oo
REGISTER | ADDR CONTENTS DESCRIPTION/COMMENTS
Tor| -, .0000 0000 0000 0000 | Top Register \
$111 1111 1111 1111 Next Register
im 0000 0000 0000 0000 Instruction Register
] OOH 1111 1111 1111 1111 Index Register
O1H :
‘ 02H
O3H 0100 0000 0000 1000 Configuration Register: Boot=1; Interrupts disabled; Byte Order=0.
X [MD | O4H 1111 1111 11111111 Muitiply/Divide Register
SR O6H 0000 0010 0000 0000 Square Root Register
O7H. 0000 0000 0000 0000 Program Gounter Register
[IMR | 08H 0000 0000 0000 0000 Interrupt Mask Register
[SPR] -~ 09H 0000 0000 0000 0000 Stack Pointer Register: The beginning address for sach stack is set to
:)) avalue of ‘'0". .
[SUR] OAH 0000 0111 0000 0111 Stack Underflow Limit Register
IVR 0BH ”0000 0010 0000 0000 "Interrupt Vector Register: Read only; this register holds the current
Interrupt Vector value, and is initialized to the “No Interrupt” value.
O8H 1111 1111 1111 111 Stack Overflow Limit Register: Write-only; Each stack limit is set to its
»maxnmum value. .
PR OCH 0000 0000 0000 0000 index Page Register v
(DPR] ODH 0000 0000 0000 0000 Data Page Register: The Data Address Page is set for page ‘0.
UPR OEH 0000 0000 0000 0000 User Page Register: The User Address Page is set for page ‘0’
OFH 0000 0000 0000 0000 Code Page Register: The Code Address Page is set for bage ‘0",
' 10H 0000 0000 0000 0000 Interrupt Base/Control Register
‘ “11H 0000 0000 0000 0000 User Base Address Register: The User base address is set to ‘0’
) : within the User page.
[MXR] 12H . 0000 0000 0000 0000 MAC Extension Register
/ 13H . 0000 0000 0000 0000 Timer/Counter Rogmu O: Set to time out after 65536 clock periods
‘ of events.
/ 14H 0000 0000 0000 0000 Timer/Counter Roglltor 1: Set to time out after 65536 clock periods
) or events.
/ 15H 0000 0000 0000 0000 Timer/Counter Register 2: Set to time out after 65536 clock periods
’ ‘ or events.
MLR 16H 0000 0000 0000 0000 Muitiplier Lower Product Register
MHR 17H 0000 0000 0000 0000 Multiplier High Product Register

o

11

<

RTX 2010

Dua/ Stack Archltecture

The RTX 2010 features a “dual stack archrtecture The two
256-word stacks are the Parameter. Stack and the Return

Stack, both of which may be accessed in parallel by a single’

instruction, and which minimize .overhead in passing parame-
ters between subroutines. The functional structure of each of

' these stacks is shown in Figure 14.

The Parameter Stack is used for temporary storage of data

and for passing parameters-between subroutines. The top

two elements of this stack are contained in the and
registers of the processor, and the remainder of this
stack is located in stack memory. The stack memory
assigned to the Parameter Stack is 256 words deep by
16 bits wide.

The Return Stack is used for storing return addresses when
performing Subroutine Calls, or for storing values temporarily.
Because the RTX 2010 uses a separate Return Stack, it can
call and return from subroutines and interrupts with a
minimum of overhead. The Return Stack is 21 bits wide. The
16-bit Index Register, [] , and the 5-bit Index Page

~ Register, [, hold the top element of this stack, while the

remaining elements are located in stack memory. The stack

~memory portion of the Return Stack is 21 blts wide by. 256
v words deep. '

The data on the Retum Stack takes on drflerent meaning,

depending upon whether the Retum Stack is being used for -

temporary storage of data or to hold a retum address dunng a

- subroutine operatlon (l-”ngure 11).

RTX 2010 STACK CONTROLLERS

The two stacks of the RTX 2010 are controlled by ldentlcal)
Programmable Stack Controllers - v

The operation of the. Programmable Stack - Controllers
depends on the contents of three registers. These registers
are El&i] | the Stack Pointer Register, EYIi] . the Stack
Overflow Limit Register, and B3] , the Stack Underflow
Limit Register (see Figures 7, 8, and 9). '

Bl contains the location of the next stack memory location
to be accessed in a stack push (write) operation. After a push,

the is incremented (post-increment operation). In a
- stack pop (read) operation, the stack memory location with an

address one less than the EIZ3] will be accessed, and then
the EId3] will be decremented (pre-decrement operation). At
start-up, the first stack locatron to have data pushed into itis
location zero. : :

Upper and lower limit values for the stacks are set |nto the |
Stack Overflow Limit Register and in the Stack Underflow -
Limit Regrster These values allow interrupts to be generated
prior to the occurrence of stack overflow or underflow error
conditions (see section on Stack Error Conditions for more
detail). Since the RTX 2010 can take up to four clock cycles’
to respond to an interrupt, the values set in these registers
should include a safety margin which aliows valid- stack
operation until the processor executes the interrupt service -
routrne. o

15141312/11,10,9,8 %7.0,5.4‘,3».& 1,0

Y

X

STACK MEMORY
- (ON= CHIP) :

‘gl’&ig'!lliﬂQs,O 7,86,5,4,3,2,1,0|
— Y] - —

STACK MEMORY
(ON- CHIP)

sh€r1d1217108'8778T8TaT3T2T1T0|

FIGURE 14. DUAL STACK AR,CHITECTORE

12

nNiA LViIivV

SUBSTACKS

Each 256-word stack may be subdivided into up to eight
32 word substacks, four 64 word substacks, or two 128
word substacks. This is accomplished under hardware
control for simplified management of muitiple tasks. Stack
~ size is selected by writing to bits 1 and 2 of the V3] for the
Parameter Stack, and bits 9 and 10 for the Return Stack.

zone may be set up by initializing and so that
stack error interrupts ‘are generated prior to an actual

-overflow or underflow. The limits may be determined from

Substacks are implemented by making bits 5-7 of the ISPR B

(for the Parameter Stack) and bits 13-15 of the EI3] (for
the Return Stack) control bits. For example, if there were
eight 32 word substacks implemented in the Parameter
Stack, bits 5-7 of the EIZi] are not incremented, but instead
are used as an offset pointer into the Parameter Stack to
indicate the beginning point (i.e. substack number) of each
32 word - substack implemented. Because of this, a
particular substack is selected by writing a value which
contains both the stack pointer value and the substack
number to the

Each stack has a Stack Start Flag (PSF and RSF) which is

" used for stack error detection (not for the stack pointer). For
the Parameter Stack, the Start Flag is bit zero of the E[V[;] ,
and for the Return Stack it is bit eight. If the Stack Start Flag
is one, the stack starts at the bottom of the stack or
substack (location 0). If the Stack Start Flag is zero, the
substack starts in the middle of the stack. An exception to
this occurs if the overflow limit in is set for a location
below the middle of the stack. In this case, the stacks
always start at the bottom locations. See Table 5 for the
possible stack configurations. Manipulating the Stack Start

. Flag provides a mechanism for creating a virtual stack in
memory which is maintained by interrupt driven handlers.

Possible applications for substacks include use as a
recirculating ‘buffer (to allow quick access for a series of
repeated values such as coefficients for polynomial
evaluation or a digital filter), or to log a continuous stream of
data until a triggering event (for analysis of data before and
after the trigger without having to store all of the incoming

" data). The latter application could be used in a digital
oscilloscope or Ioglc analyzer.

' STACK ERROR CONDITIONS

Stack errors include overflow, underflow, and fatal errors.
Overflows occur when an attempt is made to push data
onto a full stack. Since the stacks wrap around, the result is
that existing data on the stack will be overwritten by the new
data when an overflow occurs. Underflows occur when an
attempt is made to pop data off an empty stack, causing
- mvalad data to be read from the stack. In both cases, a buffer

the contents of and using Table 5. The state of
all stack errors may be determined by examining the five
least significant bits of ,» Where the stack error flags
may be read but not wntten to. All stack error ﬂags are
cleared whenever a new value is written to &3] .

FATAL STACK ERROR: Each stack can aiso experience a
fatal stack error. This error condition occurs when an
attempt is made to push data onto or to pop data off of the
highest location of the substack. It does not generate an
interrupt (since the normal stack limits can be used to
generate the interrupt). The fatal errors for the stacks are
logically OR’ed together to produce bit 0 of the' Interrupt)
Base Control Register, and they are cleared whenever
EXdid is written to. The implication of a fatal error is that data
on the stack may have been corrupted or that invalid data
may have been read from the stack.

RTX 2010 Timer/Counters
The RTX 2010 has three 18-bit timers; each of which can

_be configured to perform timing or event counting. All

decrement synchronously with the rising edge of TCLK.
Timer registers are readable in a single machine cycle.

The timer selection bits of the determine whether a
timer is to be configured for external event countlng or
internal time-base timing. This configures the respective
counter clock inputs to the on-chip TCLK signal for internal
timing, or to the EI5-EI3 input pins for external signal event
counting. EIS, El4, and EI3 are synchronized internally with
TCLK. See Table 8 for Timer/Clock selection by I bit
values. :

The timers (and) are aII free-runmng,
and when they tvme out, they reload automatically with the-
programmed initial value from their respect:ve Timer

Preload Registers (KiZ — - , and

-), then continue tummg or counting.

Each timer provides an output to the Interrupt Controller to
indicate when a time-out for the timer has occurred.

The RTX 2010 can determine the state of a timer at any time
either by reading the timer's value, or upon a time-out by
using the timer’s interrupt (see the Interrupt Controller sec-
tion for more information about how timer interrupts are
handiled). Figure 15 shows the sequence of Timer/Counter
operations.

13

RTX 2010 ‘
TABLE 5. STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS

CONTROL BITSETTINGS . : PARAMETER STACK CONFIGURATION .
5 v ' : : : STACK RANGE
SVR : SUR | grack size LOWEST ADDRESS ' HIGHEST ADDRESS
Vz ve vs V4 |Uu2 Ut Uo WORDS 7 6 S 4 3 2 1 o|l7r e s 4 3 2 1 o
X X x 0.0 0.,.X 32 P7 P6. PS5 0 0O O O O |[P7 PE PS 1 1 1 1 1
X x x 1]0 0 o] 32 P7 PE PS 0 0 O O O|P7 P& PS. 1 1 1 1, 4
X X X. 1 o] (o] 1 32 1P?7 P8 PS o] o} 0 o] o] P? P8 PS 101 1 1 1
X X o0 XxX|o 1 x 64 P7 P6 0 O O O O o0 |P7 P8 1 1 1 1 11
X X A X [o] 1 0 64 P7 P8 o] (o] [o} (o} o] o] P7 P8 1 1 1 1 -1 1
X X 1 X |10 1 1 64 P7 P8 0 o] o] [0} o] o] P7 P8 1 L 1 1
X o x X |1 o x 128 PP 000 0 O 0 O O]|P7T 1 1 1 1 1 1 3
X "1 X x |1 o o 128 P 0- 0 0 O O0 O O/P? 1 1 1T 1 1 1 1
X 1 X X 1 [0} 1 128 . P7 0 [o] o] Q (o] [o] o] P7 1 1 1 1) 1 1 1
o] X X X 1 1 X 256 [0} o 0O 0 .0 [0} [o} o 1 1 1 1 1 1 1 1
T X x X |1 1t o 258 0 0.0 0 0.0 O OJf1 1 1 1 .1 1.1 1
X X - x |11 256 0.0 0 0 0 o0 o0 o1 1 1 1 1 1 1 1
CONTROL BITSETTINGS) : RETURN STACK CONFIGURATION '
, ’) STACK RANGE : .
SVR SUR STACK SIZE _LOWEST ADDRESS HIGHEST ADDRESS
V15 V14 V13 vi2|uto ue us WORDS |7 6 s 4 3 2 1+ o|7 e 5 &4 3 2 1 o
X X x olo o x 32 |P1sPiaPI3 0 0 0 0 O |[PISPI4PI3 1 1 1 1 1
X X x 1]lo o o 32 PISPI4PI3 0 0 0 O O |lPISPI4PI3 1 1 1 1 1
X X X . 1]0o o 1 32 PISPI4P13 0 0 0 O O JPISPIaPI3 1 1 1. 1 1
X X o x|o 1 X 64 PISP14 0 0 0 O O O |PISPI4 1 1 1 1 1 1
1x x 1+ x]o 1 o 64 PI5P14 0 0 O O O O |PISPI4 1 1 1 1 1 .1
X X 1 x]lo 1 1 64 PISPI4-0 0 0 O0 0 o JlPisPlea 1 1+ 1 1 1
X 0 x X|1 o x 128 P'Ss 0 0 O 0 0 0 O JPIS 1 1 1 1 -1 1. 1
X 1 x xX|1 o o 128 P's 0 0 0 0 0 O O |PIS 1 1 1 1 1 1 1
X 1 x x|l1 o 1 128 P's 0 0 0 0 O0 ©0 o lPIS 1 1 1 1 1 1 1
o x x xl1vr 1 x 256 6o 0o o o o .o ofr + 1 T 1 1 1 4
1 X "X X |1 1 o 258 06 0 0 0 0 0 o0 Oof1 1 1 1 1 1.1 1
1 x X X li1 o1 1 256 0 0 0 0 0 o0 o0 o1 1 1.1 1 1 1 1
CONTROL BIT SETTINGS o) PARAMETER STACK CONFIGURATION :
SVR . SUR FATAL LIMIT . UNDERFLOW LIMIT . OVERFLOW LIMIT ,
V? V6 VS vaiu2autuol7r e S 4 3 2 10/l7 6 s 4 3 2 1 o|l7T & S5 4 3 2 1 o
X X X. 0|0 O X|P? P86 PS. 1 1 1 1 1|P7 P6 PS5 O U8 US U4 U3I[P7 P8 PS5 O V3 V2 VI VO
X X X 1]'0 0O|P? P& PS O 1 1 1 1|P7 P8 P5 1 US US U4 U3|P? PS PS 0 V3 V2 Vi Vo
X X X 110 0 1]P? P68 PS 1 1 1 1 1|P?7 P68 PS5 0 US US U4 U3|P? P8 PS 1 V3 V2 VI VO
X X 0 X o 1 X|P7 P& 1 .1 1 1 1 1|P7 P68 O U7 US US Us U3|P? P68 O V4 V3 V2 Vi Vo
X X 1 x]o 1 o|lPr P68 0 1t 1 1 1 1|P? P8 U7 U8B US U4 U3|P7 P8 O V4 V3 V2 VI VO
X X 1 X0 1 1|P?7 P& 1 1 1 1 1 .1|P7 P8 O U7 U8 US U4 . U3|P?” P68 1 .va V3 V2 Vi Vo
X 0 X X]1 o XxX|P?T 1 1 1 1.1 1 1]|P? 0 O U? UB US Ue U3|P?7 O VS5 V4 V3 V2 VI VO
X 1 X X fF1.00|P?7 O 1 1 1 1 1 1|P?7 1 0 U7 U8 U5 U4 U3I|P? O VS V4 V3 V2 VI Vo
X 1 X X 11 0 1|P7T 1-1 11 17 1 1|P7 O O U7 U8 US U4 U3|P7 1 VS V4 V3 V2 Vi Vo
o X X . X1t 2 X|1 1 1 11 1110 0 0 U7 UB US Us UI| 0O V8 V5 Va4 -V3 V2 Vi Vo
1T X X XJ1 10]0 1 1.1 11111 0 0 U? U8B US U4 U3| O Ve VS va V3. V2 Vi.Vo
1 X X X fJ1 1t 1]l 11 1111 1l0 0 o U7 ue Us ue U]l v ve vs va vi v2 vi . vo
CONTROL BIT SETTING , ' " PARAMETER STACK CONFIGURATION ‘ o
SVR SUR FATAL LIMIT , UNDERFLOW LIMIT - : OVERFLOW LIMIT v
VIS Vi4 VI3 V12jul0USUS}] 7 & S 4 3 2 1 0|7 . 5 4 3 2 1 o|7 6 s 4 3 2 1 o
X X X 010 0 X|P15SPI4PI3 1 1 1 1 1|P1S P14 P13 0 U4 UI3 U12 U11|P1S P14 P13 O Vi1 VIO Ve V8
X X X 1]0 0 OJPISPI4PI3 O 1 1 1 1|P1S P14 P13 1 U4 U3 U12 U11{P1S P14 P13 0 Vi1 VIO V9 V8
X X X 110 O 1|P1SP14PI3 1 1 1 1. 1|P1S P14 P13 0 U4 UI3 U12 U11|P1S P14 P13 1 Vi1 VIO V9 V8
X X 0 X]o 1 X|P1S P14 1 1 1 1 1 1[/P1S P14 0 UIS U4 U13 U2 UN1|P1S P14 0 V12 Vi1 VIO V8 V8
X X 1 X 10 1 OPISPI4 0 1 1 1 1 1[/P15 P14 1 UIS Ute U3 U12 U11|P1S P14 0 VI2 V11 VIO V8 ve
X X 1 X 0 -1 1IPIS P14 1 1 1 1 1 1]PIS P14 0 U5 Ute U3 U12 UI1|PIS P14 1 V12 V11 VIO V8 V8
X 0 X X P11 0X|IPIS 1 1 1 1 11 1|/P1S 0 0 UIS Ut UI3 U12 U11|P1S 0 VI3 V12 V11 VIO V8 Vs
X 1 X X111 0O0IPIS 0 1 1 1V 1 1 1|/PIS 1 0 UIS Ute U13 U12 UM|PI1S O VI3 V12 VI1.VI0O V8 VB
X 1 X X1 0 1]P18S 1t 1 1 1. 1 1 1lP1S 0 0. UIS Ute U3 U12 U1]P1s 1 Vi3 vi2 Vi1 vio V8 Vs
6 X X X P11 1°XI1 1 1 1111 1]/0 0 O UIS U4 U3 U12 Ui1| 0 Vie V13 V12 Vi1 V10 ve va
TX X X Pt 1t 0Jo v 11 1 11 11 0 0 UIS U4 UI3 U12 Ut1| 0 Vie VI3 V12 Vi1 VIO Ve V8
1 X X Xft1 11}l 1 1111110 o o

U1S U14 U13 U112 U1 1. V14 VI3 V12 V11 VIO V9. v8

NOTES: 1. Stack Poinm Register, B smn Ovovﬂow Rogmr. Stack Underflow Register

2. Po .P1S: X1 Bas, VO . . V1S: au,uo .U1S: EXY[3Y Bits : .
3. The Ovonlow Limit is the stack mamory address at which an overflow condition will occur during a stack wrno operation. .

. 4. The Underfiow Limit is the stack memory address below which an underflow condition will occur during a stack read operation.

. 5. The Fatal Limit is the stack memory address at which a fatal error condition will occur during a stack read or wrile opombn
8. Stack error. conditions remain in effect until a new value is written 1o the EXE1 '
7. Stacks and sub-stacks are circular: after writing 10 the higest location in the stack, the noxt location !o bo written 10 will be the lowest location; after
reading the lowest loahon, the "W location will be read next.

14

RTX 20710

. TCLK .- : TCLK

. RISING) RISING S . INTA CYéLE dR
- . EDGE . EDGE : . ASIC READ COMMAND
e Hem || | u : L
- |ReGisTER| | ! i
. _ | |
: PRELOAD |- : . ‘
e s prlcind LoAD ETeN) EXECUTE ACTIVATE ‘ — . |INTERRUPT
o -’I — - TIMEOUT >) N e
1 F TPO TIMER/COUNTER COUNT | | \NTERRUPT v RESET . |
" . L
2. T S ! : ' ‘ - |
o : ‘ | : . v , .
sl PRELOAD. . ‘ : : , , . ,
. @ _»| REGISTER || L0AD [- [execute ! - :Ica'é\ét‘[rs L INTERRUPT | |INTERRUPT
—™ ' ‘ : COUNT > ' RESET
| TIMER/COUNTER. | INTERRUPT| |[CONTROLLER 7
A D ‘ L | B l |
‘ PRELOAD i | ACTIVATE]| - B INTERRUPT| -
|— | REGISTER | LOAD _.Eégﬁ'd;ﬁ.._. TIMEOUT | : _ > Esé :
TIMER/COUNTER ! | INTERRUPT| . - RESET

FIGURE 15. RTX2010 TIMER/COUNTER OPERA_ﬂON

TABLE 8. TIMER/CLOCK SECTION

[EI9 BIT VALUES _ TIMER CLOCK SOURCE
8ITO9 | BITOS = | =
o o | Tk TOLK | TCLK
0 1 TCLK K | EB
. B 0 | TCK | B4 EI3
1 1 EIS B4 CEIB

15

RTX 20170

'RTX 2010 Ihterrirpt Controller

* The RTX 2010 Interrupt Controller manages interrupts for the
RTX 2010 Microcontroller core. its sources include two on-
chip peripherals and six external interrupt inputs. The two
classes of on-chip peripherals that produce interrupts are the
Stack Controllers and the Timer/Counters.

INTERRUPT CONTROLLER OPERATION

‘When one of the interrupt sources requests an interrupt, the

Interrupt Controller checks whether the interrupt is masked in
the. interrupt Mask Register. If it is not, the controller
attempts to interrupt the processor. If processor interrupts are

enabled (bit 4 of the Configuration Register), the processor

will execute an Interrupt Acknowledge cycle, during which it
disables mterrupts to ensure proper cornpletnon of the INTA
cycle. v

In response to the Interrupt Acknowledge cycle, the Interrupt
" Controller places an Interrupt Vector on the internal’ ASIC
Bus, based on the highest priority pending interrupt The
processor performs a special Subroutine Call to the address
in Memory Page O contained in the vector. This special
subroutine call is different in that it saves a status bit on the
Return Stack indicating the call was caused by an interrupt.
Thus, when the Interrupt Handler executes a Subroutine

Return, the processor knows to automatically re-enable

interrupts. Before the Interrupt Handler returns, it must
ensure that the condition that caused the interrupt is cleared.
Otherwise the processor will again be interrupted
immediately upon its retum. ' -

Proeesser interrupts are enabled and disabled by clearing
and setting the Interrupt Disable Flag. When the RTX is

allownng mtermpts to be enabled in only 2 cycles wuth a
simple read/wnte operation in which the processor reads the
bit value, then writes it back to the same location. The actual -
status of the Interrupt Disable Flag can be read from bit 14 of
Durlng read and write operations to the Configuration
Register, ([#3]), interrupts are inhibited to allow the
program to save and restore the state of the Interrupt
Enable bit. o

In addition to disabling interrupts at the proces’sor level, all
interrupts except the Non-Maskable Interrupt (NMI) can be
individually masked by the Interrupt Controller by setting the
appropriate bit in the Interrupt Mask. Register ([).

Resetting the RTX 2010 causes all bits in the [to be -

cleared, thereby unmasking all interrupts.

> !

The NMI on the RTX 2010 has two modes of operation which /' f-
e

are controlled by the NMI_MODE Fla it 11 of 2%
When this bit is cleared (0), the can not be maske ~and
can interrupt any cycle. This allows_a fast response to the

NMI, but does not allow a return from interrupt to operate

‘correctly. This is the NMI mode that is implemented on the

RTX 2000 and RTX 2001A. NMI_MODE is cleared when the
processor is Reset. When NMI_MODE is set (1), a retum
from the NMI service routine will result in the processor
continuing execution in the state it was in when it was

' interrupted. When in this second mode NMI may be inhibited-

"by the processor during certain critical operations (see

INTERRUPT SUPPRESSION), and may, therefore, not be
serviced as quickly as the first mode of operation. When
servicing an NMI with NMI_MODE set to 1 (reflected by bit

12 of the being set), further NMis and maskable

reset, this flag is set (bit 04 of the =1), disabling the

:nterrupts This bit is a wrrte-only bit that always reads as 0,

interrupts are disabled until the NMI Interrupt Service Routine
has completed, and a- retum from interrupt has been’

- @xecuted.

TABLE 7. INT'ERRUPT SOURCES, PRIORITIES AND VECTORS

- _ , s VECTOR ADDRESS BITS
PRIORITY INTERRUPT SOURCE - SENSITVITY BIT [o09 [o8 [o7 [oe | o5
O(High) | NmI Non-Maskable interrupt PosEdge N/A o | v v ||
1 En External Interrupt 1 High Level o1 BERERERE
2 PSU Parameter Stack Underfiow HighLevel 02 o |1 T] o R
3 RSU Retum Stack Underflow High Level o3 o1 |1]o]o
s PSV | Parameter Stack Overflow _ "High Level % o]t o7
5 RSV | Retum Stack Overfiow High Level o5 o |1]o 1o
6 a2 Extemnal interrupt 2 High Level 06 o1 o o]
7 TCIO Timer/Counter 0 Edge o7 ol1]lo]o]o
8 TCI nmr/cwntcrr Edge o8 oo 1]
9 TCI2 Timer/Counter 2 Edge 09 oo [1]o
10 E13 External Interrupt 3 bHighLev‘d - 10 oo | v]o |
1" El4 External interrupt 4 High Level 1" o Jo |1 oo
12 s Extenal Interrupt 5 High Level 12 oo o |1]
Bow) | SWI Software Interrupt High Level 13 o lo o |1

N/A None | Nolnterrupt NA | NA [1]o]o]olo

e

16

RTX 2010

"The Interrupt Controller prioritizes interrupt requests and
generates an Interrupt Vector for the highest priority interrupt
request. The address that the vector points to is determined
by the source of the interrupt and the contents of the
"Interrupt Base/Control Register ([E]d). See Figure 4 for

the Interrupt Vector Register bit assignments. Because

address bits MA19-MA16 are always zero in an Interrupt
Acknowledge cycle, the entry point to the lnterrupt Handlers
- must reside on Memory.Page zero.

Because address bits MAO4-MAO1 are always zero in an
interrupt Acknowledge cycle, Interrupt Vectors are 32 bytes
apart. This means that Interrupt Handler routines that are 32
bytes or less can be compiled directly into the Interrupt Table.

" Interrupt Handlers greater than 32 bytes must be compiled
separately and called from the Interrupt Table

‘The rest of the vector is generated as indicated in Table 7. To

guarantee that the Interrupt Vector will be stable during an

INTA cycle, the Interrupt Controller inhibits the generation of a

-| new Interrupt Vector while INTA is high, and will not begin
~ generating a new Interrupt Vector on either edge of INTA.

The Interrupt Vector can also be read from the Interrupt
Vector Register ([I[G]) directly. This allows interrupt

- requests to be monitored by software, even if they are
disabled by the processor. If no interrupts are being
requested, bit 09 of the will be 1.

External interrupts EIS-EI1 are active HIGH level-sensitive
inputs. (Note: When used as Timer/Counter inputs, EI3-El1
are edge sensitive). Therefore, the Interrupt Handlers for
| . these interrupts must clear the source of interrupt prior to

. retuming to the interrupted code. The external NMI, however,
- is an edge- sensitive input which requires a rising. edge to
request an interrupt The NMI input also has a glitch filter
circuit which requires that the signal that inmates the NMI
must last at least two cycles of ICLK. :

Finally, a mechamsm is provided by which an interrupt can be

Itis recommended that lnterrupt Handlers save and restore |
the contents of . ‘

INTERRUPT SUPPRESSION

The RTX 2010 allows maskable interrupts and Mode 1 NMis
(the NMI_MODE Flag in bit 11 of the is set) to be
suppressed, delaying them temporarily while critical
operations are in progress. Critical operations are instruction
sequences and hardware operations that, if interrupted, -
would result in the loss of data or. rmsoperatnon of the -
hardware.

Standard critical operations during which interrupts are.
automatically suppressed by the processor include Streamed
instructions (see the description of the [] register), Long Call
sequences (see “Subroutine Calls and Retumns”), and loading -
. In addition to this, external devices can also suppress
maskable interrupts during critical operations by applyxng a
HIGH level on the INTSUP pin for as long as required.

'Since the Mode 0 NMI (the NMI_MODE Flag in bit 11 of the

is cleared) can cause the processor to perform an
Interrupt Acknowledge Cycle in the middie of these critical
operations, thereby preventing a normal retum to the
interrupted instruction, a Subroutine Return should be used

“with care from a Mode O NMI service routine. The Mode 0

“NMI

should be wused only to indicate critical
system errors, and the Mode O NMI handler should
re-initialize the system. -

. Interrupts which have occurred while interrupt suppression is
‘in effect will be recognized on a priority basis as soon as the

suppression terminates, ' provided the ~condition which
generated the interrupt still exists.

STACK ERROR INTERRUPTS

The Stack Controllers request an interrupt whenever a stack
overflow or underflow condition exists. These interrupts can

~ be cleared by rewriting I3l . See the section on “Dual
‘Stack Architecture” for more information. regarding how the

requested by using a software command. The Software-

Interrupt (SWI) is requested by executing-an instruction that
will set an intemal flip-flop attached to one input of the
interrupt Controller. The SWI is reset by executing an
. instruction that clears the flip-tiop. The flip-flop is accessed
by I/O Reads and Writes.

Because the SWI interrupt may not be serviced lmrnedtately, v

the instructions which immediately follow the SW1 instruction
should not depend on whether or not the interrupt has been
serviced, and should cause a one~ or two-cycle idle condi-

limits set into and are used.

STACK OVERFLOW: A stack overflow occurs when data is
pushed onto the stack location pointed to by the ,as

- determined in Table 5. After the processor is reset, mis is

tion (Typically, this is done with one or two NOP instructions).

if an interrupt condition occurs, but “goes away” before the

processor has a chance 0 service it, a “No Interrupt” vector

-is generated. A “No Interrupt” vector is also generated if
an Interrupt Acknowiedge cycle takes less than two cycles

to execute and no other lntermpt conditions need to be)

' serviced.

To prevent unforseen errors, it is recommended that valid
_ code be supplied at every Interrupt Vector location, including

the “No Interrupt” vector, whnch should always be anmalrzed
_ with valid code.

location 255 in either the Parameter Stack or Return Stack. A
stack overflow interrupt request stays in effect until cleared
by writing a new value to the . In addition to generating

“an interrupt, the state of the stack overflow flags may be read

out of the [EIg, bit 3 for the Parameter Stack, and bit 4
for the Retumn stack. See Figures 5, 7 and 8. '

STACK UNDERFLOW: The stack underflow limit occurs - |
when data is popped off the stack location immediately below
that pointed to by the , as determined in Table 5. The
state of the stack underflow error flags may be read out of
bits 1 and 2 of the for the Parameter and Return stacks
respectively. In the reset state of the , an underflow will
be generated at the same time that a fatal error is detected.
An underflow butfer region can be set up by selecting an
underflow Ilimit greater than 2zero by writing the
corresponding value into the . The stack underflow
interrupt request stays in effect until a new value is wrrtten -
into the , at which time it is cleared.

1

17

RTX 20170

TIMER/COUNTER INTERRUPTS Step Arithmetic instructions which are performed through the

' . ALU are divide and square root. Execution of each step of the

~ The timers generate edge-sensitive interrupts whenever they arithmetic operation takes one cycle, a 32/16-bit Step Divide
- are decremented to 0. Because they are edge-sensitive and takes 21 cycles, and a 32/16-bit Step Square Root takes 25
. are cleared during an Interrupt Acknowledge cycle or during cycles. Sign and scaling functions are controlled by the ALU
~ the direct reading of by software, no action is required function and shift options, which are part of the coded

by the handlers to clear the interrupt request. instruction contained in . See Table 24 and the
) . : Programmer's Reference Manual for details.
The RTX 2010 ALU , Unsigned Step Divide operation assumes a double precision

. . (32-bit) dividend, with the most significant word placed in

* The RTX 2010 ljas a 16-‘b|t ALU.capable of performing EI3 . the less significant word in RIEA] , and the divisor in
standard arithmetic and logic operations: . - [. In each step, if the contents in are equal to or

' . B AL . greater than the contents in (and therefore no borrow is

* ADD and SUBTRACT (A-B and B-A; with and without generated), then the contentsmo:]m’are subtracted from the
carry) contents of - The resutt of the subtraction is placed into

e AND, OR, XOR, NOR, NAND, XNOR, NOT _ . The contents of and are then jointly
shifted left one bit (32-bit left shift), where the value shifted

The and registers can also undergo single bit into the least significant bit of is the value of the
shifts in the same cycle as a logic or arithmetic operation. Borrow bit on the first pass, or the value of the Complex Carry
bit on each of the subsequent passes. On the 15th and final

In Figure 16, the control and data paths to the ALU are pass, only is shifted left, receiving the value of the
shown. Except for and QI3J], each of the intemal Complex Carry bit into the LSB. is not shifted. The final

core registers can be addressed explicitly, as can other result leaves the quotient in » and the remainder in
internal registers in special operations such as in Step (TOPR , o

instructions. In each of these cases, the input would be]) :
addressed as a device on the ASIC Bus. : During a Step Square Root operation, the 32-bit argument is
v assumed to be in and N3] , as in the Step Divide
. .When executing these instructions, the arthmetic/logic operation. The. first step begins with (3] containing zeros.
operand (a) starts out in and is placed on the T-bus. ~ The Step Square Root is performed much like the Step
Operand (b) arrives at the ALU on the Y-bus, but can come Divide, except that the input from the Y-bus is the logical OR
“from one of the following four sources: » an intemal of the contents of and the value in [¥[3] shifted one place
register; an ASIC Bus device; or from the S least significant to the left (2 QI). When the subtraction is performed, 5]
bits of [} . The source of operand (b) is determined by the is OR'ed Into 3, and Is shifted one place to the right, -
instruction code in [[F] . The result of the ALU operation is At the end of the operation, the Square root of the original

placed into . _ value is in [[3] and » and the remainder is in .
PROGRAM , TOP
MEMORY : : T 88 v
. =
— S Least
Sngg;:::anl *’ﬂ
—»
— |8
; >
I .
(MY ecoor |
~ Sel Operand
|~ ooty >

'NOTS:D:nPuhqmnonunbdbywuiinu:Conw -_._:_—::::_ 4
Paihs are represented by dashed lines. o

FIGURE 18. ALY OPERATIONS-CONTROL PATHS AND DATA FLOW

18

« re =

RTX 20 10 Floatlng Pomt/DSP On Ch/p
Penpherals '
~ THE RTX 2010 MULTIPLIER-ACCUMULATOR

The Hardware Multiplrer-AccumuIator (MAC) on the RTX
2010 functions as both a, Multiplier, and a Multiplier-
Accumulator. When used as a Multiplier alone, it multiplies
two 16-bit numbers, vielding a 32-bit product in one clock
cycle. When used as a Multiplier~-Accumulator, it multiplies
two 16-bit numbers. yielding .an :
product, which is then added to the 48-bit Accumulator.
This entire process takes place in a smgle clock cycle.

The Muitiplier-Accumulator functions are activated by I\O
Read and Write instructions to one of the ASIC Bus
addresses assigned to the MAC.

The MAC's mput operands come frorn three possrble
sources (see Figure 17):

(1) The and registers.

(2) The register and memory (Streamed mode only -
see the Programmer’s Reference Manual).

to 1. The ROUND operation rounds the lower 16 bits of the

intermediate 32-bit -

results into the upper 16 bits in the following manner:

(1) If the most significant bit rf yhe is set (1), the Em
is mcremented ‘

(2) If the most srgnmcant bit of the |s not set (0), the
is left unchanged. '

The result is read from MR into ; Following the read,

the contents of and should be exchanged,
then a “Drop Top of Stack” instruction should be executed
to discard one of the original operands. The ROUND bit
functions independently of whether the signed or unsrgned
bit is used. .

- The multiply instructions disable interrupts. during the ‘

(3) Memory and an input from the ASIC Bus (Streamed.

mode only - see the Programmer’s Reference Manual).

These inputs can be treated as either signed (two's
. complement) or unsigned integers, depending on the form
of the instruction used. In addition, if the ROUND option is

multiplication cycle, and for the next cycle. Reading [ZL,
or also disables interrupts during the read, and for the
next cycle. This allows a multiplication operation to be
performed, and both the upper and lower registers to be

read sequentially, with no danger of a non-NMI mterrupt

service routine corruptmg the contents of the registers
between reads (for compatibility with the RTX 2000). The |
multiply-accumulate |nstructrons do not disable mterrupts .

"durlng instruction executlon

-selected, the Multiplier can round the result to 16 bits. Note-

that the MAC instructions do not pop the Parameter Stack;
the contents of and remain intact.

‘For the Multipler, the product is read from the Multlpller
High Product Register, IIG}, which contains the upper

For addrtlonal information on the RTX 2010 MAC see the

'Programmer s Reference Manual.

16 bits of the product, and the Multiplier Low Product

Register, [J]¥3], which contains the lower 16 bits. For the
Multiplier-Accumulator, the accumulated product is read
from the Multiplier Extension Register, [JEGLl which
contains the upper 16 bits, the [}, which contains the
middle 16 bits, and the which contains the low 16
bits. The registers may be read in any order, and there is no
requirement that all registers be read. Reading from any. of
"~ the three registers moves it's value into , and pushes
the original value in - into If the read is from
LGLER or the original value of is lost, l.e. it is
not pushed onto stack memory. This permits overwriting the
original operands left in and which are not
popped by the MAC operations. If the read is from [IEG],
the original vaiue of is pushed onto the stack. In
addition to this, any of the three MAC registers can be
directly loaded from This pops into and
the Pararneter Stack into

if 32- brt precision le not requlred the multiplier output may"

be rounded to 16 bits. This is accomplished by setting the
ROUND brt in the lnterrupt Base/Control Reglster,

THE RTX 2010 ON-CHIP BARREL SHIFTER AND |
LEADING ZERO DETECTOR

The RTX 2010 has both a 32-bit Barrel Shifter and a 32-bit
Leading Zero Detector for added floating-point and DSP .
performance. The input to the Barrel Shifter and Leading
Zero Detector is the top two elements of the Parameter
Stack, the and registers.’

The Barrel Shifter uses a five bit count stored in the [TEG]
register to determine the number of places to right or left
shift the double word operand contained in the and
registers. The output of the Barrel Shifter is stored in

the XL and registers, with the top 16 brts LIVHR I
and the bottom 16 bits in

The Leadlng Zero Detector le used to Normalize the deubl_e
word operand contained in the and registers.
The number of leading zeroes in the double word operand
are counted, and the count stored in the [YET] register. The
double word operand is then logically shifted left by this
count, and the result stored in the. and
registers. Again the upper 18 bits are in [} and the
lower 16 bits are in This entire operation is done in
one clock cycle wrth the normalrze rnstructron

19

.t

RTX 2010

DATA STACK ASIC BUS

| REGISTER]

il

.L‘TOP 1 | [Cnext]

aE

' N 2
I 32 BIT LZD |

y
MAC ‘. y A |
16 x 16 x 48 5 3287 BRLSHIFTER] |
» ‘32
~ FIGURE 17. RTX 2010 FLOATING POINT/DSP LOGIC
{

20

-

e s s - v -

' RTX 2010 ASIC Bus Interface

The RTX 2010 ASIC Bus services both intemal processor
core registers and the on-chip peripheral registers, and eight
external off-chip ASIC - Bus locations. All ASIC Bus
operations require a single cycle to-execute and transfer a full
16-bit word of data. The extermal ASIC Bus maps into the last
eight locations of the 32 location ASIC Address Space. The
three least significant bits of the address are available as the
ASIC Address Bus. The addresses therefore map as shown
in Table 8.

TABLE 8. ASIC BUS MAP

RTX 2010 Memory Access
THE RTX 2010 MEMORY BUS INTERFACE

The RTX 2010 can address 1 Megabyte of memory, divided
into 16 non-overlapping pages of 64K bytes. The memory
page accessed depends on whether the memory access is
for Code (instructions and literals), Data, User Memory, or
Interrupt Code. The page selected also depends on the
contents of the Page Control Registers: the Code Page Reg-
Ister ((3]), the Data Page Register (BIEG]), the User

- Page Register ([F3]), and the Index Page Register

ASIC BUS SIGNAL
GAO2 GAO1 GAOO ASIC ADDRESS
0 0 0 18H
0 o] 1 19H
0 1 o} 1AH
0 1 1 1BH
1 0 0 1CH
1 0 K 1DH
1 1 0 1EH
1 1 1 1FH

RTX 2010 Extended Cycle Operation

The RTX 2010 bus cycle operation can . be optlonally
extended for two types of accesses:

(1) USER Memory Cycles
(2) ASIC Bus Read Operations

The extension of normal RTX 2010 bus cycle timing allows
the interface of the processor to some peripherals, and slow
memory devices, without using externally generated wait

(1 TCLK) as it would be if one wait state was added to the cy-
cle, but the control signal timing is somewhat different (see
Timing Diagrams). In a one wait state bus cycle, PCLK Is High

‘for 1/2 TCLK period, and Low for 1-1/2 TCLK periods (i.e.

(&3). Furthermore, the User Base Address Register

"(BER]) and the Interrupt Base/Control Register ([E[9)

are used to determine the complete address for User Memory
accesses and Interrupt Acknowledge “cycles. Extemal
memory data is accessed through

When executing code other than an Interrupt Service routine,
the memory page is determined by the conterits of the .
Bits 03-00 generate address bits MA19-MA186, as shown in
Figure 10. The remainder of the address (MA15-MAO1)
comes from the Program Counter Register (9). After
resetting the processor, both the and the [&] are
cleared and execution begins at page 0, word 0. -

A new Code page is selected by writing a 4-bit value to the
. The value for the Code page is input to the
’through a preload procedure which withholds the value for
one clock cycle before loading the to ensure that the
next instruction is executed from the same Code page as the

" instruction which set the new Code ‘page. Execution

" states. The bus cycle is extended by the same amount

immediately thereafter will contmue with the next instruction
in the new page.

An Interrupt Acknowledge cycle is a special case of an
Instruction Fetch cycle. When an Interrupt Acknowledge
cycle occurs, the contents of the and are saved on
the Retum Stack and then the is cleared to point to
page 0. The Interrupt Controller generates a 16-bit address,
or “vector’, which points to the code to be executed to
process the interrupt. To determine how the Interrupt Vector

"is formed, refer to l-'gure 4 for the reguster bit assugnments i

PCLK is held Low for one additional TCLK period). In an

extended cycle, PCLK is High for 1 TCLK period, and Low for
1 TCLK period (i.e. both the High and Low portions of the

- PCLK period are extended by 1/2 TCLK period).

Setting the Cycle Extend bit (CYCEXT), which is bit 7 of the
register, will cause extended cycles to be used for all
accesses to USER memory. Setting the ASIC Read Cycle
Extend bit (ARCE), which is bit 13 of the register, will
cause extended cycles to be used for all Read accesses on
the external ASIC Bus. Both the CYCEXT blt and the ARCE
but are cleared on Reset.

and also to the Interrupt Controller section

The page for data access is provnded by either or.

I3 | as shown in Figures 10 and 12. Data Memory Access
instructions can be used to access data in a memory page
other than that containing the program code. This is done by
writing the desired page number into the Data Page
R (IR) and setting bit 5 (DPRSEL) of the
register to 1. if RIZ] is set to equal [SIz3] , or if DPRSEL = 0,
data will be accessed in the Code page. The status of the -
DPRSEL bit is saved and restored as a result of a Subroutine
Call or Return. When the RTX 2010 is reset, BII5] points to
page O and DPRSEL resets to 0, selecting the .

21

e

RTX 2010

located anywhere in memory. The word being accessed in a
block is pointed to by the five least significant bits of the User
Memory instruction (see Table 20), eliminating the need to
explicitly load an address into before reading or writing
to the location. Upon RTX 2010 reset, [¥EI] is cleared and
points to the block starting at word 0, while [I[53] is cleared
so that it points to page 0. The word in the block is pointed to
by the five least significant bits of the User Memory

Jinstruction and bits 05-01 of the [WEIF]. These bits from

these two registérs are logically OR’ed to produce the
address of the word in memory. See Figure 13.

WORD AND BYTE MAIN MEMORY ACCESS

Using Main Memory Access instructions, the RTX 2010 can
perform either word or single byte Main Memory accesses,
as well as byte swapping within 16-bit words.

Bit 12 of the Memory Access Opcode (see Table 19), is used
to determine whether byte or. word operations are to be

- performed (where bit 12 = 0 signifies a word operation, and

bit 12 = 1 gignifies a byte operation). In. addition, . the
determination of whether a byte swap is to occur depends on
which mode (the “Motorola-Like” or the “Intel-Like™) is in

USER MEMORY consists of blocks of 32' words that can be .

Whenever a word of data is read by a Data Memory operation
into the processor, it is first placed in the register.
By the time the instruction that reads that word of data is
completed, however, the data may have been moved, option- -
ally inverted, or operated on by the ALU, and placed in the
register. Whenever a Data Memory operation writes to
memory, the data comes from the register. ’

The Byte Order Bit is bit 2 of the Configuration Register,
(see Figure 3 in the “RTX Intemal Registers ‘Section).

“ This bit is used to determine whether the defautt (““Motorola-

Like”) or byte swap (“Intel-Like”) mode will be used in the
Data Memory accesses. i

Word Access is designated when the & bit 12 = 0 in the
Memory Access Opcode, and can take one of two forms,

[depending upon the status of bit 2.

effect, and on whether an even or odd address is being

accessed (see Figures 18 and 19). .

When bit 2 = 0, the “Motorola-Like” mode of word .
access (also known as the “Big Endian” mode) is designated.
This mode of word access is to an even address (AQ =0) and
results in an unaltered transfer of data, as shown in Figure 18.
Word access to/from an odd address (AO = 1) while in this

‘mode will effectively cause the Byte Order Bit to be

complemented and will resutt in the bytes being swapped.

m ADDRESS

3 . . DAT - 1] | ADDRESS
DATA ACCESS (16 - BIT) [0 [T [abones DATA ACCESS (8- BIT) [J] @ lanones:
WORD WRITE ' ' BYTE WRITE : % ’
. PROCESSOR } PROC!
l!ﬁa [|‘l| Ti | 4 5 | 10 : Ny o o ["l | R 5! T 4 ,; S ' [+] 1
‘ I' l) UNCHANGED i » 1
LIS T Lo 1 L Ls Ll) 0 °
- MEMORY |) . MEMORY 3
WORD READ , BYTE READ » f X
(Y T 0 0 | (T) 0 1
I I I I I I I .0 — 1
|) | ‘ o . .
(N)) 1 i | (O EI) 1 0
. - - ey © MEMORY '
[WORD WRITE BYTE WRITE rrocesson
L o o D ETN |°i | (T L ol 1 0 1 1
. - 6 1 : - ‘
° | / ~ 1L i
e —— |.| .
: th Ll elr Ll 1 10 '
C . MEMORY
BYTE READ " e ‘
| (DN Tl 5
[1 » g 1 1
»]
[\ 1
c 1 o 5 . 1 0 0
Ls .] N1 o] | () E Ll l°| :

FIGURE 18. MEMORY ACCESS (WORD)

i

~ FIGURE 19. MEMORY ACCESS (BYTE)

22

RTX 20170

When the Bit 2 = 1, the “Intel-Like” mode of word
access is designated (also known. as the “Little Endian”

" mode). Access to an even address (AO = 0) results in a data
transfer in which the bytes are swapped. Word access to an

odd address (A0 = 1) while in this mode will effectively cause
the Byte Order Bit to be complemented with the net result
that no byte swap takes place when the data word is trans-
ferred. See Figure 18.

* Byte Access is designated when the [bit 12 = 1 in the

Memory Access Opcode, and can also take one of two forms,
depending on the value of Bit 2. .

When the Bit 2 = O, a Byte Read from an even address
in the “Motorola-Like” mode causes the upper byte (MD15-
MDO08) of memory data to be read into the lower byte position
(MDO7-MDO0O) of , while the upper byte (MD15-
MDO8) is set to O. A Byte Write operation accessing an even

- address will cause the byte to be written from the lower byte

position (MDO7-MDOO) of into the upper byte position
(MD15-MD08) of memory. The data in the lower byte position
(MD0O7-MDOQO0) in memory will be left unaltered. Accessing an
odd address for either of these operations will cause the Byte
Order Bit to be complemented, with the net result that no
swap will occur. See Figure 19.

When Bit 2 = 1, memory is accessed in the “Intel-Like”
mode. Accessing an even address in this mode means that a
Byte Read operation will cause the lower byte of data to be
transferred without a swap operation. A Byte Write in this
mode will also result in an unaltered byte - transfer.

- Conversely, accessing an odd address for a byte operation

while in the “Intel-Like” Mode will cause the Byte Order"Bit to
‘be complemented. In a Byte Read operation, this will result
in the upper byte (MD 15-MDO08) of data being swapped into

“the lower byte position (MDO7-MDOQ), while the upper byte

is set to 0 (MD15-MDO08 set to 0). See Figure 19. A Byte
Write operation accessing an odd address will cause the
byte to be swapped from the lower byte position (MDO7-
MDOO) of the processor register into the upper byte position
(MD15-MD08) of the Memory location. The data in the lower
byte position (MDO7-MDOQO) in that Mernory locatnon will be
left unaffected.

NOTE: These festures are for Main Memory data access only, and have no
eﬁocton motrucnon Mehoo. Ionolmnh orquDdaM«nory

SUBROUTINE CALLS AND RETURNS

The RTX can perform both “short” subroutine calls and
“long” subroutine calls. A short subroutine call is one for
which the subroutine code is located within the same Code
page as the Call lnstmcson. and no processor cycle timo is
expended in reloading the

Performing a long subroutine call involves transferring
execution to a different Code page. This requirés that the

€3] be Ioaded with the new Code page as described in the

Memory Access Section, followed immediately by the -
Subroutine Call instruction. This adds two additional cycles to

. the execution tlme for the Subroutine Call.

For all instructions except Subroutine Calls or Branch
instructions, bit 5 of the instruction code represents the
Subroutine Retum Bit. If this bit is set to 1, a Return is

. performed whereby the retum address is popped from the

Return Stack, as indicated in Figure 11. The page for the
retum address comes from the [z} . The contents of the [J
register are written to the , and the contents of the 3]
are written to the so that execution resumes at the point
following the Subroutine Call. The Return Stack is also -
popped at this time.

RTX 2010 Software

The RTX 2010 is designed around the same architecture
as the RTX 2000, and is a hardware implementation of
the Virtual Forth Engine. As such, it does not require the

.additional assembly or machine language software

development typical of most real-time microcontrollers.

The instruction set for the RTX 2010 TForth compiler
combines multiple high level instructions into single machine
instructions without having to rely on either pipelines or
caches. This optimization yields an effective throughput
which is faster than the processors clock speed, while
avoiding the unpredictable execution behavior exhibited by
most RISC processors caused by pipeline flushes and cache
2010 COMPILERS

Harris offers. a complete ANSI C cross development
environment for the RTX 2010. The environment provides a
powerful, user-friendly set of software tools designed to help
the developers of embedded real-time control systems get
their designs to market quickly. The environment includes the

_optimized ANSI C language compiler, symbolic menu driven
.'C language debugger, RTX assembler, linker, profiler, and

PROM programmer interface.

The RTX 2010 TForth compiler from Hams translates
Forth-83 source code to RTX 2010 machine instructions.
This compiler also provides support for all of the RTX 2010
instructions specific to the processor's registers, peripherals,
and ASIC Bus. See the tables in the folbwmg sections for
instruction set information.

RTX Mlcrocontroller Famlly
Compatibility

The RTX 2010 is pin and instruction set compatible with the
RTX 2000 and RTX 2001A. The instructions added to the
RTX 2010 (see Table 25) are NOP instructions on the earlier
processors. The stack size and stack controller are different
on the three processors, therefore, code that modifies stack

" registers may not be directly portable.

23

r'a

RTX 2010

TABLE 9. INSTRUCTION SET SUMMARY

- NOTATIONS

m-read Read data (byte or word) from memory location addressed by contents of IS5 register into SLE register.
m-write Write contents (byte or word) 6fvm register into merriory location addressed by contents of [{e]3 register.
g-read Read data from the ASIC address (address field ggggg of instruction) into [{elg register.
A read of one of the on—chip peripheral registers can be done with a g-read command.
y-writo Write contents of {3 register to ASIC address (address field ggggg of instruction). A write to one of the
. on-—chip peripheral registers can be done with a g-write command. :
u-read Read contents (word only) of User Space location (address field vuuuy of instruction) into [{8lz register.
u-write . Write contents (word only) of [f&lg register into User Space location (address field vuwuu of instruction).
SWAP Exchange contents of [el5 and [TZgj registers v
ouP Copy contents of [{8]3 register to register, pushing previous contents of onto Stack Memory.
| OVER Copy contents of NIZq] register to el register, pushing original contents of [f8]g to register and original
) contents of ([3J] register to Stack Memory. S i : .
" DROP ' ‘Pop Parameter Stack, discarding original contents of [{eI5 register, leaving the original contents of LITOP]
’ and the original contents of the top Stack Memory location in NEg]. - '
inv Perform 1's complement on contents of [XS]5 register, it i bit in instruction is 1. _
alu-op Perform appropriate acce or asa ALU operation from Table 23 on contents of G and registers.
shife Pertori appropriate shift operation (ss2s field of instruction) from Table 24 on contents of [{el5
: and/or registers. .
d Push short literal d from ddddd field of insﬁuéb’on onto Parameter Stack (where ddddd contains the actual
- value of the short literal). The original contents of are pushed into [J[23], and the original contents of
» are pushed onto Stack Memory. : U
- D Push long literal D from next sequential location in program memory onto Parameter Stack. -
The original contents of [fSI5 are pushed into QIZJj and the original contents of are pushed onto
Stack Memory. : , S
R Perform a Retum From Subroutine if bit = 1.
Bit fislds containing x's are ignored by the processor.

TABLE 10, fNSTRUCTION REGISTER BIT FIELDS (BY FUNCTION)

FUNCTION CODE DEFINITION
99999 | Addressfield for ASIC Bus locations
wuwwy | Addressfield for User Space memory locations
ecce ALU functions (see Table 23)
ass .
ddddd Short literals (containing a value from 0 to 31)
2888 . 7| Shift Functions (see Table 24)

24

P

RTX 2010

RTX 2010 [] AND (I8 ACCESS OPERATIONS*

© TABLE11.
| OPERATION | RETURN | asic _
" (g-read, BIT ADDRESS | v o o
g-write) . | VALUE 99999 | REGISTER - FUNCTION
'Reaq mode 0 00000 1] Pushés the contents of] into [elg (with no pop of the R_émrn Stack) -
Read mode 1 00000 [1] Pdsﬁes the contents of [into [e]Z, then performs a Subroutine Return .
Write mode 0 00000 : l]b ~Pops the contents o’f@ into [J (with no push of the Return Stack)
- Write modé 1 00000)] Performs a Subroutine Return, then pushes the contents of [f8lg into]’
Read mode o] 00001 (] Pushes the contents of [into o]z, Popping the Retum Stack
. Read mode B 00001 1] Pushes the contents of [] into [felg without popping the Return Stack then
S _ : executes the Subroutine Return '
Write mode 0 00001 1] Pushes the contents of [fel into [popping the Parameter Stack
Write mode |- 1 00001 o Performs a Subroutine Return, then pushes the contents of &z into [J
Read mode 0 00010 n Pushes the contents of [] shifted left by one bit, into Eﬂ:
g . (the Retumn Stack is not popped) :
-Read mode 1 0001 o 1] ‘Pushes the contents of [] shifted left by one bit, into m (the Return
o Stack is not popped), then porforms a Subroutine Return
Write mode 0 00010 S | | Pushes the contents of [f8)Z into [} as a “stream” count, indicating that
: : a o the next instruction is to be podormod a spocnﬁod numbev of times;
the Parameter Stack is popped
Write mode 1 00010 o Performs a Subroutine Return, then pushes the ztroam countinto ||
Read mode .0 00111 : Pushes the contents of into
Read mode 1 00111 Pushes the contents of 8 into Eﬂ; then performs a Subroutine Return -
Write mode (o] 00111 & Performs a Subroutine Call to the address contamod in LS poppunq ’
‘ : o the Pmmotcr Stack
‘Wri_te mode 1 00111 - Pushes the contents of [fS[5 onto the Return Stack beion executing
the Subrouhne Retum .

* See the RTX Proorammcr s Roforonco Manual for a complete lmmo of tymcd software functions.

TABLE 12. 2010 RESERVED i/0 OPCO‘DES

INSTRUCTIONCODE = . . OPERATION
15141312 11109 8 76 54 32910 | ,
1011 0000 10RO 1101 | SelectEmy
1011 0000 O0OORO 1101 Select SZD
1011 0000 10R1 0000 Set SOFTINT
1011 0000 00R1T 0000 | ClearSOFTINT
1011 0000 10R:1 0110 Increment G}
1011 0000 OOR1T 0110 | Decrement
‘TABLE 13. SUBROUTINE CALL ms‘rnucnons
, 'msmucnou CODE S OPERATION
15141312 11109 8 7654 3210 -
Oaaa 8 aaa aaaa | Callwordaddress

Subroutine Call Bit ——T
(Bit 15 = 0: Call, .
Bit 15 = 1: No Call)

aauua‘unuaomthobage :
indicated by [S[ZJ} This address is
produced when the processor
mﬂormsuoﬂohmonmaddrmm'

momwucﬂoncodo ‘

25

%

e

| V'RTX',2010 -

_ Subroutine Return Bit*

TABLE 14. SUBROUTINE RETURN

INSTRUCTION CODE

(Bit 5, R = 0: No return

- 15141312 1110 9_-8‘ 7654 32 10
- = = = - - - - - - R - - - - -

~ OPERATION

Retumn from subroutine

opénxrion

R = 1: Return) : : .

: _* Does not apply to Subroutine Call or Branch Instructions. A
Subroutine Return can be combined with any other instruction
(as implied here by hyphens).

- TABLE 15. BRANCH INSTRUCTIONS

INSTRUCTION CODE

15141312 11109 8 7654 3210

1 000 ODDa a.aaa aaaa.

1 000 1 bba aaaa a aaa

‘1001 Obba aaaa.aaaa

1001 1bba aaaa aaaa

~

Branch Address®

TABLE 18. REGISTER AND l/O ACCESS INSTRUCTIONS :

DROP and branch if Eﬂ; =
‘Branch 5 =0
. Uncondmonal branch

‘ Branch and decrement Il ith# o;
Poplifll=0

* See the Proonmmef'o Reference Manual for further information noarding the branch address field, -

_INSTRUCTION CODE - 'OPERATION
15141312 111098 7654 3210 |
1011 000i OORGS 99099 ' g-read DROP inv
1011 1110 O00Rg gooq | gresd v
1011 cccc OO0ORG 0ggg | gresdOVER auop
101»1“506& ‘10:99 gggg:._Dleg-Wriu’—invw
1011 111i 10Rg gggag g-write inv
1011 cccec 10Rg g 999 y-rndSWAP E alu-dp
. TABLE1Y. SHORT LITERAL ms'rnucnons P
_ INSTRUCTIONCODE OPERATION
15141312 111098 7 6 S 4 321 0 '

1011 000! x1Rd dddd d DROP inv
1011 1111 O01Rd dddd | a inv
1011 ccce O1Rd dddd | dOvER alu-0p
1011 1111 11Rd dddd dSWAPDROP inv
1011 cccc 11Rd dddd dSWAP alu-op

28

RTX 2010

| TABLE 18. LONG LITERAL INSTRUCTIONS

~ INSTRUCTION CODE - OPERATION
, S | v (1ISTCYCLE) ~ (2nDeYCLE)
15141312 111098 76 54 3210 | BT
1101 000 X OR X x X x x D SWAP. v
1101 1110 00RX xxxx D SWAP SwAPinv
1101 ccoec 00RX xxxx D SWAP SWAP OVER alu-op
1101 1110 10RX xx x x Dswap DROPinv
1101 cccec 10RX x x_k’.x D SWAP alu-op '
| "TABLE 19. MEMORY ACCESS INSTRUCTIONS
. INSTRUCTION CODE o e * OPERATION
v ‘ ‘ (1ISTCYCLE) (2ND CYCLE)
15141312 111098 7654 3210 | o ’
1118 0 00 i 0‘0 R x X X x x m-read SWAP - inv
1118 111 "0 0R X x x x x |)n-rqquWAP SWAPinv
111 s c c O 0 R x X X X X m-read SWAP o SWAP OVERialu-'op
"111s 0007 01T R X x x x x {SWAPDROP)DUP. NOP
R : ‘ _ : m-read SWAP - o
11 1s 111 o1 R (SWAP DROP) m-reed d - NOP
111s aaap 01R d (SWAPDROP)DUP m-read NOP
» ’ ‘ C SWAP d SWAP alu-op)
111s 000i 10RX xxx x ' OVER SWAP m-write v
1 _‘1 18 111 1 0 R x X x x x OVERSWAP'm-‘writi DﬁOF‘_inv
11 1. s _C' ccc 10R «x X X X x | m-read SWAP 'a.lu-op"
1118 000p 11Rx xxxx | (OVERSWAP)SWAP NOP
' S OVER m-write S
1118 111 11Rd , (OVERSWAP)m-writed NOP.
1118 aaap 11Rd dddd | [OVERSWAPSWAPOVER NOP
—_— — I S m-write d SWAP alu~op - ’ ’
| | T t (p = O), perform sither B
f s'= 0, Memory is accessed by word :gmgxm or
‘ -ns=1,Memorynomuudbypyb—
. 'Note: SWAP d SWAP = d ROT

-~

YN

’._Rrxzo.m

TABLE 20. USER SPACE INSTRUCTIONS

_ " INSTRUCTION CODE oPsnAnou
15141312 11109 8 7 654 3210 : |
1100 000i OORU uwuuu u-read SWAP inv
1100 1 1‘1 i "0 0RwU uuuu u-read SWAP SWAP inv
1100 cccc O0OORU uwuuu u-read SWAP SWAP OVER alu-op
1100 000 i 1 0ORwU Uuuwu DUP u-write inv ’ -
1100 111i 10RuU Guuwu DUP u-write DROP inv
1100 c ccec 1 0R U U.uuu | wu-read SWAP alu-op
* TABLE 21. ALU FUNCTION INSTRUCTIONS
INSTRUCTION CODE OPERATION
15141312 11109 8 7 6 54 3 2 10
1010 000i OORO ssss | : inv shift
1010 111i O0OORO ssss DROP DUP inv shift
1010 cccc OORO 838388 OVER SWAP alu-op shift
1010 000i O1RO ssss SWAP DROP inv shift
1010 111 01RO s s 838 DROP inv_shift
1010 cccc 01RO 8.8 8 8 _ alu-op shift
1010 000i 10RO ss38ss SWAP DROP DUP inv shift
1010 111 1 ORO s 8s-ss SWAP inv shift
1010 ccce 10RO s 88 s -SWAP OVER alu-op shift
1010 000.i 11RO ssss pupP " inv shift
17010, 1111 11RO ssss OVER inv shift
1010 cccc . 11RO 88 3 s OVER OVER alu-op shift
TABLE 22. STEP MATH* FUNCTIONS
~INSTRUCTION CODE OPERATION
15141312 11109 8 7 6 54 3 2 10 _
1010 - - = = - - -1 - - - - (See the Programmer’s Reference Manual)

I3

. ¥ Thesae instructions perform multi-step math functions such as multiplication, division and square root functions. Use of either the Streamed instruction mode or

masking of interrupts is recommaended to avoid erronsous results when podommo Step Math operations. The following is a summary of these oporanons

Unsigned Division:
Load dividend into and
Load divisor into

Execute single step fonn of D2* Instruction 1 time

Execute opcode A41A 1 time
Execute opcode A4SA 14 times
Execute opcode A458 1 time

The quotient is in , the remainder In

Square Root Operations:
Load value into and
Load 8000H into
Load 0 into 3]

Execute single step form of D2* instruction 1 time
Execute opcode AS1A 1 time
Execute opcode ASSA 14 times
Execute opcode AS558 1 time
" The root is in , the remainder in

28

4

RTX 20710

TABLE 23. ALU LOGIC FUNCTIONS/OPCODES

ccce aaa FUNCTION

- 0010 001 AND

' 0011 T nor

0100 010 SWAP - :
0101 By SWAP - ¢ ‘With Borrow
0110 011 OR
o111 NAND
1000 100 + ,
1001 +C With Carry
1010 101 | XOR
1011 XNOR
1100 110 -

1101 - With Borrow |

TABLE 24. SHIFT FUNCTIONS

-Least significant bit of

SHIFT S STATUS REGISTER , REGISTER
ssss - NAME FUNCTION OF C| Ti5 Tn To N15 | Nn No
0000 No Shift ' cy |z15 |[zn 0 TN1S | TNn | TNO
o001 | o< Sign extend - cv |z15 [z15s [z15 | ™Nis | TNe | TNO
o010 | 2* Arithmetic Left Shift 215 | 214 [zn1 J o | TNIS | TN | TNO
0011 | 2% Rotate Left 215 [z14 |z | cy | NS [TN | TNO
0100 cu2/ _Right Shift Outof Carry o cy Zn+1 | 21 TN1S | TNa | TNO
0101 c2/ Rotate Right Through Carry 20 | CY Zn+1 |21 "TN15 .| TNn TNO
0110 | U2/ | LogicalRightShit 0 0 Zn+1 | 2zt TN1S | TN | TNO
o |2 Arithmetic Right Shift 215 | 215 | zne1 | 29 TN15 | TNn | TNO
1000 | N2* Arithmetic Lett Shift of NIEX} cy |z1s [zn | 20 T™N14. [TNn-1 | o
1001 N2*c Rotate N[ETj Left cY zis | zn 20 TN14 | TNn-1 | CY
1010 | p2* 32-bit Arithmetic Left Shift 215 | z14 | Zn-1 | TNIS | TN14 | TNn-1] O
1011 | p2*e 32-bitRotsteleft 215 [214 | z0-1 | TNIS | TN1S | TNR-1 | CY
1100 | cup2/ 32-bit Right Shift Out of Carry o |er [zo+1 | 2z 20 TNn+1 | TN1
$1101 | cD2/ | s2-bitRotmteRightThroughCamy | TNO | CY | zn+1 | 21 | 20 | Thet| oo
1110 | ub2/ | 32-bitLogical Right Shitt) 0 Zn+1 | 2z 20 | TNn+1[N1
1 | oz 32-bit Arithmetic Right Shift s (215 [znet | Zr [20 | N1 T
' ' 1 See the Programmer's Reference Manual '
© Where:T15 -Most significant bit of ' C -Camybit) _
. Tn -Typical bit of (I35 CY -Carry bit before operation
7O -Least significant bit of 2n -ALU output ,
" N15_-Moat significant bit of ([Z3] 1215 -Most significant bit 15 of ALU output
:no -Typical bit of - TNn -Original value of typical bit of !

-29

RTX 2010

 INSTRUCTION CODE

TABLE 25. MAC/BARREL SHIFTER/LZD INSTRUCTIONS

i1

[15141312 111098 765 4 32 1 of
1011 000i 00RO 1000
911 000i 00RO 1001
1011 000 i 00RO 1010
101 1 000i" 0OO0ORO 1100
1011 000 i 00RO 1110
1011 000 i 0OO0RO 1111
1011 000i O00R1 0001
1011 000i O0O0R1 0010
1011 000i 10R1 0010
1011 000 i 0O0R1T 0011
1011 000 i 10OR1 01 10
1011 000i 1TOR1T 0111
1011 000i 00R1 0100
1011 000 i 00R1 0101
1011 000i O00R1T 0110
1011 000i 00RIT 0111
1011 11141 oo0R1 0010
1011 111 O0R1 0110
1011 1110 00R1 0111
1011 1111 10R1 0010
1011 1110 10R1 0110
1011 11‘1'i 10R 1 01 1

| -

. OPERATION

Forth0 = | ,
Double Shift Right Arithmetic
Double Shift Right Logical
Clear MAC Accumulator .
Double Shift Left Logical
Fioating Pomt Normalize

~ Shift MAC Output Regs Ruqht
‘Streamed MAC Between Stack and Memory

Streamed MAC Between ASIC Bus and Memory. :
Mixed Mode Mulhply

‘Unsigned Multlply

Signed Multiply

Signed Mpy and Subtract from Accumulator

Mixed Mode Mulﬁply Accumulcte
Unsconed Multiply Accumulate
Signed Mumply Accumulate
Read MXR Register

Read MLR Regiehr '

_ Read MHR Register

Load MXR Register -
Load MLR Register

 Load MHR Register

w2

Specifications RTX 20710

Absolute Maximum Ratings

SupplyVoltage i PO +8.0V GateCount e, e, 28,000

- Input, Output, or I/O Voitage Applied ... GND - 0.5V to VCC + 0.5V Junction Temperature “eeeea.0+1750C
Storage Temperature Range -650C to +1509C Lead Temperature (Soldering, Ten Seconds) e +3000C -
Maximum Package Power Dissipation................ ... 2Watts i . o :
Bja-eeennns Ceerereeeeaeeana PR 410C/W (PGA Package)

O eereiinnnn edeeees e eeseeataraoen 179C/W (PGA Package) ‘
CAUTION: Stresses above those listed in the “Absolute Maximum Ratings” may per it damage to the device. This is a stress only rating and

operation of the device at these or any other conditions above those indicated in the operation section of the specification is not implied,

"Operating Temperaturé Range: Operating Conditions ‘ ,
RTX 2010 (Industrial)0............ -400C to +850C Operating Voltage Range +4.5V 10 +5.5V

RTX 2010 (Commercial) “......00Ct0o+709C Maximum Rise and Fall Times For EIS-EI3............ e 20ns’

D.C. Electrical Specifications vcc = sv, £10%, TA = -409C to +85°C (Industrial) Temperature Range
:) . VCC = 5V, £5%, Ta = 0°C to +70°C (Commercial) Temperature Range

SYMBOL ‘ ' PARAMETER MIN MAX | UNITS COMMENTS
VIH Logical One Input Voitage | NMI, RESET, ICLK | vec xo.7 - V| Testedatvcc=55v
. ' Other Inputs 20 - V| Testedatvcc=ssv
vIiL Logical Zero Input Voltage ' - 0.8 V| TestedatvcC=4sv
" VOH: High Output Voltage ‘ _ - as - v I0H =“~4mA. VCC = 4.5V
’ | vec-o04 - V| 10H=-100u,vCC = 4.5V
VOL | LowOutputvotage - | o4 | v | ioL=4amavcC=asy
I input Leakage Current v o1 1 WA | VI=VCCorGND,VCC = 5.5V
O | VOLeakageCument -~ -10 10 WA | VO=VCCorGND,VCC = 5.5
ICCSB _ Standby Power Supbly Current ‘ ‘ , - 500 : .y V1 = VCC or GND (Note1)
ICCOP ' | Operating Power Supply Current ' - 10 ‘mA V=VCCorGND;
) : t (ICLK) = 1MHz; Outputs
Unloaded (IO = O); (Note 2)
NOTES: 1. Typical ICCSB: 10uA. The RTX 2010 is a static CMOS part. ‘
Therefore ICCSB > 0 is due to leakage currents.
2. Operating supply current is proportional to frequency. Typical
ICCOP: SmA/MHz. B =
3.:Typical Hysteresis for RESET and NMI pins is 400mV. »
Capacitance (rp = +259C; All measursments referred to device GND) o
SYMBOL | PARAMETER TYP UNITS TEST CONDITIONS
Ct - | -inputCapacitance 10 oF | t=1MHz
cio - /O Capacitance | 1w oF = 1MHz

31

L

Specifications RTX 2010

CLOCK, WAIT AND TIMER TIMING (

Notes 1 and 2)

A.C. Electrical Specifications VCC = 5V, £10%, Ta = -400C to +850C (industrial) Temperature Range

. VCC = 5V, £5%, Tp = 09C to +700C {Commercial) Temperature Range

. 8MHz 10MHz
SYMBoL PARAMETE MmN | max | min | max | units COMMENTS
REQUIREMENTS |
t1 ICLK Period 62 - 50 - ns
2 ICLK High Time - 24 - 20 - ns
13 ICLK Low Time 24 - 20 - ns
t4 WAIT Set Up Time 5 - 5 - ns’
15 WAIT Hoid Time 3 - 3 - ns ‘)
16 El High to El High t1x4 - t1x4’ - ‘ns 'External Clock/Timer Input
17 El High Time 10 - 10 - - ns External Clock/Timer input
t8 El Low Time 10 - 10 - ns External Clock/Timer input
RESPONSES B "
11 | ICLK to TCLK High 3 [30 | s 30 ns
112 | TCLK LowTime 52 - 40 - ns | Notes
13 | TCLK High Time 84 - 52 - ns Note3
115 ICLK to PCLK High 3 30 3 30 ns '
- te PCLK Low Time 52 - 40 - ns | Notes
17 PCLK High Time 64 - 52 - ns Note 3
t19° | ICLKto TCLK Low - | ss - 32 ns
120 | ICLK to PCLK Low - 30 - 26 ns

NOTES: 1. High and low input levels for A.C. test:
"ICLK, NMI, and RESET: 4.0V and 0.4V
Other Inputs: 2.4V and 0.4V '
2. Output load: 100pF.
3. Tested with {1 = t1(min). For t1 > t1(min),
add t1 - t1(min). ’

32

Specifl_'catio'ns RTX .20 10

LYl

'A C. Electrlcal Specll'lcatlons (Conﬂnuod) VCC = 5V, £10%, To = -4o°c to +850C (Industrial) Tempmmre Rango)
VCC =5V, :5% TA = 0°C to +70°C (Commerc:al) Temperature Range -

vmemlo»m‘r; aUs_ ﬂMlNG (Notes 1 an_d 2)

, ’ " _' 8MHz 10MHz .
svmeoL | PARAMETER | M| max | min | max | units | COMMENTS
'REQUIREMENTS e |

21 | MDSetupTime 16 - |2 | - ns | ReadCycle
122 fMQqu‘nrno SRR B - 4 | o Read Cycle
RESPONSES L o
126 | PCLKtoMA Valid - s |- 43 | ns | Notes
t28. | MAHold Time] 2 - | 20 - ns Note 5
29 | PCLKtoMR/W,UDS, - 50 - 44 ns | Notes
: - LDS, NEW and BOOT Valid S : o . '
131 | MRW,UDS,LDS,NeWand | 20 | - | 20 | - ns [Notes
.- BOOT Hold Time - i) o
‘82 | PCLKtoMDValid - | 16 | - | 14 | ns | writecycie
33 | MOHodTme] 20 | - | 20 | - | ns | writeCycle Notes
t38 . | MDEnableTime - 42| - | 2] - | ns | writeCycle Notes
135 | PCLK1oMD Disable Time _ - | so | - | aa ns | WriteCycle, Notes 3,4

NOTES: 1. High and low input levels for AC. test:
-~ ICLK, NMI, and RESET: 4.0V and 0.4V .
_ Other Inputa: 2.4V and 0.4V
2. Output ioad: 100pF.
3. Output enable and disable times are ehundoﬂlod only.
4. Tested with t1 L] uocciﬁod minimum and 12 = o,s-n.
- Fort2 > 0. 5'"(min). add t2 - (0.5+t1(min)) to this specification.

5. Tested with 11 st specfied minimum and 12 = 0.Set1.
For 12 < 0.5t1(min), subtract (0.5+11(min)) - 12 from this specifi-
‘cation, : o L Co-

LT3

Specifications RTX 2010

A.C. Electrlcal Speclflcatlons (Continued) VCC = 5V, +10%, Ta = -400C to +859C (Industrial) Temperature Range
VCC = 5V, £5%, Tp = 00C to +70°C (Commerc;al) Temperature Range

ASIC BUS AND INTERRUPT TIMING (Notes 1 and 2)

* ICLK, NMI and REBET: 4.0V and 0.4V

Other inpute: 2.4V lld 0.4V

2. Output ioad: 100pP.
3. Output enable and disable times are characterized only.
4. Tested with 11 ot specified minimum and 12 = 0.5-t1.

For 12> 0.5¢11(min), add 12 - (0.5+t1(min)) to this specification.
- Tested with .11 at specified minimum and 12 = 0.5 {1.

For 12 < 0.5+11(min), subtract (0.5t1(min)) - 12 from this specifi-
cation. :

- Tested with t1 = t1(min). For t1 > t1(min), add 11 - t1(min).

- . 8MHz 10MHz
SYMBOL PARAMETER MIN | Mmax | miNn | max | uniTs ‘COMMENTS
REQUIREMENTS _
t40 GD Read Setup to PCLK 60 - 50 - ns Read Cycle
L ta GD Read Setup to GIO 60 - 50 - ns Read Cycle
‘142 GD Read Hold from GIO o - 0 - ns Read Cycle
t43 GD Read Hoid from PCLK 0 - 0 - ns Read Cycle
144 EI/NMI Setup Time 30 - 25 - ns INT/NMI Cycie
148 INTSUP Setup Time 22 - 20 - ns
147 INTSUP Hold Time | o - 0 - ns
RESPONSES '
148 PCLK High to GIO Low 52 - 46 - ns Note 8
149 GIO Low Time 52 - 40 - ns Note 8
150 ICLK High to GIO Low) - 35 - 30 ns
151 | ICLK High to GIO High - 3s - 32 ns
152 PCLK to GA Valid . - 49 - ‘40 ns Note 4
- 154 | GIO to GA Hold Time 12 N BRE) - ns Note5
156 PCLK to GR/W Valid - | s0 - 42 ns Note 4
158 GIO to GR/W Hold Time 12 - 12 - ns Note 5
161 ‘GDEnable Time -2 - -2 - ns Write Cycle, Note 3
t62 GD Valid Time - 18 - 14 ns Write Cycle
163 GIO to GD Hold Time 12 - 12 - ns Write Cycle, Note 5
165 GIO to GD Disable Time - | =0 - 44 ns Write Cycle, Notes 3, 4
167 | PCLKtoINTA High Time - 25 - 25 ne INTA Cycle
t68 INTA qud Time o] - 0o - .ns INTA Cycle
169 GIO High Time _ 62 - 50 - ns Note 6
NOTES: 1. High and low input leveis for A.C. test

a

RTX 2010

e {PULSE WIDTH , tPULSE WIDTH -
| v ' ~ TYPICAL o - , .
| | clockor VTN Lo e Sk 1.5v
| STROBE 0.4v — — 7 N
|- o ‘ ' {SETUP| tHOLD
out | TYPICAL 24V : -
| INPUT g 4v XXXXXK18v T 1sv XXXXX0
' , " ‘ . |'DELAY tDELAY
| : - v :
‘ | TvPicAL ’
| 1.5v oL | ’ ‘
*TEST HEAD | L L L '
CAPACITANCE | = = = | ng%u;
| EQUIVALENT CIRCUIT —1| ouTaTA
- T _ T T - Note: Values Are Subiject to Change
FIGURE 20. TEST CIRCUIT- FIGURE 21. A.C. DRIVE AND MEASURE POINTS - CLK INPUT »

NOTE For A. C !ostino input rise and fall times are driven lt 1 voit/ns

Timing Diagrams

NOTE 2 ,
NOTE 3—— - : N : L

NOTES: : : . :
1. NORMAL CYCLE: This wuvgorm describes a normal PCLK cyeb and a PCLK cycie with a Walt state.

2. EXTENDED CYCLE: This wavelorm deecribes a PCLK cycle bv a USER memory access or an external ASIC Bus read cycle whon the CYCEXT bit or
ARCE bit is set.

3 EX‘I’ENDED CYCLE. Thb wmm dooab. a GIO cycle for an external ASIC Bus read when the ARCE bit is set.
FIGUREY‘&?.‘ CLOCK AND WAIT TIMING

N

E1s- EI3 — i T\\\\\\\N AT
' ‘ t7 | t8 S ‘ o

FIGURE 23. TIMER/COUNTER TIMING S

. 38§

RTX 2010

wE

Timing Dl"agramé‘ (Continued)

"P'ab K Co K N
MA 3 2
ws — t29 ‘ =31
ups : ' .
NEW — SRR - R
BOOT = - } ¢ Dot §2] f— '
MR/W . . . - t22
MD - SIS 1L >—G
N et~ § 32— t35
) t 34 = r - t 33 —
MD K - ‘ &«

NOTES: 1. If both LDS and UDS are Iow. no memory access is lakmg placo in the curront cycle. Thm only occurs dunng streamed mstmchons that do not
access memory. ') .

c2. Durunq a streamed single cyc!o instruction, the Memory Data Buo is driven by the procouov

FI_GURE 24, MEMORY BUS TIMING

. m - » - - = . - — a
- GR/W - B33 v B

fet— § 40 —a la— t 43
fe—— { 41—l — 142

GD . \ AR < N | - " . NS>
. 7 R - f—t82-= — 185 o
, . - 181 —= — ‘ —— 03—

GD A aeneeaaw " - Yovd

ouTt : - 7 ~ : =

‘NOTES 1. elomsnmmmmmnm
o2 GR/W-goes low and GD bdmonbullASlc wrhocycln. lncludlng mtomnl onn.

'3: During non-ASIC write cycm. GD is not driven by m RTX 2010 ‘l’hordon. tis neommondod that ail GD pim be pullod to VCC or GND to
minimize power oupply eurrom md noiu. - o

FIGURE 25. ASIC BUS mmc

38

My

RIX 20170

Timing Diagrams (Continued)

INTSUP

‘ AN N QN
147 146 | 147

4 7 R

— r—t&? —-—A <—t68
TN
—.-1 t— 26 —a <—t28‘

w_ X} % KT veSTon Y

FIGURE 26. INTERRUPT TIMING: WITH INTERRUPT SUPPRESSION

NOTES: 1. Events in an interrupt sequence are as follows:

‘o1,

2.

The Interrupt Controlier samples the interrupt request inputs on the riging odoo of PCLK. If NMI rises between @1 and ¢5, the interrupt vector
will be for NMI.)
If any interrupt roquuu were sampled, the In!orrupt Controlier issues an interrupt request to the core on the famnq edge of PCLK.

63. The core sampies the state of the interrupt requests from the Interrupt Comouor on the falling edge of PCLK. if INTSUP is hlgh maskable

o4,

e5.

interrupts will not be detected at this time.
When the core samples an interrupt roqum on the falling edge of PCLK, an lnmrup! Acknowledge cycie will boom on the naxt rising edqo of
PCLK. :

Following the detection of an interrupt request by the core, an lnlorrupt Acknowliedge cycle begins. The interrupt vector will be based on the
highest priority interrupt request active at this time.

2. 144 is only required to determine when the Interrupt Acknowledge cycle will occur.
3. Interrupt requests should be held active until the Interrupt Ack'nowlodqo cycle for that intéerrupt occurs.

INTSUP K A

INTA | o e

B4 e | AAAMITTHIMIMIIMNMNMNNN

— t67 - H;(&

— l-—-lze ol - 128

MA ‘ ‘X >< X INT VECTOR X X

FIGURE 27. INTERRUPT TIMING: WITH NO INTERRUPT SUPPRESSION

a7

3

RTX 2010

Timing Diagrams (Continued)

167 —=

INTA

t26 —=

w X X)

l“

' FIGURE 28. NON-MASKABLE INTERRUPT TIMING

NOTES: 1. Evontc in an interrupt sequence are as followa.

a1. The iInterrupt Cmtrollor samples the interrupt roqunt inputa on the rising edge of PCLK. L) nm rises botwm @1 and e5, !ho interrupt vec«or
will be for NMI

- 02. If any mtorrupl roquuh were sampied, the Interrupt Controller iuuoo an interrupt roquoﬂ to the core on the falling edge of PCLK.

63. The core samples the state of the ntorrupt requests from the lnlon-up' Cormollor on the falling odao o' PCLK. If INTSUP is h»qh mukab!e‘
interrupts will not be detected at this iime.

" e4. When the core samples an interrupt request on the fallmq edge of PCLK an lmofrupt Acknowlodoo cycle will begin on the next nsmq edge of
i PCLK.

@5. Following the detection of an interrupt request by the core, an lnlmupt Acknowbdoo cycle bogim The im.rmp' vector will be bued on the
mqhut priority interrupt request active at this time.

2. 144 is only required to determine when the Interrupt Acknowiedge cycie will occur. -
3. Interrupt requests should be held active until the interrupt Acknowiedge cycle for that interrupt.occurs.

38

 HIX ZUTU.

. 84 PIN GRID ARRAY

. ToPVIEW

1,140

e ,

1180

1.140
1.180

| @ Harrls

RTX 2010

o~

1140
1.180

l-—— 1.000 BSC 4| '

\

"-- Index Mark

" BOTTOM VIEW

1.140

1180

1000 8SC —————= |

@G
OJO
@6
foYoXe
(CJOJO
(0JOXO
(OO
(OJO)

@O
(OXCROJC)
@O

(OXOJXO,
= HOXOXOJOXOLOXOXOXOJOXO!

[cJOXOJOJOXOXOJOXOXOXC2

> ® 0O O MM o I ¢ X

.0@@

—_—

\2 af s 5 7 8
‘ .080 MAX
. INDEX MARK

L

‘Min

= 003 MIN

SIDE VIEW

SEATING PLANE.
120 :
740

_.040
| 060

NbTE: All Dimensions are Tiax + Dimensions are in inches. . -

- -39

RTX 2010

sublidiaries.

Packaging (Continued) . v
: T 84 LEAD PLCC

o

TOP VIEW - SIDE VIEW

[) 1.185
: ' 1.195
1.150 ' 042

1.158 . l 056
D == e N N T T o T T e Ve T T T T T T T T . V-

J

il

nnnnnnnnnnnnnnnhnnn

1185 1.150 . '
1195 1.158 L
o3 f
021
L—;%% ~l L—.050 BsC 631
. 200
NOTE: All Dimensions are z—:“ . Dimensions are in inches.
Ordering Information ' -
‘ : COMMERCIAL/INDUSTRIAL '
RTX 2010 G 1 -10
FAMILY — B - - SPEED/PERFORMANCE
"RTX (Real Time Express) ' _ : I 10: 10MHz
' A : ' : 8: 8MHz
PART NUMBER — '
 PACKAGE TYPE —— . TEMPERATURE RANGE
- G PGA N , , . I Industrial -40°0C to +850C ‘
~ J: PLCC o ' -G Commerci‘a!OQCto +700C

~ X: Unpackaged ' ' - : ~ X: +250C

Harris Semiconductor products are soid by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at | :
_ any time without notice. Accordingly, the reader is cautioned o verify that data sheets are current before placing orders. Information furnished by Harris is

believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any inlring'mpnn of peients or other
rights of third parties which may result from its use. No. license is granted by implication or otherwise under any patent or patent rights ol‘ Harris or its

..

- 40

