BHARRIS RTX 2001A™

May 1990 Real Time Express™ Microcontroller
Features Description
* Fast 100ns Machine Cycle The RTX 2001A is a 16-bit microcontroller which is particu-
e Single Cycle Instruction Execution larly well suited for very high speed control tasks which are

less arithmetically intensive than those tasks which require

* Fast Step Arithmetic Operations the full capabilities of the RTX 2000. In these application

> 20 Cycle Multiply areas, this product offers cost/performance advantages,
» 21 Cycle Divide surpassing competing 8- and 16-bit microcontrollers by up
» 25 Cycle Square Root to 50X.

[]
l»)iref:.t Execution of Forth Language Pin compatible to the RTX 2000, this processor incorporates
Eliminates Assembly Language Programming two B4-word stacks with most of the features provided on the
¢ Single Cycle Subroutine Call/Return RTX 2000, including on-chip timers and an enhanced Inter-
¢ Four Cycle Interrupt Latency rupt Controller. Instruction execution times of one or two
machine cycles are achieved by utilizing a stack oriented,

* On-Chip Interrupt Controller multiple bus architecture. The high performance ASIC Bus,

* Three On;Chip 16-Bit Timer/Counters which is unique to the RTX" family of products, provides for
e ASIC Bus for Off-Chip Extension of Architecture extension of the microcontroller architecture using off-chip
* 1 Megabyte Total Address Space hardware acceleration logic and application specific I/O

devices. RTX Microcontrollers support high level languages

¢ Word and Byte Memory Access such as Forth and C. The advantages of this product are

® LowPowerCMOS.................. 5mA/MHz Typical further enhanced through the use of the peripherals and

eFullyStaticcovvvernnnnn. DC to 10MHz Operation development system support Harris provides for the RTX

* 84-Pin PGA or PLCC Package family.

* Available In the Harris Standard Cell Library Combined, these features make the RTX 2001A an extremely

* Pin Compatible to the RTX 2000™ powerful processor, providing the ability to meet numerous
» Two On-Chip 64 Word Stacks applications in low cost, high performance systems.

The RTX 2001A has been designed and fabricated utilizing
the Harris Advanced Standard Cell and Compiler Library. As
Embedded control; DMA controllers; stepper motor control; part of the Harris family of compatible cell libraries, the RTX
closed loop digital control and digital filter applications of 2001A architecture can also be incorporated into customer

Applications

moderate speed. ASIC designs.
RTX 2001A Block Diagram OFF CHIP MAIN
PERIPHERALS MEMORY
ASIC BUS MEMORY BUS RTX 2001 A
INTERFACE INTERFACE
CONTROL CLOCK AND Ar A A
INPUTS ey CONFIGURATION MEMORY
CONTROL PAGE
J CONTROL
y A v
INTERRUPT INTERRUPT | o WORD
INPUTS =" conTroL <+> GF?E.TURN <~
RTX CORE STACK
4 —p CONSTIRQ)(i_’I(_ERS
r’:mgg?s | e .h PROCESSOR > PaRANCTD . <
COUNTERS I'l > STACK

RTX™, RTX 2000™, RTX 2001A™, Real Time Express™, and ASIC Bus™ are Trademarks of Harris Corporation.

CAUTION: These devices are sensitive to electronic discharge. Proper IC handling procedures should be followed.
Copwriaht © Harris Corooration 1989

'RTX 20014

Pinouts .)
84 PIN PGA PACKAGE ‘
A| B |C |D|EJ|F |G |H|J]|K]|L L kK 4 H G F E D .¢c B A
11|MDOB| MD07|MDOB GND [MD02| MDo1[PCLK| UDS| GND |MATe|MA1E ' OO n
‘ MA16 MA19 GND UDS PCLK-MDO1MD02 GND MDO06 MDO7 MDO
: " O O O O O O O O Ohoe
10[MD11 MDO9| VCC |MDOSMDO3| NEW BOOT) LDS |MA18|MA17|MAT4] |\, \Xi7 MR18 LS BOOT NEW MDO3 MBS VEC MB0S MB11
o[MD12| MD10 MDO4|MDOO |MRMW| MAiSs| vce vee MQ,S MRV MB0D MEo4 MB70 MB12 S
' : 8
8]MD14 MD13 MAI3IMAI2] IyqAl2 MAI3 MD13 MD 14}
O O O O 7
7|GA0O) MD15) GAO1 MAT0|MAOSL | \259 MA10 GND GAO1 MD15 GAOG
s|rcLx| anp |aaoz MAO7|MA11 O O O BOTTOMVIEW O O OJe
MA11 MAO7 MAOB PINS UP GAO2 GND TCLK
INT - O O O O O}s
s|nTAl nwt | 205 MAos|MAoB| | -\ Ros INTSUP NMI INTA
4] vee| En MA02| MAO3 Mga M%g E<?I \%c *
3]l El12| El4 GD14|GD11| GD10 GDO1| MAO1 Mgi 6%1 GDQO G%)” G?” EOM 82 3
= O O O O O O O O O O 0Of-
2| E 13 RESET WAIT| GIO |GD13|GD12| GD08| GD06|GDO3|GDO2|GDOO| | mo ~ = o S ors B8 WA RESET E1a
, - . O OO0 OO0 O O O 0.0
1] e 15| 1IcLK |GRW Gm;| GND |GD07| GDog| VCC |GD05|GD04| GND GND GDo4 GDOS VOC GDos GDO7 GND GD15 GRAW IGLK E 15
o . ;
" aAlBB lec b |lE|Fla|RH|J]lKk]|L L K J H G F E D-C B A
2 g
84 LEAD PLCC PACKAGE
g
B _<X¥358LT2NZC3
ﬁzﬂﬁzghz"dgggogonoooo
WUWwwuwSZZZr00O0S0OSSSSSS
imnEnlsinininlsiniaininlslinlnEninEnlalalnEn!
/ ~FO0OONOUTNNFION=ODONOWN)
RESET[J12 74 F1MDO8
WAIT}13 ‘73 vCeC
ICLK 14 72 p mpoz
GRW 15 71 P MDo6
Glod1e 70 o MDo5
GD15]17 69 1 GND
GD14 18 : : 68 |1 MDo4
GD13 19 i A 67 |1 MDO3
@b 20 RTX 2001A 66 | Mooz
GD12]21 65 [MDO1
GD11 22 : : 64 |1 MDoO
GD10]23 TOP VIEW 63 I MRW
GDO09] 24 7 62 P PCLK:
GDo8 []25 61 b BOOT
GDo7 26 60 |1 NEW
vCC([}27 59 J UDS
GDo6] 28 58 F1LDS
GDOS5 C}29 57 1 GND
GD04 30 56 | MA19
GDO3 }31 55 F1MA18
GND [J32 54 I MA17
VMUV ONONONODTUVONDNIO=N®M
k MMMNOHOMOOMTIITIITSTITSTITSTTITTOOOO ‘
§58588388s8g82c-agIee
coogssssIssssgss<8<=sg
OCOVWEETETETESTEIITETZIZSIZSZT" 2232

NOTE: An overbar on a signal name represents an active LOW signal.

RTX 2001A

TABLE 1. PGA AND PLCC PIN/SIGNAL ASSIGNMENTS

PLCC PGA SIGNAL PLCC PGA SIGNAL :
LEAD PIN NAME TYPE LEAD PIN NAME TYPE
1 Cé6 GAO02 Output; Address Bus 43 J6 MAOQS8 - Output; Address Bus
2 A6 TCLK Output 44 J7 GND Ground
3 A5 INTA Output 45 L7 MAO9 Output; Address Bus
4 B5 NMI Input 46 K7 MA10 Output; Addréss Bus
5 C5 INTSUP Input 47 L6 MA11 Output; Address Bus
6 A4 vCC Power 48 L8 MA12 Output; Address Bus
7 B4 El1 Input 49 K8 MA13 Output; Address Bus
8 A3 El2 Input 50 Lo VCC Power
9 A2 EI3 Input 51 L10 MA14 Output; Address Bus
10 B3 El4 Input - 52 K9 MA15 Output; Address Bus
1 A1 EI5 Input 53 L11 MA16 Output; Address Bus
12 B2 RESET Input 54 K10 MA17 Qutput; Address Bus
13 c2 WAIT Input 55 J10 MA18 Output; Address Bus
14 B1 ICLK Input 56 K11 MA19 - Output; Address Bus
15 C1 GR/W Output 57 J11 GND Ground
16 D2 GIO Output 58 H10 LDS Output
17 D1 GD15 I/0O; Data Bus 59 H11 uDs Output
18 E3 GD14 1/0; Data Bus 60 F10 NEW Output
19 E2 GD13 1/O; Data Bus 61 G10 BOOT Output
20 E1 GND Ground . 62 G11 PCLK_ Output
21 F2 GD12 1/O; Data Bus 63 G9 MR/W Output
22 F3 GD11 I/O; Data Bus 64 Fo MDOO 1/O; Data Bus
23 G3 GD10 1/0; Data Bus 65 F11 MDO1 I1/O; Data Bus
24 G1 GDO09 1/0; Data Bus 66 E11 MDO2 1/O; Data Bus
25 G2 GDO8 1/0O; Data Bus 67 E10 MDO03 1/O; Data Bus
26 F1 GDO7 I/O; Data Bus 68 E9 MDO4 1/O; Data Bus
27 H1 VCC Power - 69 D11 GND Ground
28 H2 GDO06 I/O; Data Bus 70 D10 MDO05 1/O; Data Bus
29 J1 GDO5 1/O; Data Bus 71 C11 MDO06 1/O; Data Bus
30 K1 GDO0O4 1/O; Data Bus 72 B11 MDO7 1/O; Data Bus
31 J2 GDO03 1/O; Data Bus 73 Cc10 VCC Power
32 L1 GND Ground 74 Al1 MDO8 1/0; Data Bus
33 K2 GDO02 1/O; Data Bus 75 B10 MDO9 I/0; Data Bus
34 K3 GDO1 1/O; Data Bus 76 B9 MD10 I/O; Data Bus
35 L2 GDOO 1/O; Data Bus 77 A10 MD11 1/O; Data Bus
36 L3 MAO1 Output; Address Bus 78 A9 MD12 1/0; Data Bus
37 K4 MAO2 Output; Address Bus 79 B8 MD13 1/0; Data Bus
38 L4 MAO3 Output; Address Bus 80 A8 MD14 I/O; Data Bus
39 J5 MAO4 Output; Address Bus 81 B6 GND Ground
40 K5 MAO5S Output; Address Bus 82 B7 MD15 1/O; Data Bus
41 L5 MAO6 Output; Address Bus 83 A7 GAOO Output; Address Bus
42 K6 MAO7 Output; Address Bus 84 Cc7 GAO1 Output; Address Bus
TABLE 2. OUTPUT SIGNAL DESCRIPTIONS
PLCC | RESET
SIGNAL | LEAD | LEVEL DESCRIPTION
OUTPUTS
NEW - 60 1 NEW: A HIGH on this pin indicates that an Instruction Fetch is in progress.
BOOT 61 1 BOOT: A HIGH on this pin indicates that Boot Memory is being accessed This pin can be set or reset by
accessing bit 3 of the Configuration Register.
MR/W 63 1 MEMORY READ/WRITE: A LOW on this pin indicates that a Memory Write operation is in progress.
ubsS 59 1 UPPER DATA SELECT: A HIGH on this pin indicates that the high byte of memory (MD15-MDO0S8) is
being accessed.
LDS 58 1 LOWER DATA SELECT: A HIGH on this pin indicates that the low byte of memory (MD0O7-MDOO) is
being accessed.
GIO 16 1 ASIC I/O: ALOW on this pin indicates that an ASIC Bus operation is in progress.
GR/W 15 1 ASIC READ/WRITE: A LOW on this pin indicates that an ASIC Bus Write operation is in progress.
PCLK 62 0 PROCESSOR CLOCK: Runs at half the frequency of ICLK. All processor cycles begin on the rising edge
of PCLK. Held low extra cycles when WAIT is asserted.
TCLK 2] TIMING CLOCK: Same frequency and phase as PCLK but continues running during Wait cycles.
INTA 0 INTERRUPT ACKNOWLEDGE: A HIGH on this pin indicates that an Interrupt Acknowledge cycle is in
progress.

RTX 2001A

TABLE 3. INPUT SIGNAL, BUS, AND POWER CONNECTION DESCRIPTIONS

PLCC
SIGNAL | LEAD DESCRIPTION
INPUTS B) B
WAIT 13 | WAIT: AHIGH on this pin causes PCLK to be held LOW and the current cycle to be extended.
~ICLK 14 i INPUT CLOCK: Internally divided by 2 to generate all on-chip timing (Schmitt triggerTI’L input levels).
RESET" . 12 A HIGH Ievel on this pin resets the RTX. Must be held high for at least 4 ICLK cycles (Schmltt tngger»
* TTL input levels).
EI2,ElN. . 8,7 EXTERNAL INTERRUPTS 2, 1: ‘Active HIGH level-sensitive inputs to the Interrupt Controller. Sampled on
» P e _therising edge of PCLK. See Timing Diagrams for detall .
EI5-EI3 11-9 EXTERNAL INTERRUPTS 5, 4. 3: Dual purpose inputs; active HIGH Ievel-sensmve Interrupt Controller
. inputs; active HIGH edge-sensitive Timer/Counter inputs. As interrupt inputs, they are sampled on the
rising edge of PCLK. See Timing Diagrams for detail.
NMI 4 NON-MASKABLE . INTERRUPT: Active HIGH edge—sensutlve interrupt Controller input capable of
_interrupting any processor cycle. See the Interrupt Suppression Section (Schmitt tngger TTL input
levels).
INTSUP 5 INTERRUPT SUPPRESS: A HIGH on this pin inhibits all maskable mterrupts internal and external.

ADDRESS BUSES (OUTPUTS)

GAO2 1 ASIC ADDRESS: 3-bit ASIC Address Bus, which carries address mformalion for external ASIC devuces.

GAO 84

GAOO 83 , , ,
MA19-MA14 | 56-51 MEMOR.Y'ADDRE"SS: 19-bit Memory Address Bus, which carries address information for Main Memory.
MA13-MAO9 | 49-45 ‘ ’ '
MA0S-MAO1 | 43-36
DATA BUSES (I/0)

'GD15-GD13 '17—1 9 | ASIC DATA. 16-bit bidirectional external ASIC Data Bus, which carries data to and from off—chlp o
:) devices.

GD12-GDO7 | 21-26
GD06-GD03 | 28-31
GD02-GDO00 | 33-35 _ _ . _

MD15 82 MEMORY DATA: 16-bit bidirectional Memory Data Bue,_ which carries data to and from Main Memory.
MD14-MD08 | 80-74 ' '
MDO07-MDO5 | 72-70
‘MD04-MDOO | 68-64
POWER CONNECTIONS , v : ,

VCC - 6,27, Power supply +5 Volt ‘connections. A 0.1pF, low impedance decoupling capacitor shodld be placed
| 80,73 between VCC and GND. This should be located as close to the RTX package as possible.
GND 20,32, | Power supply ground return connections.
: 44,57,
69, 81

RTX 2001A

" RTX.2001A Microcontroller

The RTX 2001A is designed around the RTX Processor core,
which is part of the Harris Standard Cell Library.

This processor core has eight 16-bit internal registers, an
ALU, internal data buses, and control hardware to perform in-
struction decoding and sequencing.

On-chip peripherals which the RTX 2001A offers include a
Memory Page Controller, an Interrupt Controller, three Timer/
Counters, and two Stack Controllers. Two scratchpad regi-
sters, one of which can be used for automatic counting, are
also provided on-chip in addition to the hardware registers
which support the peripheral controllers.

Off-chip user interfaces provide address and data access to
Main Memory and ASIC I/O devices; user defined interrupt
signals, and Clock/Reset controls.

Figure 1 shows the data paths between the core, on-chip
peripherals, and off-chip interfaces.

The RTX 2001A microcontroller is based on a two-stack
architecture. These two stacks, which are Last-in-first-out
(LIFO) memories, are called the Parameter Stack and the
Return Stack.

. o =]
OsER 52,3585 18 YR séf%
INTERFACES s258za5s 32 | oG OO E ZZUW oz PPk

—> GR/W

—’ GIO

Two internal registers, and [I=Z§3, provide the top
two elements of the 16-bit wide Parameter Stack, while the
remaining elements are contained in on-chip memory (“stack
memory”).

The top élement of the Return Stack is 21 bits wide, and is
stored in registers [] and [[Ei, while the remaining
elements are contained in stack memory. :

The highly parallel architecture of the RTX is optimized for
minimal Subroutine Call/Return overhead. As a result, a
Subroutine Call takes one Cycle, while a Subroutine Return is
usually incorporated into the preceding instruction and does
not add any processor cycles. This parallelism provides for
peak execution rates during simultaneous bus operations
which can reach the equivalent of 40 million Forth language
operations per second at a clock rate of 10MHz. Typical exe-
cution rates exceed 10 million operations per second.

Processor timing is driven by a 2X clock (ICLK) with a Schmitt
trigger input. This allows use with systems which reduce
power consumption by using a slow input clock with
arbitrarily slow rise and fall times.

MEMORY BUS
INTERFACE

RTX 2001A

INTERFACE

i

|
—_— INTA

CLOCK AND
RESET CONTROL

)\

N

AN

INTERRUPT
CONTROL

IMR
IVR
IBC

TIMER/COUNTERS

T

RX

—— G

CN- CHIP PERIPHERALS

P-EEEEEN

a2l | PatAmcter
ETACK INSTRUCTION STACK ALU
MEMGRY DECODER MEMORY

FIGURE 1. RTX 2001A FUNCTIONAL BLOCK DIAGRAM
* GG contains the 5 most significant bits.(20-16) of the top element of the Return Stack.

RTX 2001A o .

RTX 2001A Operation

Control of all data paths and the Program Counter Register,
(), is provided by the Instruction Decoder. This hardware
determines what function is to be performed by looking at the
contents of the Instruction Register, ([), and subse-
quently determines the sequence of operations through. data
path control. ‘

Instructions which do not perform memory accessés execute
in a single clock cycle while the next instruction is being
fetched.

As shown in Figure 2, the instruction i_s-latched into [[3] at the
beginning of a clock cycle. The instruction is then decoded
by the ‘processor. All necessary internal operations are
performed simultaneously with fetching the next instruction.

Instructions which access memory require two clock cycles
to be executed. During the first cycle of.a memory access
instruction, the instruction is decoded, the address of the
memory location to be accessed is placed on the Memory

| PCLK ‘

~Address Bus (MA19-MAOQ1), and the memory data (MD15-
MDOO), is read or written. During the second cycle, ALU
operations are performed, the address of the next instruction
to be executed is placed on the Memory Address Bus, and
the next instruction is fetched, as indicated in the bottom half
of Figure 2.

RTX Data Buses and Address Buses

The RTX core bus architecture provides for unidirectional
data paths and simultaneous operation of some data buses.
This parallelism allows for maximum efficiency of data flow
internal to the core.

Addresses for accessing external (off—chip) memory or ASIC
devices are output via either the Memory Address Bus
(MA19-MAO1) or the ASIC Address Bus (GA0O2-GA00). See
Table 3. External data is transferred by the ASIC Data Bus
(GD15-GDO00) and the Memory Data Bus (MD15-MDO0Q),
both of which are bidirectional.

. EXECUTION SEQUENCE WITH NO MEMORY DATA ACCESS:

| BEGIN ‘END OF
FIRST
CcLOCK

CYCLE-

CONCURRENT CcLOCK

OPERATIONS

FIRST

| BEGIN.

PERFORM INTERNAL OPERATIONS AND
ALU OPERATIONS, AS REQUIRED

ADDRESS OF
NEXT
INSTRUCTION
IS PLACED ONTO
MA18 - MAO1
BUS

INSTRUCTION
LATCHES INTO

FETCH

| - ASIC BUS OPERATIONS

EXECUTION SEQUENCE WITH MEMORY DATA ACCESS:

BEGIN
FIRST
CLOCK

FIRST
CLOCK

END OF I BEGIN

SECOND
CLOCK

CYCLE l ' CYCLE

END OF
SECOND
cLOCK |

SECOND

cLocx CONCURRENT

CYCLE CYCLE | CYCLE CONCURRENT CYCLE
| : ADDRESS OF : ' ” PERFORM ALU OPERATIONS ' h
| INSTRUCTION g MEMORY) | - -

'-‘L‘::ES. O || LOCATION . READ OR WRITE PLACE ADDRESS OF . '
| @ § 18 PLACED ONTO MEMORY DATA | NEXT INSTRUCTION .ZESTTCR”UC'ﬁgl |
| BuUS ' ONTO MA19 - MAO1 |

1

FIGURE 2. INSTRUCTION EXECUTION SEQUENCE

RTX 2001A

RTX Internal Registers

The core of the RTX 2001A is a macrocell available through
the Harris Standard Cell Library. This core contains eight
16-bit internal registers, which may be accessed implicitly or
explicitly, depending upon the register accessed and the
function being performed.

: The Top Register contains the top element of the
Parameter Stack. is the implicit data source or destina-
tion for certain instructions, and has no ASIC address assign-
ment. The contents of this register may be directed to any I/O
device or to any processor register except the Instruction
Register. is also the T input to the ALU. Input to
must come through the ALU. This register also holds the most
significant 16 bits of 32-bit products and 32-bit dividends.

: The Next Register holds the second element of the
Parameter Stack. is the implicit data source or desti-
nation for certain instructions, and has no ASIC address
assignment. During a stack “push”, the contents of
are transferred to stack memory, and the contents of
are put into . This register is used to hold the least sig-
nificant 16 bits of 32-bit products. Memory data is accessed
through , as described in the Memory Access section
of this document.

[l : The Instruction Register is actually a latch which
contains the instruction currently being executed, and has no
ASIC address assignment. In certain instructions, an operand
can be embedded in the instruction code, making [the
implicit source for that operand (as in the case of short liter-
als). Input to this register comes from Main Memory (see
Tables 12-24 for code information).

: The Configuration Register is used to indicate and
control the current status/setup of the RTX microcontroller,
through the bit assignments shown in Figure 3. This register
is accessed explicitly through read and write operations,
which cause interrupts to be suppressed for one cycle, guar-
anteeing that the next instruction will be performed before an
Interrupt Acknowledge cycle is allowed to be performed.

: The Program Counter Register contains the address
of the next instruction to be fetched from Main Memory. At
RESET, the contents of are set to 0.

Il : The Index Register contains 16 bits of the 21-bit top
element of the Return Stack, and is also used to hold the
count for streamed and loop instructions (see Figure 11). In
addition, [J can be used to hold data and can be written from
. The contents of [] may be accessed in either the push/
pop mode in which values are moved to/from stack memory
as required, or in the read/write mode in which the stack
memory is not affected. The ASIC address used for [] deter-
mines what type of operation will be performed (see

Table 11). When the Streamed Instruction Mode is used, a
count is written to [] and the next instruction is executed that
number of times plus one (i.e. count + 1).

[M®] : The Multiply/Divide Register holds the divisor during
Step Divide operations, while the 32-bit dividend is in
and . During Step Multiply operations, [[3] holds the
multiplier, while holds the multiplicand. [[{[8] may also
be used as a general purpose scratch pad register.

Eil: The Square Root Register holds the intermediate
values used during Step Square Root calculations. EJi] may
also be used as a general purpose scratch pad register.

On-Chip Peripheral Registers

The RTX 2001A has an on-chip Interrupt Controller, a
Memory Page Controller, two Stack Controllers, and three
Timer/Counters. Each of these peripherals utilizes on-chip
registers to perform its functions. Two additional RTX 2001A
on-chip peripheral registers provide for scratchpad or
scratchpad/counting functions.

TIMER/COUNTER REGISTERS

, , : The Timer/Counter Registers are 16-
bit read-only registers which contain the current count value
for each of the three Timer/Counters. The counter is decre-
mented at each rising clock edge of TCLK. Reading from -
these registers at any time does not disturb their contents.
The sequence of Timer/Counter operations is shown in
Figure 15 in the Timer/Counters section.

.
15141312 [11,10,0 87, 6,54 [3,2,1,0

R/W; Carry
R/W; Complex Carry
R/W; Byte Order Bit
Resets to 0. Modes:

= "IntelTM- Like”
0 = "MotorolaTM. Like”
R /W; Boot

Drives output signal
to select Boot ROM;

Write - only(Reads as 0);
Set Interrupt Disable;
0 = Int. Enabled;
1 = Int. Disabled

Reserved *

Read Only; Interrupt
Disable Status

Read Only;
Interrupt Latch
FIGURE 3. BIT ASSIGNMENTS
Motorola™ is a registered trademark of Motorola Inc.
Intel™ is a registered trademark of Intel Corporation

* NOTE: Always read as “0". Should be set = O during Write operations.

RTX 2001A

I8, [, EGEA: The Timer Preload Registers are parameter Stack Fatal Error

write-only registers which contain the initial 16-bit count val- Return Stack Fatal Error _
ues which are written to each timer. After a timer counts down : BR—
to zero, the preload register for that timer reloads its initial e
~ count value to that timer register at the next rising clock edge, ' YYvvy|
synchronously with TCLK. Writing to these registers causes 15[1419,12 | 11,10,9 8] 7,6, 5,4 3,2, 1,0
the count to be loaded into the corresponding Tnmer/Counter ~~ T Read - only; Fatal
register on the following cycle. . ‘ Stack Error Flag
) Read - only; Parameter
S Stack Un erllow Flag
HOLDING/COUNTER SCRATCHPAD; REGISTERS Read - only; Return
: . R ! . Stack Underflow Flag
- I3l : The RH:Scratchpad Register is a read/write 16-bit - ' L Read - only; Parameter
' ™y ' Stack Overflow. Flag
scratchpad register for data storage, which provides faster . | Read - only: Return
access than to memory or a location buried in the stack. _ Stack ng;ﬂow Flag
I3 : The RX Scratchpad Register can be used as a read/ v 2533%‘;,,2?;‘:%:?,
write 16-bit scratchpad register (like [zl). In addition, XY . Ea:g M;;g%ﬁccess
can be used as a.16-bit, program controlled, counting regi- =0 :lectm
ster which automatically increments or decrements the con- L Reserved*
tents of by one when'it is read or written with specialized Yyvvvy L CYCEXT*: Allows
instructions (see Table 12). Incrementing the register con- 23282 extended cycle length
" ™ h . M << << << for INTA or User Memory
tents beyond the “all ones” state results inawraptothe“all =zzz=z:=z= Instruction cycles; see
zeros” state. Decrementing the register below the “all zeros” v : Clock and Wait
. M ' Interrupt Vector Timing Diagrams
state results in a wrap to the “all ones” state. ‘Base (see the
. : : Interrupt Section). Select Timer/Counter
N input signals: TCLK
INTERRUPT CONTROLLER REGISTERS 2 o EI5 - EI3 (Table 6)
: The Interrupt Vector Register is a read-only register ,
whlch holds the current Interrupt Vector value See Figure 4 FIGURE 5. BIT ASSIGNMENTS
and Table 7. : :
: The Interrupt BaSe/ContrOl Register is used to store
the Interrupt Vector base address and to specify configura-
tion information for the processor, as indicated by the bit
assignments in Figure 5.
[IME : The Interrupt Mask Register has a bit assigned for
each maskable interrupt which can occur. When a bit is set, [IMR]
the interrupt corresponding to that bit will be masked. Only [i5131312[1110,8 8[7,6,5,4(3,2,1,0
the Non-Maskable Interrupt (NMI) cannot be masked. See “——~/ Reserved *
Figure 6 for bit assignments for this register. En
- ‘ (Exlernal Input Pln)
Y bit 15 | l;?\l&lell"lg‘r:meler Stack
Lileg bit 14 ——— RSU, Return Stack
T:7e) bit 13 : Underflow v
1BC Y} 12 — g%x, l;av;ameler Stack
18C CLRY) . — RSV, Return Stack
i ¥ bit 10 Overtiow
Vector Address : - : Ei2
' ' (See Table 7) Ig:?
) : r—— All zeros : TCl 2
YYYYYVYY A~ AN : EI3
El4
”15|14|13|12|11[10|9 I8 |7 16154 la i21110] | | EIS
___________ — .
~ swi :
MAIS -) o) Reserved *
FIGURE 4. BIT ASSIGNMENTS . FIGURE 6. [[F] BIT ASSIGNMENTS

* NOTE: Always read as “0". Should be set = 0 during Write operations.

RTX 2001A

STACK CONTROLLER REGISTERS

EELE : The Stack Pointer Register holds the stack pointer
value for each stack. Bits 0-5 represent the next available
stack memory location for the Parameter Stack, while bits
8-13 represent the next available stack memory location for
the Return Stack. These stack pointer values must be
accessed together, as [E35] . See Figure 7. '

: The Stack Overflow Limit Register is a write-only
register which holds the overflow limit values (0 to 63) for the
Parameter Stack (bits 0-5) and the Return Stack (bits 8-13).
These values must be written together. See Figure 8.

EI3 : The Stack Underflow Limit Register holds the
underflow limit values for the Parameter Stack and the Return
Stack. In addition, this register is utilized to define the use of
substacks for both stacks. These values must be accessed
together. See Figure 9. '

15 4 18,12[1110,9 |8|7,6,5,4]3,2,1,0
| S PSP, Parameter Stack
Pointer
Reserved *

RSP, Return Stack
Pointer

Reserved *

FIGURE 7. [5] BIT ASSIGNMENTS

15,14,1312[11/10/9 8] 7,6,5,4[3,2,1,0
Y

PVL: Parameter
Stack Overflow Limit

Reserved, should be set
= 0 during Write operations

RVL: Return Stack
Overflow Limit

Reserved, should be set
= 0 during Write operations

FIGURE 8. BIT ASSIGNMENTS

‘

15141312 1110,9,8]7,6,5,4[3,2,1,0
\ 7

PSF:- Parameter Stack
Start Flag

Parameter Substack bit:
= 0: two 32 word stacks
= 1: one 64 word stack

Reserved *

PSU: Parameter
Stack Underflow Limit
0 - 31 words from
bottom of stack

RSF: Return Stack
Start Flag

Return Substacks bit:
= 0: two 32 word stacks
= 1: one 64 word stack

Reserved *

RSU: Return Stack
Underflow Limit

0 - 31 words from
bottom of stack

FIGURE 9. E¥[{] BIT ASSIGNMENTS

* NOTE: Always read as *0”. Should be set = 0 during Write operations.

RTX 2001A

MEMORY PAGE CONTROLLER REGISTERS

: The Code Page Register contains the value for the

current 32K-word Code page. See Flgure 10 for bit field as-
signments.

&3 : The Index Page Register extehds the Index Register
(1) by 5 bits; i.e. when a Subroutine Return is performed, the
[[&3 contains the Code page from which the subroutine was
called, and comprises the 5 most significant bits of the top
element of the Return Stack. See Figure 11. During non-
subroutine operation, writing to [] causes the current Code
page value to be written to [[Fi] . Reading or writing directly
to [[d3d does not push the Return Stack. ‘

BIEH : The Data Page Register contains the value for the
current 32K-word Data page. See Flgure 12 for bit field
assighments. -

[UPR] : The User Page Register contains the value for the
current User page. See Figure 13 for bit field assignments.

: The User Base Address Register contains the base
address for User Memory Instructions. See Figure 13 for bit
field assignments.

:]
15141312[111019 18]7,6 15 14]8.2,1,0]
Reserved * Y
MA19 -
MA18
MA17
MA16
FIGURE 10. [&51 BIT ASSIGNMENTS
Bit Assignments Dufin'g Subroutine Operations
20,19,18,17, 16 [15,14,13,12| 11,109 |8—|-7'|6 |$|4|3 12110

Type of Return
= 1: Interrupt Returns:
='0: Subroutine Returns:

—p Defines Return Address
p Where DPRSEL Bit is

stored during Interrupt
or Subroutine Call

Bit Assignmehts During Non - Subroutine Operations

20,19, 18,17, 16 [15,14,13,12[11, 1o.9.s|7,6.5.4|a.2:1|0

Y—> Used for temporary

storage of variables,
loop counts, and
. stream counts

; Current Code
. Page value

FIGURE 11. [] AND [BIT ASSIGNMENTS

Initialization of Registers

Initialization of the on-chip registers occurs when a HIGH
level on the RTX RESET pin is held for a period longer than
four ICLK cycles. While the RESET input is HIGH, the TCLK
and PCLK clock outputs are held reset in the LOW state.

Table 4 shows initialization values and ASIC addresses for
the on-chip registers. As indicated, both the and the
are cleared and execution begins at page .0,"word 0
when the processor is reset.

The RESET has a Schmitt trigger input, which allows the use
of a simple RC network for generation of a power-on RESET
signal. This helps to minimize the circuut board space’
requn'ed for the RESET circuit.

To ensure reliable operation even in noisy embedded control
environments, the RESET input is filtered to prevent a reset
caused by a glitch of less than one ICLK cycle.

1514/1312[11110/9 18[7,6,5,4[3,2,1,0

Reserved* —— i j

MA19 «¢
MA18

© MA17
MA16

FIGURE 12. I BIT ASSIGNMENTS

' USER PAGE
REGISTER

|1sn4nsn2l111019.8[7,6,5,4]3 2

1,0

© Reserved* — !
MA19 « -
MA18 «¢
MA17 <
MA16 < -

usen sase
REGISTER [151411312[1110i9 1876 5

MA15 - MAOS ——

MAOS

w
7]

74—|€ 121110

MAO4

Reserved* |

MAO3

MAO2

!

MAO1

Not used to generate
this address
. /\

15'141312/1110'9 ' TaTelal Tolql .
INSTRUCTION 3h211h0'9'8[7'6's'4[372T110
REGISTER

FIGURE 13. [IZE] AND BIT ASSIGNMENTS

* Note: Always read as “0". Should be set

0 during Write operallons

10

RTX 2001A

TABLE 4. REGISTER INITIALIZATION AND ASIC ADDRESS ASSIGNMENTS

HEX INITIALIZED
REGISTER ADDR CONTENTS DESCRIPTION/COMMENTS
0000 0000 0000 0000 Top Register
NEXT 1111 1111 1111 1111 Nextﬁegister
IR 0000 0000 0000 0000 Instruction Register
1] OOH 1111 1111 1111 111 Index Register
O1H
O2H
’ O3H 0100 0000 0000 1000 Configuration Register: Boot=1; Interrupts disabled; Byte Order=0.
|[MDJ 04H 1111 1111 1111 1111 Multiply/Divide Register
B 06H 0000 0000 0000 0000 Square Root Register
O7H 0000 0000 0000 0000 Program Counter Register
[IMR | 08H 0000 0000 0000 0000 Interrupt Mask Register
|SPR| O9H 0000 0000 0000 0000 Stack Pointer Register: The beginning address for each stack is set to
avalue of ‘0",
ISUR| OAH 0000 0011 0000 0011 Stack Underflow Limit Register
OBH 0000 0010 0000 0000 Interrupt Vector Register: Read only; this register holds the current
Interrupt Vector value, and is initialized to the “No Interrupt” value.
OBH 1111 1111 1111 1111 Stack Overflow Limit Register: Write~only; Each stack limitis set to its
maximum value.
[IPR} OCH 0000 0000 0000 0000 Index Page Register
|DPR] ODH 0000 0000 0000 0000 Data Page Register: The Data Address Page is set for page ‘0’.
UPR] OEH 0000 0000 0000 0000 User Page Register: The User Address Page is set for page ‘0.
OFH 0000 0000 0000 0000 Code Page Register: The Code Address Page is set for page ‘0’.
10H 0000 0000 0000 0000 Interrupt Base/Control Register
[UBR] 11H 0000 0000 0000 0000 User Base Address Register: The User base address is set to ‘0’
within the User page.
/ 13H 0000 0000 0000 0000 Timer/Counter Register 0: Set to time out after 65536 clock periods
or events.
/ 14H 0000 0000 0000 0000 Timer/Counter Register 1: Set to time out after 65536 clock periods
or events.
/ 15H 0000 0000 0000 0000 Timer/Counter Register 2: Set to time out after 65536 clock petiods
or events.
RX 16H 0000 0000 0000 0000 Scratchpad/Counting Register
IRH| 17H 0000 0000 0000 0000 Scratchpad Register

11

RTX 2007A

Dual Stack Architecture

- The RTX 2001A features a dual stack architecture. The two |

64-word stacks are the Parameter Stack and the Return
Stack, both of which may be accessed in parallel by a single
instruction, and which minimize overhead in passing parame-
ters between subroutines. The functional structure of each of
these stacks is shown in Figure 14.

The Parameter Stack is used for temporary storage of data

and for passing parameters between subroutines. The top
two elements of this stack are contained in the and
registers of the processor, and the remainder of this
stack is located in stack memory. The stack memory
assigned to the Parameter Stack is' 64 words deep by
16 bits wide.

The Return Stack is used for storing return addresses when
performing Subroutine Calls, or for storing values temporarily.
Because the RTX 2001A uses a separate Return Stack, it can
call and return from subroutines and interrupts with a mini-
mum of overhead. The Return Stack is 21 bits wide. The
16-bit Index Register, [1 , and the 5-bit Index Page

Register, [[&3] , hold the top element of this stack, while the:

remaining elements are located in stack memory. The stack
memory portion of the Return Stack is 21 bits wide, by 64
words deep.

The data on the Return Stack takes on different meaning,
depending upon whether the Return Stack is being used for
temporary storage of data or to hold a return-address during a
subroutine operation (Figure 11).

RTX 2001A STACK CONTROLLERS

The two stacks of the RTX 2001A are controlled by |dent|cal
Programmable Stack Controllers

The operation ' of the Programmable Stack. Controllers

depends on the contents of three registers. These-registers

are il , the Stack Pointer Register, , the Stack

Overflow Limit Register, and Elf[3] , the Stack Underflow
~Limit Register (see Figures 7, 8, and 9).

EL:LE] contains the location of the next stack memory location
to be accessed in a stack push (write) operation. After a push,
the [EZ3] is incremented (post-increment operation). In a
stack pop (read) operation, the stack memory location with an
address one less than the EJ&3] will be accessed, and then
the EJ&3] will be decremented (pre-decrement operation). At
start-up, the first stack locatlon to have data pushed into it is
location zero.

Upper and lower limit values for the stacks are set into the
Stack Overflow Limit Register and in the Stack Underflow
Limit Register. These values allow interrupts to be generated
prior to the occurrence of stack overflow or underflow error
conditions. Since the RTX 2001A can take up to four clock
~cycles to respond to an interrupt, the values set in these regi-
sters should include a safety margin which allows valid stack
operation until the processor executes the interrupt service
routine. ‘

15/14/1312/1110/9,8(7,6,5,4,3,2,1,0
\ 7 \

Y

Y

151413121110,9,8[7,6,5,4,3,2,1,0

20 ,19,18(17,16 15,14,13,12|11,10, 9, 8=r7| 6, 5.4 13,2,

STACK MEMORY
(ON - CHIP)

14131211109/8 76,5432, 1,0

STACK MEMORY
(ON - CHIP)

15141312111d 98 [776'57473T2T 170

FIGURE 14. DUAL STACK ARCHITECTURE

12

RTX 2001A

SUBSTACKS

Each 64-word stack may be subdivided into two substacks
under hardware control for simplified management of
multiple tasks. Each substack contains 32 words of stack
memory. Stack size is selected by writing to bit 1 of the
EE for the Parameter Stack, and bit 9 for the Retun
Stack.

Substacks are implemented by making bits 5 or 13 of the
B control bits, i.e. they are not incremented when the
stack size is 32 words. Because of this, a particular substack
is selected by writing a value which contains both the stack
pointer value and the substack number to the El{{ .

Each stack has a Stack Start Flag (PSF and RSF) which is
used for stack error detection (not for the stack pointer). For
the Parameter Stack, the Start Flag is bit zero of the BV ,
and for the Return Stack it is bit eight. If the Stack Start Flag is
one, the stack starts at the bottom of the stack or substack
{location 0). If the Stack Start Flag is zero, the substack starts
in the middle of the stack. An exception to this occurs if the
overflow limit in is set for a location below the middle of
the stack. In this case, the stacks always start at the bottom
locations. See Table 5 for the possible stack configurations.

Manipulating the Stack Start Flag provides a mechanism for
creating a virtual stack in memory which is maintained by in-
terrupt driven handlers.

Possible applications for substacks include use as a
recirculating buffer (to allow quick access for a series of
repeated values such as coefficients for polynom'ialbevalua-
tion or a digital filter), or to log a continuous stream of data
until a triggering event (for analysis of data before and after
the trigger without having to store all of the incoming data).
The latter application could be used in a digital oscilloscope
or logic analyzer.

STACK ERROR CONDITIONS

Stack errors include overflow, underflow, and fatal errors.
Overflows occur when an attempt is made to push data onto
a full stack. Since the stacks wrap around, the result is that
existing data on the stack will be overwritten by the new data
when an overflow occurs. Underflows occur when an attempt
is made to pop data off an empty stack, causing invalid data
to be read from the stack. In both cases, a buffer zone may be
set up by initializing and EJ¥§] so that stack error
interrupts are generated prior to an actual overflow or

TABLE 5. STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS

CONTROL BIT SETTINGS: PARAMETER STACK CONFIGURATION:
STACK ~ STACKRANGE

ISPR] [SUR] SIZE LowEST | micnEsT | FATAL UNDERFLOW LIMIT OVERFLOW LIMIT

ps |vs | v4a |u2 |ut |uo | (wORDS) | ADDRESS | ADDRESS | LIMIT s|a|l3|l2|1]|o|5|a)3]2]|1]o0
o|lx]lo]olo]Xx 32 0 31 31 o|oJus|usjusa|us]o|o |va]|vza]vi]|vo
olx|1]o]lo]o 32 0 31 15 o|1 |usjus|usfus|o]o |va]vz|vi|vo
olx|1]o0o}|o]1 32 0 31 31 o]oJus|usjus|us]|lo |1 |va]|vz]vi]|vo
1 {xjolo]o|x 32 32 63 63 1 |o {usjus|usajus| 1 |o |va]|v2]|vi|vo
1 x|1jojojo 32 32 63 47 1|11 |usjus|uajus|1 |o |va]|v2]|vi|vo
1 {x |1]o]o}]1 32 32 63 63 1 1o jus|us|usjusf1 |1 |va][v2]vi|vo
xlo|x]o X 64 0 63 63 o fuz|usjus|usjus| o jva|va]|vz|vi|vo
X|1]|x]o 0 64 0 63 31 1 Juz |ue |us lusa|us| o Jva|va|vz|vi]vo
X1 | x]ol1] 64 0 63 63 o luz|usjusfuafus| 1 fvalvajva|vi]vo
CONTROL BIT SETTINGS: RETURN STACK CONFIGURATION:

STACK STACK RANGE ‘

SPR]IMSVR] SUR SIZE LowEST | HIGHEST | FATAL UNDERFLOW LIMIT OVERFLOW LIMIT

p13|via|vi2 |uto|us | us | (WORDS) | ADDRESS | ADDRESS | LIMIT s |4|3|2|1|ofs5]a|3]2]1]o0
olx]olo]o|Xx 32 0 31 31 o | o |uia|uig|uiz|uit} o | o |viti|vio|ve |vs
olxJ]l1]0]o0o]o 32 0 31 15 o | 1 [uta|uia|uizfut1i] o | o |vi1]vio|ve |ve
oflx|1]o]lo]1 32 0 31 31 o | o |ulafuig|uizfuii] o | 1 |vi1|vio|ve |vs
1 lx|oflo]o|x 32 32 63 63 1 | o |utauizfurz|uit] 1 | o [vii|viofve |vs
1 |x|1]o]o]o 32 32 63 47 1 | 1 futauizfur2fuirt| 1 | o |vi1|vio|ve |vs
1 |x |1]oflo}]1 32 32 63 63 1 | o |utajuizfurzjuir] 1 | 1 fvi1|vio|ve |vs
Xlolx]o]1]x 64 0 63 63 o {uislui4|uis|ui2|uir| o |viz|vi1i|vio|ve |vs
Xx|1]x]o]l1]o 64 0 63 31 1 |uts |ur4a Jurzfui2luit] o |vizjviti|vio|ve |vs
X 1 X 0 1 1 64 (o] 63 63 0 |uis|ju14 |U1I3 |U12 U1 1 |viz2jvi1jviojve | v8

NOTES: 1. - Stack Pointer Reglster; - Stack Overflow Limit Register; EJYF| - Stack Underflow Limit Register

N oo bd N

. PO through P15 are the EIg§}] bits; VO through V15 are the bits; UO through U15 are the EU[H] bits.

. The Overflow Limit is the stack memory address at which an overflow condition will occur during a stack write operation.

. The Underflow Limit is the stack memory address below which an underflow contition will occur during a stack read operation.

. The Fatal Limit is the stack memory address at which a fatal error condition will occur during a stack read or write operation.

. Stack error conditions remain in effect until a new value is written to the El&{]-

. Stacks and substacks are circular: After writing to the highest location in the stack, the next location to be written to will be the lowest location;

after reading the lowest location, the highest location will be read next.

13

RTX 2001A

underflow. The limits may be determined from the contents of
and E¥3 using Table 5. The state of all stack errors
may be determined by examining the five least significant bits
-of [EId, where the stack error flags may be read but not
wntten to All stack error flags are cleared whenever a new
value is written to EIZ: .

FATAL STACK ERROR: Each stack can also experience a
- fatal stack error. This error condition occurs when an attempt
is made to push data onto or to pop data off of the highest
location of the substack. It does not generate an interrupt
(since the normal stack limits can be used to generate the in-
terrupt). The fatal errors for the stacks are logically OR’ed to-
gether to produce bit O of the Interrupt Base Control Regi-
ster, and they are cleared whenever EId3] is written to. The
implication of a fatal error is that data on the stack may have
been corrupted or that invalid data may have been read from
the stack.

RTX 2001A Timer/Counters

The RTX 2001A has three 16-bit timers; each of which can
be configured to perform timing or event counting. All
decrement synchronously with the rising edge of TCLK.
Timer registers are readable in a single machine cycle.

The timer selection bits of the determine whether a timer

is to be configured for external event counting or internal

time-base timing. This configures. the respective counter

clock inputs to the on-chip TCLK signal for internal timing, or

to the EI5S-EI3 input pins for external signal event counting.

EI5, El4, and EI3 are synchronized internally with TCLK. See
" Table-6 for Timer/Clock selection by bit values.

TABLE 6. TIMER/CLOCK SECTION

BIT VALUES TIMER CLOCK SOURCE
BITO9 | BITO8 TC2 TCO
0 0 TCLK TCLK TOLK
0 1 TCLK TCLK EI3
1 o TCLK El4 EI3
1 1 EI5 El4 EI3

The timers (&4, and LK)) are all free-running,
and when they time out, they reload automatically with the
programmed initial value from their respective Timer Preload
Registers: (IE] - ¥, - ¥, and -
), then continue timing or counting.

Each timer provides an output to the Interrupt Controller to
indicate when a time-out for the timer has occurred.

The RTX 2001A can determine the state of a timer at any time
either by reading the timer’s value, or upon a time-out by
using the timer’s interrupt (see the Interrupt Controller section
for more information about how timer interrupts are handled).
Figure 15 shows the sequence of Timer/Counter operations.

TCLK TCLK
RiSING RISING INTA CYCLE OR
EDGE EDGE ASIC READ COMMAND
o L’l
| TOP | | |
- | |
REGISTER | | | |
PRELOAD
|| REGISTER _>]| LY TCO . EXECUTE| . /T\::I:WTEI\(/)TJTTE . INTERRUPT
" | TIMER/COUNTER COTNT NTeRou: RESET
=
@l -
s PRELOAD -
@ | | REGISTER || = LOAD TC1 EXECUTE ?fﬁé‘é’b’f N INTERRQPT INTERRUPT
TP1] | TIMER/COUNTER COUNT INTERRUPT| |[CONTROLLER RESET |
PRELOAD | [‘ | » :
»| REGISTER || LOAD [[eR3 pEXECUTE| | ACTIVATE| INTERRUPT
> ‘ COUNT " TIMEOUT RESET
| TIMER/COUNTER - INTERRUPT]| .
~ ' ‘ I ' |

FIGURE 15. RTX 2001A TIMER/COUNTER OPERATION

14

RTX 2001A

RTX Interrupt Controller

The RTX 2001A Interrupt Controller manages interrupts for
the RTX 2001A Microcontroller core. Its sources include two
on-chip peripherals and six external interrupt inputs. The two
classes of on-chip peripherals that produce interrupts are the
Stack Controllers and the Timer/Counters.

INTERRUPT CONTROLLER OPERATION

When one of the interrupt sources requests an interrupt, the
Interrupt Controller checks whether the interrupt is masked in
the Interrupt Mask Register. If it is not, the controller
attempts to interrupt the processor. If processor interrupts are
enabled (bit 4 of the Configuration Register), the processor
will execute an Interrupt Acknowledge cycle, during which it
disables interrupts to ensure proper completion of the INTA
cycle.

In response to the Interrupt Acknowledge cycle, the Interrupt
Controller places an Interrupt Vector on the internal ASIC
Bus, based on the highest priority pending interrupt. The pro-
cessor performs a special Subroutine Call to the address in
Memory Page O contained in the vector. This special
subroutine call is different in that it saves a status bit on the
Return Stack indicating the call was caused by an interrupt.
Thus, when the Interrupt Handler executes a Subroutine
Return, the processor knows to automatically re-enable
interrupts. Before the Interrupt Handler returns, it must

ensure that the condition that caused the interrupt is cleared.
Otherwise the processor will again be interrupted immediate-
ly upon its return.

Processor interrupts are enabled and disabled by clearing
and setting the Interrupt Disable Flag. When the RTX is
reset, this flag is set (bit 04 of the =1), disabling the
interrupts. This bit is a write-only bit that always reads as O,
allowing interrupts to be enabled in only 2 cycles with a
simple read/write operation in which the processor reads the
bit value, then writes it back to the same location. The actual
status of the Interrupt Disable Flag can be read from bit 14 of

CRE

During read and write operations to the Configuration
Register, ([#3]), interrupts are inhibited to allow the
program to save and restore the state of the Interrupt
Enable bit, allowing safe manipulation of the Stack Pointer
Register. :

In addition to disabling interrupts at the processor level, all
interrupts except the Non-Maskable Interrupt (NMI) can be
individually masked by the Interrupt Controller by setting the
appropriate bit in the Interrupt Mask Register ([).
Resetting the RTX 2001A causes all bits in the [N to be
cleared, thereby unmasking all interrupts.

TABLE 7. INTERRUPT SOURCES, PRIORITIES AND VECTORS

(MR | VECTOR ADDRESS BITS .
PRIORITY INTERRUPT SOURCE SENSITIVITY BIT 09 | 08 07 | 06 | 05
0 (High) NMI Non-Maskable Interrupt Pos Edge N/A o] 1 1 1 1
1 El1 External Interrupt 1 High Level (0}] (o] 1 1 1]
2 PSU Parameter Stack Underflow High Level 02 0 1 1 0 1
3 RSU Return Stack Underflow High Level 03 o] 1 1 0 (o]
4 PSV Parameter Stack Overflow High Level 04 [0} 1 0 1 1
5 RSV Return Stack Overflow High Level 05 o] 1 (¢} 1 (o]
6 El2 External Interrupt 2 High Level 06 0 1 0 (o] 1
7 TClo Timer/Counter O Edge 07 0 1 0 o (o}
8 TCH Timer/Counter 1 Edge 08 olof1 1]
9 " TCI2 Timer/Counter 2 Edge 09 (o] 0] 1 1 [¢]
10 EI3 External Interrupt 3 High Level 10 o] 0 1 o] 1
1" El4 External Interrupt 4 High Level 1 (o] o] 1 (o] (]
12 EIS External Intqrrupt 5 High Level 12 0 0 0 1 1
13 (Low) swi Software Interrupt High Level 13 (o} (o} 0 1 o
N/A None No Interrupt N/A N/A 1 0 0 0 o

15

RTX 2001A

\

The Interrupt Controller prioritizes interrupt requests and
generates an Interrupt Vector for the highest priority interrupt
request. The address that the vector points to is determined
by the source of the interrupt and the contents of the
Interrupt Base/Control Register (). See Figure 4 for
the Interrupt Vector Register bit assignments. Because
address bits MA19-MA16 are always zero in an Interrupt

Acknowledge cycle, the entry point to the Interrupt Handlers ‘

must reside on Memory Page zero.

Because address bits MAO4-MAO1 are always zero in an
Interrupt Acknowledge cycle, Interrupt Vectors are 32 bytes
apart. This means that Interrupt Handler routines that are 32
bytes or less can be compiled directly into the Interrupt Table.
Interrupt Handlers greater than 32 bytes must be compiled
separately and called from the Interrupt Table.

The rest of the vector is generated as indicated in Table 7. To
guarantee that the Interrupt Vector will be stable during an
INTA cycle, the Interrupt Controller inhibits the generation of a
new Interrupt Vector while INTA is high, and will not begin
generating a new Interrupt Vector on either edge of INTA.

The Interrupt Vector can also be read from the Interrupt
Vector Register (I[i]) directly. This allows interrupt
requests to be monitored by software, even if they are
disabled by the processor. If no interrupts are being
requested, bit 09 of the will be 1.

External interrupts EI5-El1 are active HIGH level-sensitive
inputs. Therefore, the Interrupt Handlers for these interrupts

INTERRUPT SUPPRESSION

The RTX 2001A allows maskable interrupts to be sup-
pressed, delaying them temporarily while critical operations
are in progress. Critical operations are instruction sequences
and hardware operations that, if interrupted, would result in
the loss of data or misoperation of the hardware.

Standard critical operations during which interrupts are auto-
matically suppressed by the processor include Streamed
instructions (see the description of the [] register), Long Call
sequences (see “Subroutine Calls and Returns”), and loading
[13 . In addition to this, user defined, external devices can
also suppress interrupts during critical operations by apply-
ing a HIGH level on the INTSUP pin for as long as required.

Since the NMI can still cause the processor to perform an
Interrupt Acknowledge cycle in the middle of these critical
operations thereby preventing a normal return to the inter-
rupted instruction, a Subroutine Return should be used with
care from the NMI service routine. For this reason, the NMI
should be used only to indicate critical system errors, and the
NMI handler should re-initialize the system.

Interrupts which have occurred while interrupt suppression is
in effect will be recognized on a priority basis as soon as the
suppression terminates, provided the condition which gener-
ated the interrupt has not “gone away”.

- STACK ERROR INTERRUPTS

must clear the source of interrupt prior to returning to the

interrupted code. The external NMI, however, is an edge-
sensitive input which requires a rising edge to request an
interrupt. The NMI input also has a glitch filter circuit which
requires that the signal that initiates the NMI must last at
least two cycles of ICLK.

Finally, a mechanism is provided by which an interrupt can be
requested by using a software command. The Software Inter-
rupt (SWI) is requested by executing an instruction that will
set an internal flip-flop attached to one input of the Interrupt
Controller. The SWI is reset by executing an instruction that
clears the flip-flop. The flip-flop is accessed by I/O Reads
and Writes.

Because the SWI interrupt may not be serviced immediately,
the instructions which immediately follow the SWI instruction
should not depend on whether or not the interrupt has been
serviced, and should cause a one- or two-cycle idle condi-
tion (Typically, this is done with one or two NOP instructions).

If an interrupt condition occurs, but “goes away” before the
processor has a chance to service it; a “No Interrupt” vector
is generated. A “No Interrupt” vector is also generated if
an Interrupt Acknowledge cycle takes less than two cycles
to execute and no other interrupt conditions need to be
serviced.

To prevent unforseen errors, it is recommended that valid
code be supplied at every Interrupt Vector location, including
the “No Interrupt” vector, which should always be initialized
with valid code.

It is recommended that Interrupt Handlers save and restore
the contents of .

The Stack Controllers request an interrupt whenever a stack
overflow or underflow condition exists. These interrupts can
be cleared by rewriting EIZi] . See the section on “Dual
Stack Architecture” for more information. regarding how the
limits set into and [S[{] are used.

STACK OVERFLOW: A stack overflow occurs when data is
pushed onto the stack location pointed to by the BYIg , as
determined in Table 5. After the processor is reset, this is
location 63 in either the Parameter Stack or Return Stack. A
stack overflow interrupt request stays in effect until cleared
by writing a new value to the [SIF3] . In addition to generating
an interrupt, the state of the stack overflow flags may be read
out of the [[EI], bit 3 for the Parameter Stack, and bit 4
for the Return stack. See Figures 5, 7 and 8. ’

STACK UNDERFLOW: The stack underflow limit occurs
when data is popped off the stack location immediately below
that pointed to by the EJT[§] , as determined in Table 5. The
state of the stack underflow error flags may be read out of
bits 1 and 2 of the for the Parameter and Return stacks
respectively. In the reset state of the EJ¥[3] , an underflow will
be generated at the same time that a fatal error is detected.
An undetflow buffer region can be set up by selecting an
underflow limit greater than zero by writing the correspond-
ing value into the 5] . The stack underflow interrupt re-
quest stays in effect until a new value is written into the EIZ{] ,
at which time it is cleared.

16

RTX 2001A

TIME"R/COUNTER INTERRUPTS

The timers generate edge-sensitive interrupts whenever they
are decremented to 0. Because they are edge-sensitive and
are cleared during an Interrupt Acknowledge cycle or during
the direct reading of by software, no action is required
by the handlers to clear the interrupt request.

The RTX 2001A ALU

The RTX 2001A has a 16-bit ALU capable of performing
standard arithmetic and logic operations:

e ADD and SUBTRACT (A—B and B-A; with and without
carry)

e AND, OR, XOR, NOR, NAND, XNOR, NOT

The X} d and QY registers can also undergo single bit
shifts in the same cycle as a logic or arithmetic operation.

In Figure 16, the control and data paths to the ALU are
shown. Except for and 281, each of the internal
core registers can be addressed explicitly, as can other
internal registers in special operations. such as in Step
instructions. In each of these cases, the input would be
addressed as a device on the ASIC Bus.

When executing these instructions, . the arithmetic/logic
operand (a) starts out in and is placed on the T-bus.
Operand (b) arrives at the ALU on the Y-bus, but can come
from one of the following four sources: ; an internal

register; an ASIC Bus device; or from the 5 least significant
bits of [II] . The source of operand (b) is determined by the
instruction code in [,E] The result of the ALU operation is
placed into

Step Arithmetic instructions which are performed through the
ALU are multiply, divide, and square root. Execution of each
step of the arithmetic operation takes one cycle, a 16/32-bit
Step Multiply takes 20 cycles, a 32/16-bit Step Divide takes
21 cycles, and a 32/16-bit Step Square Root takes 25
cycles. Sign and scaling functions are controlled by the ALU
function and shift options, which are part of the coded
instruction contained in [[§] . See Table 24 and the Program-
mer’s Reference Manual for details.

Signed (2’'s complement) Step Multiply operation begins with
the multiplier in [I3] and the multiplicand in [N[Z§1 . If the
LSB of equals 1, the contents of 3] are added
to QL. Otherwise, the contents of are left
unchanged. A 32-bit right shift of and is then
performed, shifting the value of CY (the value of the Carry bit
before the operation) into the MSB of . When this oper-
ation has been performed 15 times, the LSB of is
again tested. If it is equal to O, the contents of are
unchanged. Otherwise, the contents of are subtracted
from |81, leaving the result in . Another 32-bit right
shift of and is again performed. When com-
pleted, the 32-bit result will be in and , with the
most significant word located in . If the operation began
with initialized to a value other than zero, that value will
be accumulated with the product. -

PROGRAM o TOP
MEMORY T-BUS
S T
5 Least 7
IR | Significant [— >
Bits .
ASIC Bus
Internal
Registers g ?
B NEXT »
| »] pecobe
.) Operand
: > (A)

|
|
|
I
y
|
|

NOTE: Data Paths are represented by solid lines; Control Paths are

SHIFTER

represented by dashed lines.

_- FIGURE 16. ALU OPERATIONS-CONTROL PATHS AND DATA FLOW

17

RTX 2001A

Unsigned Step Divide operation assumes a double precision
(32-bit) dividend, with the most significant word placed in
, the less significant word in , and the divisor in
[®] . In each step, if the contents in are equal to or
greater than the contents in [J[8] (and therefore no borrow is
generated), then the contents of [[8] are subtracted from the
contents of . The result of the subtraction is placed into
Kl . The contents of and are then jointly
shifted left one bit (32-bit left shift), where the value shifted
into the least significant bit of is the value of the
Borrow bit on the first pass, or the value of the Complex Carry
bit on each of the subsequent passes. On the 15th and final
pass, only is shifted left, receiving the value of the
Complex Carry bit into the LSB. is not shifted. The final
result leaves the quotient in [NIE4H , and the remainder in
.

During a Step Square Root operation, the 32-bit argument is
assumed to be in and , as in the Step Divide
operation. The first step begins with 3] containing zeros.
The Step Square Root is performed much like the Step
Divide, except that the input from the Y-bus is the logical OR
of the contents of El3] and the value in [I[3] shifted one place
to the left (2* [II8). When the subtraction is performed, El{j
is OR’ed into [J][3] , and [&13] is shifted one place to the right.
At the end of the operation, the square root of the original val-
ue is in i3] and N2d1 , and the remainder is in .

RTX 2001A ASIC Bus Interface

The RTX 2001A ASIC Bus services both internal processor
core registers and the on-chip peripheral registers, and eight
external off-chip ASIC Bus locations. All ASIC Bus
operations require a single cycle to execute and transfer a full
16-bit word of data. The external ASIC Bus maps into the last
eight locations of the 32 location ASIC Address Space: The
three least significant bits of the address are available as the
ASIC Address Bus. The addresses therefore map as shown
in Table 8.

TABLE 8. ASIC BUS MAP

ASIC BUS SIGNAL
GAO2 GAO1 GA0O _ASIC ADDRESS
0 o 0 ‘ 18H
0 o 1 19H
0 1 0 1AH
0 1 1 “1BH
1 0 0 1CH
1 o 1 1DH
1 1 0 1EH
1 1 1 1FH

RTX 2001A Extended Cycle Operation

The RTX 2001A bus cycle timing can be extended for USER
Memory accesses and INTA cycles. This allows the use of
some slower memory devices without the necessity of adding
external wait states. The bus cycle is extended by the same
amount (1 TCLK) as it would be if one wait state were added
to the cycle, but the timing of PCLK is somewhat different
(see Timing Waveforms). In a one wait state bus cycle, PCLK
is High for 1/2 TCLK period, and Low for 1-1/2 TCLK periods

(i.e. PCLK is held Low for one additional TCLK period). In an
extended cycle, which is generated by setting the Cycle
Extend bit (CYCEXT - bit 7 of the [#]), PCLK is High for
1-1/2 TCLK peroids and Low for 1/2 TCLK period (i.e. PCLK
is extended High for one additional TCLK period). When the
CYCEXT bit is set, extended cycles are used for all USER
Memory and INTA cycles. Note: it is not recommented that
an extended cycle be used in conjunction with a wait state or
states. In the eventuality that bus cycle timing needs to be
longer than an extended cycle, wait states alone should be
implemented.

RTX 2001A Memory Access
THE RTX 2001A MEMORY BUS INTERFACE

The RTX 2001A can address 1 Megabyte of memory, divided
into 16 non-overlapping pages of 64K bytes. The memory
page accessed depends on whether the memory access is
for Code (instructions and literals), Data, User Memory, or
Interrupt Code. The page selected also depends on the
contents of the Page Control Registers: the Code Page Reg-
ister ([}), the Data Page Register ([BId3]), the User
Page Register ([Wd;), and the Index Page Register
([IZ3). Furthermore, the User Base Address Register
(I’EI]) and the Interrupt Base/Control Register ([EId)
are used to determine the complete address for User Memory
accesses and Interrupt Acknowledge cycles. External
memory data is accessed through .

When executing code other than an Interrupt Service routine,
the memory page is determined by the contents of the .
Bits 03-00 generate address bits MA19-MA16, as shown in
Figure 10. The remainder of the address (MA15-MAO1)
comes from the Program Counter Register (o). After
resetting the processor, both the and the [&;] are
cleared and execution begins at page 0, word 0.

A new Code page is selected by writing a 4-bit value to the
. The value for the Code page is input to the
through a preload procedure which withholds the value for
one clock cycle before loading the to ensure that the
next instruction is executed from the same Code page as the
instruction which set the new Code page. Execution imme-
diately thereafter will continue with the next instruction in the
new page.

An Interript Acknowledge cycle is a special case of an In-
struction Fetch cycle. When an Interrupt Acknowledge cycle
occurs, the contents of the and are saved on the
Return Stack and then the is cleared to point to page 0.

- The Interrupt Controller generates a 16-bit address, or “vec-

tor”, which points to the code to be executed to process the
interrupt. To determine how the Interrupt Vector is formed, re-
fer to Figure 4 for the register bit assignments, and also to the
Interrupt Controller section.

The page for data access is provided by either or
[BIE , as shown in Figures 10 and 12. Data Memory Access
instructions can be used to-access data in a memory page
other than that containing the program code. This is done by
writing the desired page number into the Data Page Regi-

(I3) and setting bit 5 (DPRSEL) of the register
to 1. If BI] is set to equal , or if DPRSEL = 0, data will
be accessed in the Code page. The status of the DPRSEL bit
is saved and restored as a result of a Subroutine Call or Re-
turn. When the RTX 2001A is reset, BIii] points to page 0
and OPRSEL resets to 0, selecting the .

18

RTX 2001A

USER MEMORY consists of blocks of 32 words that can be
located anywhere in memory. The word being accessed in a
block is pointed to by the five least significant bits of the User
Memory instruction (see Table 20), eliminating the need to
explicitly load an address into before reading or writing
to the location. Upon RTX 2001A reset, T3] is cleared and
points to the block starting at word 0, while [{[g3] is cleared
so that it points to page 0. The word in the block is pointed to
by the five least significant bits of the User Memory instruc-
tion and bits 05-01 of the [WZ]§] . These bits from these two
registers are logically OR’ed to produce the address of the
word in memory. See Figure 13. '

WORD AND BYTE MAIN MEMORY ACCESS

'Using Main Memory Access instructions, the RTX 2001A can
perform either word or single byte Main Memory accesses,
as well as byte swapping within 16-bit words.

Bit 12 of the Memory Access Opcode (see Table 19), is used
to determine whether byte or word operations are to be
performed (where bit 12 = 0 signifies a word operation, and
bit 12 = 1 signifies a byte operation). In addition, the determi-
~ nation of whether a byte swap is to occur depends on which
mode (the “Motorola-Like” or the “Intel-Like”) is in effect,
and on whether an even or odd address is being accessed
(see Figures 17 and 18).

Whenever a word of data is read by a Data Memory operation
into the processor, it is first placed in the register.
By the time the instruction that reads that word of data is
completed, however, the data may have been moved, option-
ally inverted, or operated on by the ALU, and placed in the
register. Whenever a Data Memory operation writes to

memory, the data comes from the register. :

The Byte Order Bit is bit 2 of the Configuration Register,
(see Figure 3 in the “RTX Internal Registers Section).
This bit is used to determine whether the default (“Motorola-
Like”) or byte swap (“Intel-Like”) mode will be used in the
Data Memory accesses. v :

Word Access is designated when the [[f] bit 12 = 0 in the
Memory Access Opcode, and can take one of two forms,
depending upon the status of , bit2. :

When bit 2 = 0, the “Motorola-Like” mode of word ac-
cess (also known as the “Big Endian” mode) is designated.
This mode of word access is to an even address (A0 = 0) and
results in an unaltered transfer of data, as shown in Figure 17.
Word access to/from an odd address (A0 = 1) while in this
mode will effectively cause the Byte Order Bit to be comple-
mented and will result in the bytes being swapped.

- 1m ADDRESS - | IR} ADDRESS
A DATA ACCESS (1 6 BIT) BIT 12|BIT 2| EVENODD DATA ACCESS (8 BIT) BIT 12| BIT 2| evenopp
WORD WRITE PROCESSOR ' BYTE WRITE PROCESSOR
N | (T T | 0 0 s v 1 v v 8l7y 1 p0 0 1
’ 0 UNCHANGED 1
(TN T A 1 1 | () T | 1 o
MEMORY MEMORY
WORD READ PROCESSOR BYTE READ processor|
(T E T 0 0 [T LT 0 1
- v
0 VvV . 1
| (T KT 1 1 | [CENNENEET) E 1 o
. MEMORY MEMORY
WORD WRITE PROCESSOR BYTE WRITE PROCESSOR
s o 1 1 1 gel7) | 4 4 40 | (TR EA
o 1 1 1
0 1
/ UNCHANGED
1 0 Y 7 0 (/]
T E T
MEMORY MEMORY
WORD READ PROCESSOR BYTE READ PROCESSOR
5 8] 7 o]
o ; | TN KA 1 1
M4 i
1 0 : o)
(T E T | [T T
MEMORY MEMORY

FIGURE 17. MEMORY ACCESS (WORD)

FIGURE 18. MEMORY ACCESS (BYTE)

RTX 2001A

When the Bit 2 = 1, the “Intel-Like” mode of word
access is designated (also known as the “Little Endian”
mode). Access to an even address (A0 = 0) results in a data
transfer in which the bytes are swapped. Word access to an
odd address (A0 = 1) while in this mode will effectively cause
the Byte Order Bit to be complemented with the net result
that no byte swap takes place when the data word is trans-
ferred. See Figure 17.

Byte Access is designated when the [[z] bit 12 = 1 in the
Memory Access Opcode, and can also take one of two forms,
depending on the value of Bit 2.

When the Bit 2 = 0, a Byte Read from an even address
in the “Motorola-Like” mode causes the upper byte (MD15-
MDO08) of memory data to be read into the lower byte position
(MDO7-MDO0O0) of , while the upper byte (MD15-
MDO08) is set to 0. A Byte Write operation accessing an even
address will cause the byte to be written from the lower byte
position (MDO7-MDOQO) of into the upper byte position
(MD15-MDO08) of memory. The data in the lower byte position
(MDO7-MDO0O0) in memory will be left unaltered. Accessing an
odd address for either of these operations will cause the Byte
Order Bit to be complemented, with the net result that no
swap will occur. See Figure 18.

When Bit 2 = 1, memory is accessed in the “Intel-Like”
mode. Accessing an even address in this mode means that a
Byte Read operation will cause the lower byte of data to be
transferred without a swap operation. A Byte Write in this
mode will also result in an unaltered byte transfer. Converse-
ly, accessing an odd address for a byte operation while in the
“Intel-Like” Mode will cause the Byte Order Bit to be comple-
mented. In a Byte Read operation, this will result in the upper
byte (MD15-MDO08) of data being swapped into the lower
byte position (MDO7-MDOQO), while the upper byte is set to O
(MD15-MDO0S8 set to 0). See Figure 18. A Byte Write opera-
tion accessing an odd address will cause the byte to be
swapped from the lower byte position (MDO7-MDOQO0) of the
processor register into the upper byte position (MD15-
MDO08) of the Memory location. The data in the lower byte
position (MDO7-MDOQO) in that Memory location will be left
unaffected.

NOTE: These features are for Main Memory data access only, and have no
effect on instruction fetches, long literals, or User Data Memory.

SUBROUTINE CALLS AND RETURNS

The RTX can perform both “short” subroutine calls and
“long” subroutine calls. A short subroutine call is one for
which the subroutine code is located within the same Code
page as the Call instruction, and no processor cycle time is
expended in reloading the .

Performing a long subroutine call involves transferring execu-
tion to a different Code page. This requires that the be
loaded with the new Code page as described in the Memory
Access Section, followed immediately by the Subroutine Call
instruction. This adds two additional cycles to the execution
time for the Subroutine Call.

For all instructions except Subroutine Calls or Branch
instructions, bit 5 of the instruction code represents the
Subroutine Return Bit. If this bit is set to 1, a Return is
performed whereby the return address is popped from the
Return Stack, as indicated in Figure 11. The page for the
return address comes from the [[@3] . The contents of the [
register are written to the , and the contents of the [
are written to the so that execution resumes at the point
following the Subroutine Call. The Return Stack is also
popped at this time.

RTX 2001A Software

The RTX 2001A is designed around the same architecture
as the RTX 2000, and is a hardware implementation of
the Virtual Forth Engine. As such, it does not require the addi-
tional assembly or machine language software development
typical of most real-time microcontrollers.

The instruction set for the RTX 2001A TForth compiler
combines multiple high level instructions into single machine
instructions without having to rely on either pipelines or
caches. This optimization yields an effective throughput
which is faster than the processor’s clock speed, while avoid-
ing the unpredictable execution behavior exhibited by most
RISC processors caused by pipeline flushes and cache
misses.

2001A COMPILERS

Harris offers a complete ANSI C cross development
environment for the RTX 2001A. The environment provides a
powerful, user-friendly set of software tools designed to help
the developers of embedded real-time control systems get
their designs to market quickly. The environment includes the
optimized ANSI C language compiler, symbolic menu driven
C language debugger, RTX assembler, linker, profiler, and
PROM programmer interface.

The RTX 2001A TForth compiler from Harris translates Forth-
83 source code to RTX 2001A machine instructions. This
compiler also provides support for all of the RTX 2001A
instructions specific to the processor’s registers, peripherals,
and ASIC Bus. See the tables in the following sections for
instruction set information.

20

RTX 2001A

TABLE 9. INSTRUCTION SET SUMMARY
NOTATIONS
m-read Read data (byte or word) from memory location addressed by contents of IKe]x register into LIelg register.
m-write Write contents (byte or word) of N[Z4] register into memory location addressed by contents of [{eIg register.
g-read Read data from the ASIC address (address field ggggg of instruction) into K] register.
Aread of one of the on-chip peripheral registers can be done with a g-read command.
g-write Write contents of [[0]x register to ASIC address (address field ggggg of instruction). A write to one of the
on-chip peripheral registers can be done with a g-write command.
u-read Read contents (word only) of User Space location (address field uuuuu of instruction) into L[5 register.
u-write ~ Write contents (word only) of LI[e]5 register into User Space location (address field vuuuu of instruction).
SWAP Exchange contents of [Xel5 and N[Z{] registers
DUP Copy contents of [J[8]5 register to ([2§] register, pushing previous contents of {]Z§] onto Stack Memory.
OVER Copy contents of [register to [J[8lx register, pushing original contents of Eﬂ] to register and original
contents of [] register to Stack Memory.
DROP Pop Parameter Stack, discarding original contents of [i{e]x register, leaving the original contents of N[Z§J in IK®I5
and the original contents of the top Stack Memory location in (2]
inv Perform 1's complement on contents of [J[e]5 register, if i bit in instruction is 1.
alu-op Perform appropriate ccce or aaa ALU operation from Table 23 on contents of [X8I5 and N2l registers.
shift Perform appropriate shift operation (ssss field of instruction) from Table 24 on contents of [{¢I5
and/or N[2q] registers.
d Push short literal d from ddddd field of instruction onto Parameter Stack (where ddddd contains the actual
value of the short literal). The original contents of [el5 are pushed into [JJZ§], and the original contents of
[N[24] are pushed onto Stack Memory.
D Push long literal D from next sequential location in program memory onto Parameter Stack.
The original contents of [f¢]5 are pushed into }]=q], and the original contents of {[={] are pushed onto
Stack Memory.
R Perform a Return From Subroutine if bit = 1.
x Bit fields containing x's are ignored by the processor.

TABLE 10. INSTRUCTION REGISTER BIT FIELDS (BY FUNCTION)

FUNCTION CODE DEFINITION
99999 Address field for ASIC Bus locations
uuuuu Address field for User Space memory locations
ccce ALU functions (see Table 23)
aaa
ddddd Short literals (containing a value from 0 to 31)
ssss Shift Functions (see Table 24)

21

RTX 2001A

- TABLE 11. RTX 2001A [] AND ACCESS OPERATIONS*
OPERATION | RETURN ASIC
(g-read, BIT ADDRESS

- g-write) VALUE 99999 REGISTER FUNCTION

Read mode (o] 00000 18 Pushes the contents of [] into [I[e]5 (with no pop of the Return Stack)

Read mode 1 00000 1] Pushes the contents of [into [i{e]g, then performs a Subroutine Return

Write mode 0 00000 1] ~ Pops the contents of Lol into [(with no push of the Return Stack)

Write mode 1 00000 1] Performs a Subroutine Return, then pushes the contents of [olg into [l

Read mode 0 00001 1] Pushes the contents of []] into Lil®lg, popping the Return Stack

Read mode 1 00001 1] Pushes the contents of [into [J[e]g without poppmg the Return Stack, then
executes the Subroutine Return

Write mode 0 00001 1] Pushes the contents of [I#f]§ into [popping the Parameter Stack

Write mode . 1 00001 1] Performs a Subroutine Return, then pushes the contents of [j[elg into []

Read mode 0 00010 1] Pushes the contents of [] shifted left by one bit, into ITOP]
(the Return Stack is not popped)

Read mode 1 00010 1] Pushes the contents of [shifted left by one bit, into [J[elx (the Return
Stack is not popped), then performs a Subroutine Return

Write mode (o] 00010 1] Pushes the contents of [J[e]5 into [] as a “‘stream” count, indicating that
the next instruction is to be performed a specified number of times;
the Parameter Stack is popped

Write mode 1 00010 1] Performs a Subroutine Return, then pushes the stream count into [

Read mode (o] 00111 Pushes the contents of [§[8 into [{e)

Read mode 1 00111 Pushes the contents of [{[§ into [f8)F, then performs a Subroutine Return

Write mode 0 00111 Performs a Subroutine Call to the address contained in [{8]g, popping
the Parameter Stack

Write mode 1 00111 Pushes the contents of [I8]g onto the Return Stack before executing
the Subroutine Return '

* See the RTX Programmer’s Reference Manual for a complete listing of typical software functions.

TABLE 12. 2001A RESERVED I/0 OPCODES

INSTRUCTION CODE OPERATION
15141312 1110 9 8 7 6 5 4 3210
1011 00O00O 1 0RO 11 01 Select RIZE
10 11 0 00O 0O ORO 1101 Select ({33
101 1 00O00O 1 0R 1 0 00O Set SOFTINT
10 11 0 00O 0O OR 1 0 00O Clear SOFTINT
101 1 0000 1 0R 1 0110 Increment F4
1011 00O00O 0 0OR1 0110 .Decrement &Y
TABLE 13. SUBROUTINE CALL INSTRUCTIONS
INSTRUCTION CODE OPERATION
15141312 1110 9 8 7 6 5§ 4 3210
0 a a a a a a a a a a a a aa a Call word address

Subroutine Call Bit —T

(Bit 15 = 0: Call,

Bit 15 = 1: No Call)

aaaa aaaa aaaa aaa0, in the page
indicated by [@F3] This address is
produced when the processor
performs a left shift on the address in
the instruction code.

22

RTX 2001A

TABLE 14. SUBROUTINE RETURN

INSTRUCTION CODE
15141312 11109 8 7 6 5 4 3210
- - - - - - - - - - R - - - - -

Subroutine Return Bit*
(Bit 5, R = 0: No return

OPERATION

" Return from subroutine

OPERATION

DROP and branch if [J8]g = 0
Branch if [{¢]g =0

Unconditional branch

R = 1: Return) .
* Does not apply to Subroutine Call or Branch Instructions. A
Subroutine Return can be combined with any other instruction
(as implied here by hyphens).
TABLE 15. BRANCH INSTRUCTIONS
INSTRUCTION CODE
15141312 1110 9 8 7 6 5 4 3210
1000 O b b a a a a a a a a a
1000 1 b b a a a a a a a a a
10 0 1 O b b a a a a a a a a a
10 0 1 1 bba a a a a a a a a

Branch Address*

.

J

Branch and decrement [if [] # 0;
Poplifi=0

* See the Programmer’s Reference Manual for further information regarding the branch address field.

TABLE 16. REGISTER AND I/0 ACCESS INSTRUCTIONS

INSTRUCTION CODE OPERATION
15141312° 11109 8 7 6 5 4 3210
101 1 0 00 i 0O O0ORGUZg gggg g-read DROP inv
1011 111 0 ORGYg gggg g-read inv
1011 c 0 OR g g4dgg g-read OVER alu-op
1011 000i 10Rg ggagg DUP g-write inv
1011 11 1 i 1 0R g gggg g-write inv
1011 ccc¢c 1 0RGg gg9ggg g-read SWAP- alu-op

TABLE 17. SHORT LITERAL INSTRUCTIONS

INSTRUCTION CODE OPERATION
15141312 11109 8 765 4 3210 _
1011 000 i x 1R dddd d DROP inv
1011 11 1 i 0O1RAd dddd d inv
1011 c cC Cc ¢ 0 1R dddd d OVER alu-op
1011 11 1 i 11RAd dddd d SWAPDROP inv
1011 cccc 11Rdd dddd d SWAP alu-op

23

RTX 2001A

TABLE 18. LONG LITERAL INSTRUCTIONS

!

If s = 0, Memory is accessed by word
If s = 1, Memory is accessed by byte

If (p = 0), perform either
{SWAP DROP} or
{OVER SWAP)

Note: SWAP d SWAP = d ROT

INSTRUCTION CODE OPERATION
(1ST CYCLE) (2ND CYCLE)
15141312 11109 8 7 6 5 4 3210 ,
1101 0O 0O i x O R x X X X X D SWAP inv
1101 1T 1 1 0 0OR x X X X X D SWAP SWAP inv
1101 c CcC Cc ¢ 0 0R x X X X X D SWAP SWAP OVER alu-op
1101 11 1 1 0R x X X X X D SWAP DROP inv
1T 1 0 1 cccec 1 0 R x X X X X DSWAP': alu-op
TABLE 19. MEMORY ACCESS INSTRUCTIONS
INSTRUCTION CODE OPERATION

! (1ST CYCLE) (2ND CYCLE)
15141312 1110 9 8 76 5 4 3210
111 s 000 i 0 0R x X X X X m-read SWAP inv
111 s 11 1 i 0 0OR x X X X X m-read SWAP SWAP inv
11 1 s c 0 OR x X X X X m-read SWAP SWAP OVER alu-op
111 s 00O0OP 0 1R X X X X X {SWAP DROP} DUP NOP

m-read SWAP
11 1 s 11 1 p 0O1Rd dddd {SWAP DROP) m-read d NOP
11 1 s a aap 1R d ‘d ddd {SWAP DROP} DUP m-read NOP

SWAP d SWAP alu-op
111 s 0 0O i 1 0-R x X X X x OVER SWAP m-write inv
111 s 11 1 1 0OR X X X X X OVER SWAP m-write DROP inv
111 s ccc:.C 1 0OR x X X X X m-read SWAP alu-op
11 1 s 0 0O0P 1 1R x X X X X {OVER SWAP) SWAP NOP

OVER m-write
111 s 11 1p 1 1R d {OVER SWAP) m-write d NOP
111 s a a ap 11Rd ddd {OVERSWAP}SWAPOVER NOP

m-write d SWAP alu-op

+

24

RTX 2001A

TABLE 20. USER SPACE INSTRUCTIONS

INSTRUCTION CODE OPERATION
15141312 1110 9 8 7 65 4 3210
1100 0 0O0 i 0 0ORuwu Uuuuu u-read SWAP inv
1100 11 1 i 0 ORwU uuuu u-read SWAP SWAP inv
1100 c ccec 0 ORuU uuwuu u-read SWAP SWAP OVER alu-op
1100 000 i "1 0RuW u-u uu DUP u-write inv
1100 111i 10RU uwuwuwu DUP u-write DROP inv
1100 c cc¢c ¢ 1 O R U Uu u uu u-read SWAP alu-op

TABLE 21. ALU FUNCTION INSTRUCTIONS

INSTRUCTION CODE , OPERATION
15141312 1110 9 8 7 6 5 4 3210
1010 000i OORO ssss inv shift
1010 111i O0OO0ORO sss s DROP DUP inv shift
1010 ccc 0O O0ORO s 8§ 8 8 OVER SWAP alu-op shift
1010 00O i 01RO s 8§ s s SWAP DROP inv shift
1010 11 i 01RO S s s s DROP inv shift
1010 cccec 01RO sbs s s alu-op shift
1010 00 O0 i 1 ORO s 8 § s SWAP DROP DUP inv shift
101.0 11 i 10RO S s s s SWAP inv shift
1010 ¢cccec 10RO S 8 s s SWAP OVER alu-op shift
1010 00O i 11RO s 8 8 s DuP inv shift
1010 11 1 i 11RO S s s s OVER inv shift
1010 c :c c c 11RO s 8 8 8 OVER OVER alu-op shift

. TABLE 22. STEP MATH* FUNCTIONS -

INSTRUCTION CODE OPERATION
15141312 1110 9 8 7 6 5 4 3210)
1010 - - - - - - -1 - - - - (See the Programmer’s Reference Manual)

* These instructions perform multi-step math functions such as multiplication, division and square root functions. Use of either the Streamed instruction mode or
masking of interrupts is recommended to avoid erroneous results when performing Step Math operations. The following is a summary of these operations:

Unsigned Multiplication:
Load multiplier into [J[5]
Load multiplicand into
Load initial value of product (usually 0) into
Clear Carry Bit by executing opcode B8CO
Execute opcode AS9CH 16 times (streamed mode)

Signed Multiplication:
Load multiplier into [{3]
Load multiplicand into
Load initial value of product (usually 0) into
Clear Carry Bit by executing opcode B8CO
Execute opcode A89DH 15 times
Execute opcode A49DH 1 time

Unsigned Division:
Load dividend into and
Load divisor into [[]8]
Execute single step form of D2* instruction 1 tlme
Execute opcode A41A 1 time
Execute opcode A45A 14 times
Execute opcode A458 1 time
The quotient is in , the remainder in

Square Root Operations:
Load value into and
Load 8000H into E31
Load O into (3]
Execute single step form of D2* instruction 1 time
Execute opcode A51A 1 time
Execute opcode AS5A 14 times
Execute opcode A558 1 time
The root is in , the remainder in

25

RTX 2001A

TABLE 23. ALU LOGIC FUNCTIONS/OPCODES

ccce aaa FUNCTION

0010 001 AND

0011 NOR

0100 - 010 SWAP -

0101 SWAP -c¢ With Borrow
0110 011 OR

0111 NAND

1000 , 100 +

1001 +c With Carry
1010 101 XOR

1011 XNOR

1100 110 -

1101 -c With Borrow

TABLE 24. SHIFT FUNCTIONS

SHIFT ‘ STATUS Y& REGISTER M= REGISTER
ssss NAME FUNCTION OF C | Ti5 Tn TO N15 Nn NO
0000 No Shift cYy Z15 Zn Z0 TN15 | TNn TNO
0001 0< Sign extend CcY Z15 Z15 Z15 TN15 | TNn TNO
0010 2 Arithmetic Left Shift Z15 Z14 Zn-1 0 TN15 | TNn TNO
0011 2*c Rotate Left Z15 Z14 Zn-1 cYy TN15 | TNn TNO
0100 cuz/ Right Shift Out of Carry 0 cY Zn+1 1 TN15 | TNn TNO
0101 c2/ Rotate Right Through Carry Z0 CcY Zn+1 Z1 TN15 TNn TNO
0110 u2/ Logical Right Shift 0 (6] Zn+1 Z1 TN15 | TNn TNO
0111 2/ Arithmetic Right Shift Z15 215 Zn+1 21 TN15 | TNn TNO
1000 N2* Arithmetic Left Shift of NZJ] cY Z15 | Zn 20 TN14 | TNn-1 | O

1001 N2*c Rotate Left | cy 215 Zn Z0 TN14 TNn-1 | CY
1010 D2* 32-bit Arithmetic Left Shift Z15 Z14 Zn-=1 TN15 TN14 TNn-1 | O
1011 D2*c 32-bit Rotaté Left Z15 Z14 Zn-1 TN15 , TN14 TNn-1 | CY
1100 cub2/ 32-bit Right Shift Out of Carry 0 CcY Zn+1 Z1 Z0 TNn+1 TN1

i 1101 cDh2/ 32-bit Rotate Right Through Carry TNO cY Zn+1 Z1 Z0 TNn+1| TN1
1110 ub2/ 32-bit Logical Right Shift o] o] Zn+1 Z1 Z0 TNn+1| TN1
1111 D2/ 32-bit Arithmetic Right Shift 215 Z15 Zn+1 Z1 Z0 TNn+1| TN1

1 See the Programmer's Reference Manual
Where: T15 -Most significant bit of el C -Carry bit
Tn -Typical bit of [felx . ‘ CY -Carry bit before operation
TO -Least significant bit of [felg Zn -ALU output
N15 -Most significant bit of NZJ Z15 -Most significant bit 15 of ALU output
Nn -Typical bit of M=l TNn -Original value of typical bit of
NO -Least significant bit of

26

Specifications RTX 2001A

Absolute Maximum Ratings

SupplyVoltage ... vvv it ittt ittt et e +80V GateCountciiiiiiiiiiiiiiiiiii i ittt e 16,700
Input, Output, or I/O Voltage Applied ... GND - 0.5Vto VCC + 0.5V Junction Temperatureooveveerrnnnnneennnnns +1759C
Storage TemperatureRange -650C 10 +1500C Lead Temperature (Soldering, Ten Seconds) +300°C
Maximum Package Power Dissipation................... 2 Watts
L Y 410C/W (PGA Package)
BjC e 170C/W (PGA Package)

CAUTION: Stresses above those listed in the “Absolute Maximum Ratings” méy cause permanent damage to the device. This is a stress only rating and
operation of the device at these or any other conditions above those indicated in the operation section of the specification is not implied.

Operating Temperature Range: Operating Conditions
RTX2001A(Industrial)ccvvvnnn.. -400Ct0 +859C Operating VoltageRangeccovvivnnennn. +4.5V to +5.5V
RTX 2001A(Commercial).ovvveiiiiiinnnnn.. 00C to +700C Maximum Rise and Fall Times FOrEI5-EI3..........couu... 20ns

D.C. Electrical Specifications VCC = 5V, £10%, Tp = -40°9C to +85°C (Industrial) Temperature Range
VCC = 5V, 5%, TpA = 00C to +709C (Commercial) Temperature Range

SYMBOL PARAMETER MIN MAX UNITS ‘ COMMENTS
VIH Logical One Input Voltage | NMI, RESET, ICLK| VCC x0.7 - \ Tested at VCC = 5.5V
Other Inputs - 2.0 - v Tested at VCC = 5.5V
VIL Logical Zero Input Voltage) - 0.8 \' Tested atVCC =4.5V
VOH High Output Voltage v 3.5 - \' IOH =-4mA,VCC = 4.5V
VCC-04 - \" IOH =-100pA, VCC = 4.5V
VOL Low Output Voltage - 0.4 \ IOL =4mA,VCC = 4.5V
1 Input Leakage Current -1 1 pA VI=VCC or GND, VCC = 5.5V
o 1/0 Leakage Current -10 10 uA VO =VCC or GND, VCC = 5.5V
ICCSB Standby Power Supply Current - 500 uA VI =VCC or GND (Note1)
ICCOP Operating Power Supply Current - 10 © mA VI =VCC or GND;
f(ICLK) = 1MHz; Outputs
Unloaded (IO = 0); (Note 2)

NOTES: 1. Typical ICCSB: 10pA. The RTX 2001A is a static CMOS part.
Therefore ICCSB > 0 is due to leakage currents.

2. Operating supply current is proportional to frequency. Typical
ICCOP: 5SmA/MHz.

Capacitance (TA = +250C; All measurements referred to device GND)

SYMBOL PARAMETER TYP UNITS TEST CONDITIONS
Cl Input Capacitance 10 pF f=1MHz
Cclo 1/O Capacitance 10 pF f=1MHz

27

Specifications RTX 2001A

A.C. Electrical Specifications VCC =5V, £10%, Tp = -40°C to +85°C (Industrial) Temperature Range
VCC = 5V, £5%, TpA = 00C to +70°C (Commercial) Temperature Range

CLOCK, WAIT AND TIMER TIMING (Notes 1 and 2)

8MHz 10MHz
SYMBOL PARAMETER MIN [mAx | MmIN | mAX | uNITS COMMENTS
REQUIREMENTS
t ICLK Period 62 - 50 - ns
t2 ICLK High Time 24 - 20 - ns
t3 ICLK Low Time 24 - 20 - ns
t4 WAIT Set Up Time 5 - 5 - ns
t5 WAIT Hold Time 3 - 3 - ns
t6 El High to El High t1x4 - tix4 - ns External CIock/Timer Input
t7 El High Time 10 - 10 - ns’ External Clock/Timer Input
18 El Low Time 10 - 10 - ns External Clock/Timer Input
RESPONSES
t11 ICLK to TCLK High 3 25 3 24 ns
t12 | TCLKLowTime 52 - 40 - ns Note 3
t13 TCLK High Time 64 - 52 - ns Note 3
t15 ICLK to PCLK High 3 25 3 25 ns
t16 PCLK Low Time 52 - 42 - ns Note 3
t17 PCLK High Time 64 - 52 - ns Note 3
t19 ICLK to TCLK;_Low - 35 - 32 ns .
120 ICLK to PCLK Low - 30 - 26 ns

NOTES: 1. High and low input levels for A.C. test:
ICLK, NMI, and RESET: 4.0V and 0.4V

-Other Inputs: 2.4V and 0.4V

2. Output load: 100pF.
3. Tested with t1 = t1(min). For t1 > t1(min),
add t1 - t1(min).

28

‘Specifications RTX 2001A

A.C. Electrical Specifications (Continued) VCC = 5V, £10%, TA = -40°C to +85°C (Industrial) Temperature Range
VCC = 5V, £5%, Tp = 09C to +700C (Commercial) Temperature Range

MEMORY BUS TIMING (Notes 1 and 2)

8MHz 10MHz
SYMBOL PARAMETER MIN MAX MIN MAX UNITS COMMENTS
REQUIREMENTS
121 MD Setup Time 16 - 14 - ns Read Cycle
t22 MD Hold Time 4 - 4 - ns Read Cycle
RESPONSES)
t26 PCLK to MA Va!id - 51 - 43 ns Note 4
128 MA Hold Time 20 - 20 - ns Note 5
129 PCLK to MR/W, UDS, - 50 - 44 ns Note 4
LDS, NEW and BOOT Valid -
t31 MR/W, UDS, LDS, NEW and 20 - 20 - ns Note 5
BOOT Hold Time
t32 PCLK to MD Valid - 16 - 14 ns Write Cycle
t33 N_ID Hold Time 20 - 20 - ns Write Cycle, Note 5
134 MD Enable Time -2 - -2 - ns Write Cycle, Note 3
t35 PCLK to MD Disable Time - 50 - 44 ns Write Cycle, Notes 3,' 4
NOTES: 1. High and low input levels for A.C. test:

ICLK, NMI, and RESET: 4.0V and 0.4V
Other Inputs: 2.4V and 0.4V

2. Output load: 100pF.

3. Output enable and disable times are characterized only. ‘

. Tested with t1 at specified minimum and t2 =

. Tested with t1 at specified minimum and t2 = 0.5*t1.

For t2 > 0.5*t1(min), add t2 - (0.5+t1(min)) to this specification.

0.5%t1.
For t2 < 0.5*t1(min), subtract (0.5*t1(min)) - t2 from this specifi-
cation.

29

Specifications RTX 2001A

A.C. Electrical Speciflcations (Continued) VCC = 5V, £10%, TA = -40°C to +85°C (Industrial) Temperature Range
VCC = 5V, £5%, TA = 0°C to +700C (Commercial) Temperature Range

ASIC BUS AND INTERRUPT TIMING (Notes 1 and 2)

8MHz 10MHz
SYMBOL PARAMETER MIN MAX MIN MAX UNITS COMMENTS
-REQUIREMENTS
t40 GD Read Setup to PCLK ‘ 45 - 37 - ns Read Cycle
141 GD Read Setup to GIO 46 - a7 - ns Read Cycle
t42 GD Read Hold from GIO 0 - 0 - ns Read Cycle
143 GD Read Hold from PCLK (o] - (o] - ns Read Cycle
t44 EI/NMI Setup Time 22 - 20 - ns INT/NMI Cycle
t46 INTSUP Setup Time 22 - 20 - ns
147 INTSUP Hold Time 0 - 0 - ns
RESPONSES
t48 PCLK High to GIO Low 55 - 48 - ns Note 6
t49 GIO Low Time 52 - 40 - ns Note 6
150 ICLKHighto GO Low - 35 - 30 ns
51 | ICLK Highto GIO High - 35 - 32 ns
t52 PCLK to GA Valid - 51 - 44 ns Note 4
154 GIO to GA Hold Time | o2 - 12 - ns Note5
t56 PCLK to GR/W Valid - 50 - 42 ns Note 4
t58 GIO to GR/W Hold Time 12 - 12 - ns Note 5
t61 ; GD Enable Time -2 - -2 - ns Write Cycle, Note 3
162 GD Valid Time - 16 - 14 ns Write Cycle
t63 GIO to GD Hold Time 12 - 12 - ns Write Cycle, Note 5
t65 GIO to GD Disable Time - 50 - 44 ns Write Cycle, Notes 3, 4
t67 PCLK to INTA High Time - 25 - 25 ns INTA Cycle
t68 INTA Hold Time ‘ o - (o} - ns INTA Cycle
t69 GIO High Time 62 - 50 - ns Note 6

NOTES: 1. High and low input levels for A.C. test:
ICLK, NMI and RESET: 4.0V and 0.4V
Other Inputs: 2.4V and 0.4V

2. Output load: 100pF.
3. Output enable and disable times are characterized only.

4. Tested with t1 at specified minimum and t2 = 0.5%t1.
For t2 > 0.5*t1(min), add t2 ~ (0.5*t1(min)) to this specification.

5. Tested with t1 at specified minimum and t2 = 0.5+ t1.
For t2 < 0.5*t1(min), subtract (0.5*t1(min)) - t2 from this specifi-
cation.

6. Tested with t1 = t1(min): For t1 > t1(min), add t1 - t1(min).

30

RTX 2001A

___________ - ’ tPULSE WIDTH , tPULSE WIDTH
| TYPICAL , o/ p
| crockor VTN sy /1 5v Sk 1.6V
| STROBE 04V — N/
| tSETUP| tHOLD
outT O TYPICAL 2.4V
TR e QOO | e OO0
\ | tDELAY tDELAY
: | TyPiCAL
1) | outRut
= | 1.5V IOL]
*TEST HEAD | L L
CAPACITANCE | = = = | TY%'%:;
| , EQUIVALENT CIRCUIT | OUTPUT
o B Note: Values Are Subject to Change

FIGURE 19. TEST CIRCUIT FIGURE 20. A.C. DRIVE AND MEASURE POINTS - CLK INPUT

NOTE: For A.C. testing input rise and fall times are driven at 1 volt/ns

Timing Diagrams

ICLK __~

11—

TCLK —

WAIT
15—

PCLK —
NOTE 1 < 117 —le— 1 16 —|

PCLK \. g

NOTE 2

NOTES:
1. NORMAL CYCLE: This waveform describes a normal PCLK cycle and a PCLK cycle with a Wait state.

2. EXTENDED CYCLE: This waveform describes a PCLK cycle for a USER memory access or an Interrupt Acknowledge cycle when the CYCEXT bit is set.
To ensure compatibility with future parts, Wait states should not be used with extended cycles.

FIGURE 21. CLOCK AND WAIT TIMING

té

EI5- EI3 - 7 X X Z NN
t7 t8 e

FIGURE 22. TIMER/COUNTER TIMING

31

" RTX 2001A

Timing Diagrams (Continued)

PCLK ___ X K \\
~ 126 e 128]
MA RRXXRRE 2
LDS 129 - e 131 —
uDs
NEW DRRBK 2
BOOT —l $D] |
MR/W —| . |- 122
MD \ | Z N\ /.
IN /7 |\ /7 \
: -t 32 - t35
2001A27.GEM £34 = r |~ 133
MD N\ z
ouT 7/ |\ AN

NOTES: 1. If both LDS and UDS are low, no memory access is taking place in the current cycle. This only occurs during streamed instructions that do not

access memory.

2. During a streamed single cycle mstructnon. the Memory Data Bus is driven by the processor.

FIGURE 23. MEMORY BUS TIMING

ICLK
GIO
t48 t49 te9
PCLK 7‘ \ . ;)
t§2 . —— t 54
GA SRR : %QXXXI
- 156 --—— t 58
GR/W SRR %@m
lee— t 40 —| le— t 43
t4 l— t 42
GD N | N 22l
IN ‘ 7N\ ‘ ?— S
2001A28.GEM o < t62—= - o 165
t —3 fte— 1 —]
GD N l: . =z
ouT 7 K &

NOTES: 1. G_IO remains high for internal ASIC bus cycles.

2. GR/W goes low and GD is driven for all ASIC write cycles, including internal ones.

3. During non-ASIC write cycles, GD is not driven by the RTX2001A. Therefore, it is recommended that all GD pins be pulled to VCC or GND to

minimize power supply current and’ no-se)

FIGURE 24. ASIC BUS TIMING

32

RTX 2001A

Timing Diagrams (Continued)

t46 | t47 t46 | t47

PCLK

INTSUP i 7

— |- t67 —» =168

INTA . # -Xi

- — 126 —> r—t28
MA X X X

NA
LN

£ INT VECTOR

FIGURE 25. INTERRUPT TIMING: WITH INTERRUPT SUPPRESSION

NOTES: 1. Events in an interrupt sequence are as follows:

el.

e2.
e3.

e4.

e5.

The Interrupt Controller samples the interrupt request inputs on the rising edge of PCLK. If NMI rises between e1 and e5, the interrupt vector
will be for NMI.

If any interrupt requests were sampled, the Interrupt Controller issues an interrupt request to the core on the falling edge of PCLK.

The core samples the state of the interrupt requests from the Interrupt Controller on the falling edge of PCLK. If INTSUP is high, maskable
interrupts will not be detected at this time.)

When the core samples an interrupt request on the falling edge of PCLK, an Interrupt Acknowledge cycle will begin on the next rising edge of
PCLK.

Following the detection of an interrupt request by the core, an Interrupt Acknowledge cycle begins. The interrupt vector will be based on.the
highest priority interrupt request active at this time.

2. t44 is only required to determine when the Interrupt Acknowledge cycle will occur.
3. Interrupt requests should be held active until the Interrupt Acknowledge cycle for that interrupt occurs.

el e2 e4d e5 _
PCLK ' umm
t44 '
El t46 | t47 N
INTSUP N 7
— 167 - |- 168
INTA ' -\
| |- 126 | | 128

w X X

N A

€ INT VECTOR

LN

X

FIGURE 26. INTERRUPT TIMINé: WITH NO INTERRUPT SUPPRESSION

33

RTX 2001A

Timing Diagrams (Continued)

o 167 —= | t68
- ? o
INTA : 7 ‘
126 —> |=— —» |l<— 128

w XXX X gm s

;

FIGURE 27.‘ NON-MASKABLE INTERRUPT TIMING

NOTES: 1. Events in an interrupt sequence are as follows:

e1. The Interrupt Controller samples the interrupt request inputs.on the rising edge of PCLK. If NMI rises between e1 and e5, the interrupt vector
~ will be for NMI.

e2. If any interrupt requests were samp|ed the Interrupt Controller issues an interrupt request to the core on the fallmg edge of PCLK.

e3. The core samples the state of the interrupt requests from the Interrupt Controller on the fallmg edge of PCLK. If INTSUP is high, maskable
interrupts will not be detected at this time.

e4. When the core samples an mterrupt request on the falhng edge of PCLK, an Inlerrupt Acknowledge cycle will begin.on the next rising edge of
PCLK.

e5. Following the detection of an interrupt request by the core, an Interrupt Acknowledge cycle begins. The mlerrupt vector will be based on the
highest priority interrupt request active at this time.

2. 144 is only required to determine when the Interrupt Acknowledge cycle will occur.
3. Interrupt requests should be held active until the Interrupt Acknowledge cycle for that interrupt occurs.

34

RTX 2001A

Packaging

84 PIN GRID ARRAY

TOP VIEW

1.140 -

e ZEEEER— L
1.180

1.140
1.180

% Harris

RTX2001A

f

\

1.140
1.180

'-——— 1.000 BSC ——l

A}

‘= — - INDEX MARK

BOTTOM VIEW

1.140

1.180

1.000 BSC —

OJOJOXOXOXOJOJOJOX O
OJOJOJOJOJOXOXOXO)
(OJOXO; @O

PEEEAOOOOO G

%@@@@@@@@@
©JO (OXOXO
KO)

©

©

©

> W O O MM O T « X r

SIDE VIEW

SEATING PLANE
120

' I' 140
.040

.060

|
—

|
—

S
|

T Y00 Bsc
]

NOTE: All Dimensions are %‘ , Dimensions are in inches.

=< .003 MIN

35

RTX 20017A

Pa‘ckagin g (Continued)
: 84 LEAD PLCC

TOPVIEW SIDE VIEW

1.185
1.195

1.150 Y

1.158 : :oﬁ‘[I-

[miminininiclicicioinisiainlisieisinialielels)

1185 1.150 020 MIN
1195 1.158 L
1.090
o3 f 130
.021
. ~fb028) L0s0 BSC 165 ~130
NOTES: -200
1. BODY SIZE DIMENSIONS DO NOT INCLUDE MOLD FLASH
NOTE: All Dimensions are Min, , Dimensions are in inches.
‘ Max '
Ordering Information. v
: COMMERCIAL/INDUSTRIAL
RTX 2001A G 1 - =10
FAMILY ————| o - SPEED/PERFORMANCE -
RTX (Real Time Express) : , ' _ : - 10: 10MHz
o i I . ‘ 8: 8MHz
PART NUMBER o
' PACKAGE TYPE —— v v TEMPERATURE RANGE
G: PGA » I: Industrial -400C to +850C
J: PLCC , : . : C: Commercial 09C to +700C

X: Unpackaged o X: +250C

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or speclfibat:bns at .

any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is

believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other
- rights of third parties which may result from its ;:se. No license is granted by implication or otherwise under any patent or patent rights of Harris or its

subsidiaries.

36

RTX 2001A

Notes

37

RTX 2001A

Notes

38

RTX 2001A

Notes

39

RTX 20014

~ Index
Page

ALU, DESCHPHON .0\t evttvenseeins e anenearensaneanennns e, 17-18
ALU, FUNGHONS + T e+ e eeee e eeeanaann, e e, e . 25-26
Buses: Address,Data e S 6
Extended Cycle Operation e e 18
Instruction Set Information e - 21-26
INterface, ASIC BUS ..\ttt ettt et e e ene e et eaanans 18
Interféce,MemoryBus.................., .. 18
Interrupt Controller.co.veeunenn.. ST e 15-17
Interrupt SoUrcés, Priorities, VBOIOTS v v et ee e e e e e e e e e 15
Memory ACCESS e, T 18-20
Operation, General et e et e e ieeare e e e iiaieee e 3
‘Ordering Information e e e e, 36
Packaging Information D 35-36
Pin/Signal ASSIgNMENtS . ..ottt it ettt ittt e i e 3
T U 2
Registers, ASIC Addresses e e e 1
Registers, Bit Assignments P ettt e ettt e 7-10
Registers,lnitializatién TS e, 11
Registers, INternal TO COrevvvveeeneeennnnnnens. J 7
Registers, On-Chip Peripheral P et ernenereraerenanees e 7-10
Signal Descriptions,‘ 1 S 3-4
Software Information............... [P 20
Specifications, A.C. ST e e ~ 28-30
Speciﬁcationé, DC............ et F 27
Specifications, Maximum Rafings S 27
Specifications, Operating Conditions.c..... T 27
Stacks, AlChHECIUI®\ .veeeeees e iiieeeeeeensinnns 12
Stacks, Controllers. SRR AP . 12-14
Subroutine Calls And Returns i 20 |
Timers/Counters e e e P 14
Timing Diagrams e, e, s e 31-34 -

Sales Offices 4

U.S. HEADQUARTERS EUROPEAN HEADQUARTERS] SOUTH ASIA NORTH ASIA

Harris Semiconductor Harris Semiconductor - Harris Semiconductor H.K. Ltd Harris KK.

1301 Woody Burke Road Mercure antre - 13/F Fourseas Building Shinjuku NS Bldg. Box 6153 .

Melbourne, Florida - 32902 Rue de la Fusse 100 208-212 Nathan Road 2-4-1 Nishi-Shinjuku

TEL: (407) 724-3739 Brussels, Belgium 1130 - Tsimshatsui, Kowloon Shinjuku-Ku, Tokyo 163 Japan

TEL: (32) 2-246-2111 Hong Kong TEL: 81-3-345-8911

TEL: (852) 3-723-6339 -

B HARRIS

.COMMERCIAL PRODUCTS GROUP -

40

