
-

-

;I) HARRIS RTX 2001A™
May 1990

Features

• Fast 1 OOns Machine Cycle

• Single Cycle Instruction Execution

• Fast Step Arithmetic Operations
.,. 20 Cycle Multiply

.,. 21 Cycle Divide

.,. 25 Cycle Square Root

• Direct Execution of Forth Language
.,. Eliminates Assembly Language Programming

• Single Cycle Subroutine Call/Return

• Four Cycle Interrupt Latency

• On-Chip Interrupt Controller

• Three On-Chip 16-Bit Timer/Counters

• ASIC Bus TM for Off-Chip Extension of Architecture

• 1 Megabyte Total Address Space

• Word and Byte Memory Access

• Low Power CMOS .•.••.•••••....... 5mA/MHz Typical

• Fully Static •••••••••••••••••• DC to 10MHz Operation

• 84-Pin PGA or PLCC Package

• Available in the Harris Standard Cell Library

• Pin Compatible to the RTX 2000 TM

.,. Two On-Chip 64 Word Stacks

Applications

Embedded control; DMA controllers; stepper motor control;
closed loop digital control and digital filter applications of
moderate speed.

RTX 200 1 A Block Diagram

CONTROL CLOCK AND
INPUTS~ CONFIGURATION

CONTROL

INTERRUPT
INPUTS~ INTERRUPT ..

OFF CHIP
PERIPHERALS

ASIC BUS
INTERFACE

Real Time Express TM Microcontroller

Description

The RTX 2001 A is a 16-bit microcontroller which is particu­
larly well suited for very high speed control tasks which are
less arithmetically intensive than those tasks which require
the full capabilities of the RTX 2000. In these application
areas, this product offers cost/performance advantages,
surpassing competing 8- and 16-bit microcontroiiers by up
to 50X .

Pin compatible to the RTX 2000, this processor incorporates
two 64-word stacks with most of the features provided on the
RTX 2000, including on-chip timers and an enhanced Inter­
rupt Controller. Instruction execution times of one or two
machine cycles are achieved by utilizing a stack oriented,
multiple bus architecture. The high performance ASIC Bus,
which is unique to the RTXTM family of products, provides for
extension of the microcontroller architecture using off-chip
hardware acceleration logic and application specific 1/0
devices. RTX Microcontrollers support high level languages
such as Forth and C. The advantages of this product are
further enhanced through the use of the peripherals and
development system support Harris provides for the RTX
family.

Combined, these features make the RTX 2001 A an extremely
powerful processor, providing the ability to meet numerous
applications in low cost, high performance systems .

The RTX 2001A has been designed and fabricated utilizing
the Harris Advanced Standard Cell and Compiler Library. As
part of the Harris family of compatible cell libraries, the RTX
2001 A architecture can also be incorporated into customer
ASIC designs.

MAIN
MEMORY

MEMORY BUS
INTERFACE

RTX 2001A

CONTROL

RTXCORE
PROCESSOR

64 -Ill/ORD
RETURN
STACK

64 -Ill/ORD
PARAMETER

STACK

STACK
CONTROLLERS

RTX"', RTX 2000"', RTX 2001A"', Real Time Express"', and ASIC Bus"' are Trademarks of Harris Corporation.

CAUTION: These devices are sensttive to electronic discharge. Proper IC handling procedures should be followed.
Coovrioht © Harris Corooration 1989

RTX 2001A

Pinouts
84 PIN PGA PACKAGE

A B e 0 E F G H J K L K J H G F E ··o . e B A

GNO M002 .MD01 PeLK UOS GNO MA19 MA16 0 0 0 0 0 0 0 0 0 0 0 II
MAl6_ MAIS GNO UOS PeLK·MOOI M002 GNO M006M007MOOE

10 M011 M009 Vee MOO M003 NEW BOO LOS MAIS MA17 MA14 o o o o o o o o o ·o o 10
MAl4 MAl7 MAIS LOS BOOT NEW M003 MOOS Vee MOOS MOl1 .

9 M01 M010 M004 MOOD MRM MA1S Vee 0 0
Vee MAIS

o_ o o
MRJW MOOD M004

0 0 9.
MOIO MOl2

0 0 0 0 8
MAl2 MAl3 MOl3 M0.14

0 0 0 0 0 0 7
MAOB MA10 GNO GAQI M01S GAOC

6 TeLK .GNO 0 0 0 BOTTOM VIEW. 0 0 0 6
MAii MA07 MA08 PINS UP GA02 GNO TeLK.

0 0 0 0 0 0 s
MA06 MADS MA04 INTSUP NMI INTA

S INTA NMI kNJP

4 Vee E 11. 0 0 0 0 4
MA03 MA02 E II Vee

3 El2 El4 G014 G011 GDI GOOI MADI 0 0 0 0 0 0 0 3
MAOI GOOI GOIO G011 G014 El4 El2

0 0 0 0 0 0 0 0 0 0 0 2 2 E 13 RESE WAIT GIO G013 G012 GOOS G006 G003 GD02 GOOD
GOOD G002 G003 GOOS GOOS G012 G013 GIO WAIT RESET E 13

0 0 0 0 0 0 0 1 EIS _leLK GRJW G01S GNO G007 G009 Vee GOOS G004 GNO
GNO G004 GOOS vee GOOS G007 GNO

B e 0 E F G

RESET 12
WAIT 1.3
ICLK 14

GR/W · 15
GIO 16

G015 17 ·
G014
G013
GNO

G012
G011
G010
G009
GOOS
G007

vcc
G006
G005
G004
G003
GNO

H J K L L K J H G

84 LEAD PLCC PACKAGE

~o.==~=~~~N~~~N~o==~=~
~~ . ==~==~~~~~

RTX 2001A
TOP VIEW

74
·73
72
71
70
69
68
67
66

. 65

64
6.3
62
61
60
59
58
57
56
55
54

NOTE: An overbar ori a signal name represents an aclive LOW signal.
. . ~ .

2

F E

MD68
vcc
MD07
M006
M005
GNO
MD04
M003
M002
M001
MDOO
MRfii
_PCLK•
BOOT
NEW
UOS
LOS
GNO
MA19
MA18
MA17

0 0 o~
G01S GRiiii.leLK EIS

0 e B A pj
Al

RTX.2001A

TABLE 1. PGA AND PLCC PIN/SIGNAL ASSIGNMENTS

PLCC PGA SIGNAL PLCC PGA SIGNAL
LEAD PIN NAME TYPE LEAD PIN NAME TYPE

1 ca GA02 Output; Address Bus 43 J6 MAOS · Output; Address Bus
2 A6 TCLK Output 44 J7 GND Ground
3 A5 INTA Output 45 L7 MA09 Output; Address Bus
4 B5 NMI Input 46 K7 MA10 Output; Address Bus
5 C5 INTSUP Input 47 L6 MA11 Output; Address Bus
6 A4 vcc Power 4S L8 MA12 Output; Address Bus
7 B4 El1 Input 49 KS MA13 Output; Address Bus
s A3 El2 Input 50 L9 vcc Power
9 A2 El3 Input 51 L10 MA14 Output; Address Bus
10 B3 E14 Input 52 K9 MA15 Output; Address Bus
11 A1 EIS Input 53 L11 MA16 Output; Address Bus
12 B2 RESET Input 54 K10 MA17 Output; Address Bus
13 C2 WAIT Input 55 J10 MA1S Output; Address Bus
14 B1 ICLK Input 56 K11 MA19 Output; Address Bus
15 C1 GR/W Output 57 J11 GND Ground
16 02 GIO Output 5S H10 LOS Output
17 01 GD15 1/0; Data Bus 59 H11 UDS Output
1S E3 GD14 VO; Data Bus 60 F10 NEW Output
19 E2 GD13 VO; Data Bus 61 G10 BOOT Output
20 E1 GND Ground 62 G11 PCLK Output
21 F2 GD12 VO; Data Bus 63 G9 MR/W Output
22 F3 GD11 VO; Data Bus 64 F9 MDOO VO; Data Bus
23 G3 GD10 VO; Data Bus 65 F11 MD01 1/0; Data Bus
24 G1 GD09 VO; Data Bus 66 E11 MD02 VO; Data Bus
25 G2 GOOS 1/0; Data Bus 67 E10 MD03 1/0; Data Bus
26 F1 GD07 VO; Data Bus as E9 MD04 1/0; Data Bus
27 H1 vcc Power 69 011 GND Ground
2S H2 GD06 VO; Data Bus 70 010 MD05 1/0; Data Bus
29 J1 GD05 VO; Data Bus 71 C11 MD06 1/0; Data Bus
30 K1 GD04 1/0; Data Bus 72 B11 MD07 1/0; Data Bus
31 J2 GD03 VO; Data Bus 73 C10 vcc Power

)
32 L1 GND Ground
33 K2 GD02 1/0; Data Bus
34 K3 GD01 VO; Data Bus

74 A11 MOOS 1/0; Data Bus
75 B10 MD09 VO; Data Bus
76 B9 MD10 1/0; Data Bus

35 L2 GDOO 1/0; Data Bus 77 A10 MD11 VO; Data Bus
36 L3 MA01 Output; Address Bus 7S A9 MD12 VO; Data Bus
37 K4 MA02 Output; Address Bus 79 BS MD13 VO; Data Bus
3S L4 MA03 Output; Address Bus so AS MD14 VO; Data Bus
39 J5 MA04 Output; Address Bus S1 B6 GND Ground
40 K5 MA05 Output; Address Bus S2 B7 MD15 1/0; Data Bus
41 L5 MA06 Output; Address Bus S3 A7 GAOO Output; Address Bus
42 K6 MA07 Output; Address Bus S4 C7 GA01 Output; Address Bus

TABLE 2. OUTPUT SIGNAL DESCRIPTIONS

PLCC RESET
SIGNAL LEAD LEVEL DESCRIPTION

OUTPUTS

NEW 60 1 NEW: A HIGH on this pin indicates that an Instruction Fetch is in progress.

BOOT 61 1 BOOT: A HIGH on this pin indicates that Boot Memory is being accessed. This pin can be set or reset by
accessing bit 3 of the Configuration Register.

MR/W 63 1 MEMORY READ/WRITE: A LOW on this pin indicates that a Memory Write operation is in progress.

UDS 59 1 UPPER DATA SELECT: A HIGH on this pin indicates that the high byte of memory (MD15-MD08) is
being accessed.

LOS 5S 1 LOWER DATA SELECT: A HIGH on this pin indicates that the low byte of memory (MD07-MDOO) is
being accessed.

GIO 16 1 ASIC VO: A LOW on this pin indicates that an ASIC Bus operation is in progress.

GR/W 15 1 ASIC READ/WRITE: A LOW on this pin indicates that an ASIC Bus Write operation is in progress.

PCLK 62 0 PROCESSOR CLOCK: Runs at half the frequency oflCLK. All processor cycles begin on the rising edge
of PCLK. Held low extra cycles when WAIT Is asserted.

TCLK 2 0 Tl.MING CLOCK: Same frequency and phase as PCLK but continues running during Wait cycles.

INTA 3 0 INTERRUPT ACKNOWLEDGE: A HIGH on this pin indicates that an Interrupt Acknowledge cycle is in
Pn;>gress.

3

RTX 2001A

TABLE 3. INPUT SIGNAL, BUS, AND POWER CONNECTION DESCRIPTIONS

PLCC
SIGNAL LEAD DESCRIPTION .· • .

INPUTS

WAIT 13 WAIT: A HIGH on this pin causes PCLK to be held LOW and the current cycle to be extended.

ICLK 14 INPUT CLOCK: Internally divided by 2 to generate all on-chip timing (Schmitt trigger TTL input levels);

RESET 12 A HIGH level on this pin resets the RTX. Must be held high for at least 4 ICLK cycles (Schmitt trigger
TTL input levels).

El2,El1 8,7 EXTERNAL INTERRUPTS 2, 1: Active HIGH level-sensitive inputs to the Interrupt Controller. Sampled on
the rising edge of PCLK. See Timing Diagrams for detail.

El5-El3 11-9 EXTERNAL iNTERRUPTS 5, 4. 3: Dual purpose inputs; active HIGH lave.I-sensitive. interrupt Controller
inputs; active HIGH edgec.sensitive Timer/Counter inputs. As interrupt inputs, they are sampled on the
rising edge of PCLK. See Timing Diagrams for detail.

NMI 4 NON-MASKABLE . INTERRUPT: Active HIGH Controller of edge-sensitive Interrupt input capable
interrupting ~riy processor cycle. See the ·interrupt Suppression Section (Schmitt trigger TTL input
levels).

INTSUP 5 INTERRUPT SUPPRESS: A HIGH on this pin inhibits all maskable interrupts, internal and external.

. ADDRESS BUSES (OUTPUTS) .
GA02 1 ASIC ADDRESS: 3-bit ASIC Address Bus, which carries address information for external ASIC devices.

GA01 84

GAOO 83

MA19-MA14 56-51 MEMORY ADDRESS: 19-bit Memory Address Bus, which carries address information for Main Memory.

MA13.c.MA09 49-45

MA08-MA01 43-36

DATA BUSES (1/0)
.

. GD15-GD13 17-19 ASIC DATA: 16-bit bidirectional external ASIC Data Bus, which carries data to and from off-chip 1/0
. devices •

GD12-GD07 21-26

GD06c.GD03 28-31

GD02-GDOO 33-35

MD15 82 MEMORY DATA: 16-bit bidirectional Memory Data Bus, which carries data to and from Main Memory.

MD1.4-MD08 80.,-74

MD07-MD05 72-70

MD04-MDOO 68-64

POWER CONNECTIONS

vcc 6,27, Power supply +5 Volt connections. A 0.1µF, low impedance decoupling capacitor should be placed
50,73 between.VCC and GND. This should be located as c.lose to the RTX package as possible.

GND 20,32, Power supply 'ground return connections.
44,57,
69;81

•
4

J

RTX 2001A

RTX 200 TA Microcontroller
The RTX 2001 A is designed around the RTX Processor core,
which is part of the Harris Standard Cell Library.

This processor core has eight 16-bit internal registers, an
ALU, internal data buses, and control hardware to perform in­
struction decoding and sequencing.

On-chip peripherals which the RTX 2001 A offers include a
Memory Page Controller, an Interrupt Controller, three Timer/
Counters, and two Stack Controllers. Two scratchpad regi­
sters, one of which can be used for automatic counting, are
also provided on-chip in addition to the hardware registers
which support the peripheral controllers.

Off-chip user interfaces provide address and data access to
Main Memory and ASIC 1/0 devices, user defined interrupt
signals, and Clock/Reset controls.

Figure 1 shows the data paths between the core, on-chip
peripherals, and off-chip interfaces.

The RTX 2001A microcontroller is based on a two-stack
architecture. These two stacks, which are Last-in-first-out
(LIFO) memories, are called the Parameter Stack and the
Return Stack.

OFF- CHIP
USER
INTERFACES

Two internal registers, ~ and lmfl], provide the top
two elements of the 16-bit wide Parameter Stack, while the
remaining elements are contained in on-chip memory ("stack
memory").

The top element of the Return Stack is 21 bits wide, and is
stored in registers D and llili), while the remaining
elements are contained in stack memory.

The highly parallel architecture of the RTX is optimized for
minimal Subroutine Call/Return overhead. As a result, a
Subroutine Call takes one Cycle, while a Subroutine Return is
usually incorporated into the preceding instruction and does
not add any processor cycles. This parallelism provides for
peak execution rates during simultaneous bus operations
which can reach the equivalent of 40 million Forth language
operations per second at a clock rate of 10MHz. Typicalexe­
cution rates exceed 10 million operations per second.

Processor timing is driven by a 2X clock (ICLK) with a Schmitt
trigger input. This allows use with systems which reduce
power consumption by using a slow input clock with
arbitrarily slow rise and fall times.

RTX 2001A ASIC BUS
INTERFACE

1 II I

I 111

!
INSTRUCTION

DECODER

ON- CHIP PERIPHERALS

FIGURE 1. RTX 2001A FUNCTIONAL BLOCK DIAGRAM

* mill contains the 5 most significant bits (20-16) of the top element of the Return Stack.

5

RTX 2001A

RTX 2001 A Operation
Control of all data paths and the Program Counter Register,
(ID), is provided by the Instruction Decoder. This hardware
determines what function is to be performed by looking at the
contents of the Instruction Register, (Im), and subse·
quently determines the sequence of operations through. data
path control.

Instructions which do not perform memory accesses execute
in a single clock cycle while the next instruction is being
fetched.

As shown in Figure 2, the in.struction is latched into WJ at the
beginning of a clock cycle. The instruction is then decoded
by the processor, All necessary internal operations are
performed simultaneously with fetching the next instruction.

Instructions which access memory require two clock cycles
to be executed. During the first cycle of a mernory access
instruction, the instruction is decoded, the address of the
memory location to be accessed is placed on the Memory

PCLK

EXECUTION SEQUENCE WITH NO MEMORY DATA ACCESS:
,·

Address Bus (MA19-MA01), and the memory data (MD15-
MDOO), is read or written. During the second cycle, ALU
operations are performed, the address of the next instruction
to be executed is placed on the Memory Address Bus, and
the next instruction is fetched, as indicated in the bottom half
of Figure 2.

RTX Data Buses and Address Buses
The RTX core bus architecture provides for unidirectional
data paths.and simultaneous operation of some data buses.
This parallelism allows for maximum efficiency of data flow
internal to the core.

Addresses for accessing external (off-chip) memory or ASIC
devices are output via either the Memory Address Bus
(MA 19-MA01) or the ASIC Address Bus (GA02-GAOO). See
Table 3. External data is transferred by the ASIC Data Bus
(GD15-GDOO) and the Memory Data Bus (MD15-MDOO),
both of which are bidirectional.

I BEGIN

I FIRST
CLOCK

ENO OF I BEGIN
FIRST SECOND

CLOCK CLOCK

I fYCLE -

~(Jw:c INSTRUCTION I LATCHES INTO

llD I
1~~

CONCURRENT
OPERATIONS

~

CYCLE , . CYCLE
... I(-

PERFORM INTERNAL OPERATIONS AND
ALU OPERATlpNS, AS REQUIRED

ADDRESS OF

NEXT
INSTRUCTION

FETCH IS PLACED ONTO

MA19 • MA01
BUS

ASIC BUS OPERATIONS

EXECUTION SEQUENCE WITH MEMORY DATA ACCESS:

II BEGIN
FIRST
CLOCK I fYCLE

'~IN_~_;~-~-~-~~-N~ ~
ADDRESS OF

MEMORY
LOCATION

IS PLACED ONTO

MA19 • MA01

BUS

ENO OF I BEGIN ENO OF I
FIRST I SECOND SECOND I

CLOCK CLOCK CLOCK

c~ .. c.LE~1;Yc-LE~~~~~~~-C-O-NC~U~R-RE-N~T~~~~~~~C-YCLE , OPERATIONS

I =;i,,
. PERFORM ALU OPERATIONS . I

READ OR WRITE
MEMORY DATA

I PLACE . ADDRESS OF I I FETCH NEXT
NEXT INSTRUCTION INSTRUCTION I

I ONTO MA19 - MA01 I

FIGURE 2. INSTRUCTION EXECUTION SEQUENCE

6

•

•

•

RTX 2001A

RTX Internal Registers
The core of the RTX 2001A is a macrocell available through
the Harris Standard Cell Library. This core contains eight
16-bit internal registers, which may be accessed implicitly or
explicitly, depending upon the register accessed and the
function being performed.

~ : The Top Register contains the top element of the
Parameter Stack. ~is the implicit data source or destina·
tion for certain instructions, and has no ASIC address assign·
ment. The contents of this register may be directed to any 1/0
device or to any processor register except the Instruction
Register. ~ is also the T input to the ALU. Input to ~
must come through the ALU. This register also holds the most
significant 16 bits of 32-bit products and 32-bit dividends.

mm : The Next Register holds the second element of the
Parameter Stack. mm is the implicit data source or desti·
nation for certain instructions, and has no ASIC address
assignment. During a stack "push", the contents of mm
are transferred to stack memory, and the contents of ~
are put into mm. This register is used to hold the least sig·
nificant 16 bits of 32-bit products. Memory data is accessed
through WW , as described in the Memory Access section
of this document.

lliJ: The Instruction Register is actually a latch which
contains the instruction currently being executed, and has no
ASIC address assignment. In certain instructions, an operand
can be embedded in the instruction code, making [l!Il the
implicit source for that operand (as in the case of short liter·
als). Input to this register comes from Main Memory (see
Tables 12-24 for code information).

t!liJ : The Configuration Register is used to indicate and
control the current status/setup of the RTX microcontroller,
through the bit assignments shown in Figure 3. This register
is accessed explicitly through read and write operations,
which cause interrupts to be suppressed for one cycle, guar·
anteeing that the next instruction will be performed before an
Interrupt Acknowledge cycle is allowed to be performed.

~ : The Program Counter Register contains the address
of the next instruction to be fetched from Main Memory. At
RESET, the contents of ~ are set to O.

D : The Index Register contains 16 bits of the 21-bit top
element of the Return Stack, and is also used to hold the
count for streamed and loop instructions (see Figure 11). In
addition, a can be used to hold data and can be written from
~ . The contents of U may be accessed in either the push/
pop mode in which values are moved to/from stack memory
as required, or in the read/write mode in which the stack
memory is not affected. The ASIC address used for D deter·
mines what type of operation will be performed (see

* NOTE: Always read as "O". Should be set = O during Write operations.

7

Table 11). When the Streamed Instruction Mode is used, a
count is written to U and the next instruction is executed that
number of times plus one (i.e. count + 1).

li!il!J :The Multiply/Divide Register holds the divisor during
Step Divide operations, while the 32-bit dividend is in ~
and mm . During Step Multiply operations, li!il!J holds the
multiplier, while mm holds the multiplicand. [i!il!J may also
be used as a general purpose scratch pad register.

Em : The Square Root Register holds the intermediate
values used during Step Square Root calculations. Em may
also be used as a general purpose scratch pad register.

On-Chip Peripheral Registers

The RTX 2001A has an on-chip Interrupt Controller, a
Memory Page Controller, two Stack Controllers, and three
Timer/Counters. Each of these peripherals utilizes on-chip
registers to perform its functions. Two additional RTX 2001A
on-chip peripheral registers provide for scratchpad or
scratchpad/counting functions.

TIMER/COUNTER REGISTERS

ll!l!] , lil!iJ , ll!f) : The Timer /Counter Registers are 16-
bit read-only registers which contain the current count value
for each of the three Timer/Counters. The counter is decre·
mented at each rising clock edge of TCLK. Reading from
these registers at any time does not disturb their contents.
The sequence of Timer/Counter operations is shown in
Figure 15 in the Timer/Counters section.

I rm I
115114113112111110191817161514131211101

L
-

R/W; Carry

R/W; Complex Carry

R /W; Byte Order Bit
Resets to O. Modes:
1 = "Intel™· Like"
O = "Motorola™· Like•

R /W; Boot
Drives output signal
to select Boot ROM;

Write • only(Reads as 0);
Set Interrupt Disable;

0 = Int. Enabled;
1 = Int. Disabled

Reserved*

Read Only; Interrupt
Disable Status

Read Only;
Interrupt Latch

FIGURE 3. l!iiJ BIT ASSIGNMENTS
Motorola"' is a registered trademark of Motorola Inc.

Intel"' is a registered trademark of Intel Corporation

RTX 2001A

~ ' liiiil ' iGB : The Timer Preload Registers are Parameter Stack Fatal Error
write-only registers which contain the initial 16-bitcount val·
ues which are written to each timer. After a timer counts down
to zero, the preload register for that timer reloads its initial
count value to that timer register at the next rising clock edge,
synchronously with TCLK. Writing to these registers causes
the count to be loaded into the correspqnding Timer/Counter
register on the following cycle.

HOLDING/COUNTER SCRATCHPAD. REGISTERS

Ifill : The RH Scratchpad Register is a read/write 16.,-bit
scratchpad register for data storage, which provides faster
access than to memory or a location buried in the stack.

l:aJ : The RX Scratchpad Register can be used as a read/
write 16-bit scratchpad register (like Ifill). In addition, lilJ
can be used as a 16-bit, program controlled, counting regi­
ster which automatically increments or decrements the con·
tents of (:aJ by one when it is read or written with specialized
instructions (see Table 12). Incrementing the register con·
tents beyond the "all ones" state results in a Wrap to the "all
zeros" state. Decrementing the register ;below the "all zeros"
state results in a wrap to the "all ones" state.

INTERRUPT CONTROLLER REGISTERS

ll!lll : The Interrupt Vector Register is a read-only register
which holds the current Interrupt Vector value. See Figure 4
and Table 7. ·

IIEI!I : The Interrupt Base/Control Register is used to store
the Interrupt Vector base address and to specify configura·
tion information for the processor, as indicated by the bit
assignments in Figure 5.

Will : The Interrupt Mask Register has a bit assigned tor
each maskable interrupt which can occur. When a bit is set,
the interrupt corresponding to that bit will be masked. Only
the Non-Maskable Interrupt (NMI) cannot be masked. See
Figure 6 for bit assignments for this re~ister.

~------~----~~l?mlbit15

-------------l?mlbit14
----------~-l?mlbit13

----------'--- llmlbit 12

-----------bit 11

--------- l!l;Jbit 10

i
~----- Vector Address

(See Table 7)

..,---- All zeros

-------=-=-~~-­
! Its 114 11 a 112 I 11 11 o 1 9 1 a I 1 1 a 1 s 1 4 I 'a 1 2 1 1 1 o I 1111 I
-.= - - - - -v- - -:--:--- - =7 - -

MA15 - MAoO .,.~t----~

FIGURE 4. mliJ BIT ASSIGNMENTS

* NOTE: Always read as "()". Should be set = O during Write operations.

8

Read • only; Fatal
Stack Error Flag
Read • only; Parameter
Stack Underflow Flag
Read • only; .Return
Stack Underflow Flag

---Read - only; Parameter
Stack Overflow Flag

~--- Read - only; Return
Stack Overflow Flag

~---- DPRSEL: Selects
Page Register for
Data Mem9.£X.Access
= 1: select l!l.iill
= 0: select l!1llll

~-----Reserved*

~------CYCEXT*: Allows
in 'It I? Cll .. o extended cycle length < < < < < < for INTA or User Memory
::E ::E ::E ~ Instruction cycles; see

v---- Clock and Walt
Interrupt Vector Timing Diagrams

Base (see the
Interrupt Section). ~----~--select Timer/Counter

input signals: TCLK
or EIS - El3 (Table 6)

FIGURE 5. IImJ BIT ASSIGNMENTS

I mm I
l15114113112l111101918l 7161S14i312111ol
'-y-1

~
-

Reserved*
El1
(External Input Pin)
PSU, Parameter Stack
Underflow
RSU, Return Stack
Underflow
PSV, Parameter Stack
Overflow
RSV, Return Stack
Overflow
El2
TCIO
TCI 1
TCl2
El3
El4
EIS
SWI

~------------- Reserved.*

FIGURE 6. IIi!iiiJ BIT ASSIGNMENTS

•

•

•
J

RTX 2001A

STACK CONTROLLER REGISTERS

~ : The Stack Pointer Register holds the stack pointer
value for each stack. Bits 0-5 represent the next available
stack memory location for the Parameter Stack, while bits
8-13 represent the next available stack memory location for
the Return Stack. These stack pointer values must be
accessed together, as ~ . See Figure 7.

~ : The Stack Overflow Limit Register is a write-only
register which holds the overflow limit values (0 to 63) for the
Parameter Stack (bits 0-5) and the Return Stack (bits 8-13).
These values must be written together. See Figure 8.

l§l!ill : The Stack Underflow Limit Register holds the
underflow limit values for the Parameter Stack and the Return
Stack. In addition, this register is utilized to define the use of
substacks for both stacks. These values must be accessed
together. See Figure 9.

PSP, Parameter Stack
Pointer

Reserved*

ASP, Return Stack
Pointer

Reserved*

FIGURE 7. Elim BIT ASSIGNMENTS

115114113112[11110191~ 61514131211101

~PVC, P•ramo<., Stack Overflow Lim it

Reserved, should be set
= O during Write operations

RVL: Return Stack
Overflow Lim ii

Reserved, should be set
= 0 during Write operations

FIGURE 8. m'liJ BIT ASSIGNMENTS

* NOTE: Always read as !'O". Should be set = O during Write operations.

9

PSF:· Parameter Stack
Start Flag

Parameter Substack bit:
= 0: two· 32 word stacks
= 1: one 64 word stack

Reserved*

PSU: Parameter
Stack Underflow Limit
O - 31 words from
bottom of stack

RSF: Return Stack
Start Flag

Return Substacks bit:
= 0: two 32 word stacks
= 1: one 64 word stack

Reserved*

RSU: Return Stack
Underflow Limit
O - 31 words from
bottom of stack

FIGURE 9. EEim) BIT ASSIGNMENTS

RTX 2001A

MEMORY PAGE CONTROLLER REGISTERS

l!3:ill] : The Code Page Register contains the value for the
current 32K-word Code page. See Figure 10 for bit field as·
signments.

[ljiJ : The Index Page Register extends the Index Register
(I~) by 5 bits; i.e. when a Subroutine Return is performed, the
[ljiJ contains the Code page from which the subroutine was
called, and comprises the 5 most significant bits of the top
element of the. Return Stack. See Fig1.1re 11. During non­
subroutine operation, writing to U causes the current Code
page value to be written to WllJ . Reading or writing directly
to W1iJ does not push the Return Stack.

l!lilil : The Data Page Register contains the value for the
current 32K-word Data page. See Figure 12 for bit field
assignments.

l!liiJ : The User Page Register contains the value for the
current User page. See Figure 13 for bit field assignments.

l!lmJ : The User Base Address Register _contains the base
address for User Memory Instructions. See Figure 13 for bit
field assignments.

I I
11511411311211111019 I 8 I 7 16 15 14 I 3 12 I 1 10 I

Reserved* -------~Y I I
MA19 ~
MA18 <11~1----------------'
MA17 ~
MA16 --~>----------------~

FIGURE 10. l5llJ BIT ASSIGNMENTS

Bit Assignments During Subroutine Operations

I mm I a I
12011911811711611511411311211111019 1817;61514131211101

J
~ Type of Return

• 1: Interrupt Returns:
•' O: Subroutine Returns:

~-~:;.- D"fines Return Address

~-----------.... -:.~~erg ~~r~n~E~nt~~r~8pt
or Subroutine Call

Bit Assignments During Non - Subroutine Operations

mm a
20 19 18 17 16 15 14 13 12 1111019 18 716:151413 2 110

Used for temporary
storage of variables,
loop counts, and
stream counts

Current Code
Page value

FIGURE 11. 0 AND l!im BIT AS~IGNMENTS

* Note: Always read as "O". Should be set = o during Write operations

Initialization of Registers
Initialization of the on-chip registers occurs when a HIGH
level on the RTX RESET pin is held for a period longer than
four ICLK cycles. While the RESET input is HIGH, the TCLK
and PCLK clock outputs are held reset in the LOW state.

Table 4 shows initialization values and ASIC addresses for
the on-chip registers. As indicated, both the [i6!I and the
~ are cleared and execution begins at page 0, word O
when the processor is reset.

The RESET has a Schmitt trigger input, which allows the use
of a simple RC network for generation of a power-on RESET
signal. This helps to minimize the circuit board space
required for the RESET circuit.

To ensure reliable operation even in noisy embedded control
environments, the RESET input is filtered to prevent a reset
caused by a glitch of less than one ICLK cycle.

10

l15114113112l111101918l7161514l312111ol

Reserved* Y \ \
MA19 <11~1-------------~
MA18 <11~1----------------'
MA17 ~
MA16 <11~1-----------------'

FIGURE 12. l!Iim BIT ASSIGNMENTS

USER PAGE
REGISTER

I mm
I 151141131121111101 9 I 8 I 7 I 6 I 5 I 4 I 3 I 2 I 1 I 0 I

Reserved* ------~Y I
MA19<11~1--------------'

MA18 .. ~o----;----~------~
MA17 .. ~o---------------~
MA16 .. ~o---------------~

USER BASE
ADDRESS
REGISTER 15114113112 1111019 18

MA15 ·MAO~... y

MA04 ___ __,

MA03 ------<

MA02 ------<

MA01 ~-------+-+--+-+-­
Not used to generate

this address

FIGURE 13. [!mil AND l!lmJ BIT ASSIGNMENTS

RTX 2001A

TABLE 4. REGISTER INITIALIZATION AND ASIC ADDRESS ASSIGNMENTS

HEX INITIALIZED
REGISTER ADDR CONTENTS DESCRIPTION/COMMENTS

~ 0000 0000 0000 0000 Top Register

mDl 1111 1111 1111 1111 Next Register

ml 0000 0000 0000 0000 Instruction Register

D OOH 11t1 1111 1111 1111 Index f!egister
01H
02H

mil 03H 0100 0000 0000 1000 Configuration Register: Boot=-1; Interrupts disabled; Byte Order-0.

li!ilD 04H 1111 1111 1111 1111 Multiply/Divide Register

mil 06H 0000 0000 0000 0000 Square Root Register

Git!) 07H 0000 0000 0000 0000 Program Counter Register

lli!ilil 08H 0000 0000 0000 0000 Interrupt Mask Register

Elim 09H 0000 0000 0000 0000 Stack Pointer Register: The beginning address for each stack is set to
a value of 'O'.

mmi OAH 0000 0011 0000 0011 Stack Underflow Limit Register

mm OBH 0000 0010 0000 0000 Interrupt Vector Register: Read only; this register holds the current
Interrupt Vector value, and is initialized to the "No lnterrupf' value.

Imm OBH 1111 1111 1111 1111 Stack Overflow Limit Register: Write-only; Each stack limit is set to its
maximum value.

mm OCH 0000 0000 0000 0000 Index Page Register

l!1iil OOH 0000 0000 0000 0000 Data Page Register: The Data Address Page is set for page 'O'.

l!lll:il OEH 0000 0000 0000 0000 User Page Register: The User Address Page is setfor page 'O'.

wm OFH 0000 0000 0000 0000 Code Page Register: The Code Address Page is set for page 'O'.

mm 10H 0000 0000 0000 0000 Interrupt Base/Control Register

imm 11H 0000 0000 0000 0000 User Base Address Register: The User base address is set to 'O'
within the User page.

mm1mm 13H 0000 0000 0000 0000 Timer/Counter Register O: Set to time out after 65536 clock periods
or events.

Wil/mD 14H 0000 0000 0000 0000 Timer/Counter Register 1: Set to time out after 65536 clock peririds
or events.

II!m/liia 15H 0000 0000 0000 0000 Timer/Counter Register 2: Set to time out after 65536 clock periods
or events.

GEi 16H 0000 0000 0000 0000 Scratchpad/Counting Register

Gm 17H 0000 0000 0000 0000 Scratchpad Register

11

RTX 2001A

Dual Stack Architecture
The RTX 2001 A features a dual stack architecture. The two ·
. 64-word .stacks are the Parameter $tack and the Return
Stack, both of which may be accessed in parallel by a single
instruction, and which minimize overhead in passing parame·
ters between subroutines. the functional structure of each of
these stacks is shown in Figure 14.

The Parameter Stack is used for temporary storage of data
and for passing parameters between subroutines. The top
two elements of this stack are contained in the im) and
mm registers of the processor, a.nd the remainder of this
atack is located in stack memory. The stack memory
assigned to the Parameter Stack is· 64 words deep by
16 bits wide.

The Return Stack is used for storing return addresses when
performing Subroutine Calls, or for storing values temporarily.
Because the RTX 2001 A uses a separa~e Return Stack, it can
call and return from subroutines and interrupts with a mini·
mum of overhead. The Return Stack is 21 bits wide. The
16-bit Index Register, D , · arid the 5-bit Index Page
Register, mm , hold the top element of this stack, while ttie
remaining elements are located in stack memory. The stack
memory p9rtion of the Return Stack is 21 bits wide, by 64
words deep.

The data on t.he Return Stack takes on different meaning,
depending upon whether the Return Stack is being used for
temporary storage of data or to hold a r~turn address during a
subroutine operation (Figure 11).

STACK MEMORY
(ON ·CHIP)

RSU

RTX 2001A STACK CONTROLLERS

The two stacks of the RTX 2001A are controlled by Identical
Programmable Stack Controllers.

The operation of the Programmable Stack. Controllers
depends on the contents of three registers. These registers
are ~ , the Stack Pointer Register, Ei!jiJ , the Stack
Overflow Limit Register, and ~ , the Stack Underflow
Limit Register (see Figures 7, 8, and 9).

~ contains the location of the next stack memory location
to be accessed In a stack push (write) operation. After a push,
the Ifillll is inqremented (post-Increment operation). In a .
stack pop (read) operation, the stack memory location with an
address one less than the ~ will be accessed, and then
the~ will be.decremented (pre-decrement operation). At
start-up, the first stack location to have data pushed into it is
location zero.

Upper and lower limit values for the stacks are set into the
Stack Overflow Limit Register and in the Stack Underflow
. Limit Register. These values allow interrupts to be generated
prior to the occurrence of stack overflow or underflow error
conditions. Since the RTX 2001 A can take up to four Clock
cycles to respond to an interrupt, the values set in these regi·

· sters should include a safety margin which allows valid stack
operation until the processor executes the interrupt service
routine.

5 4 3 2 1 0

STACK MEMORY
(ON ·CHIP)

FIGURE 14 •. DUAL STACK ARCHITECTURE

12

•

•

RTX 2001A

SUBSTACKS

Each 64-word stack may be subdivided into two substacks
under hardware control for simplified management of
multiple tasks. Each substack contains 32 words of stack
memory. Stack size is selected by writing to bit 1 of the
~ for the Parameter Stack, and bit 9 for the Return
Stack.

Substacks are implemented by making bits 5 or 13 of the
~ control bits, i.e. they are not incremented when the
stack size is 32 words. Because of this, a particular substack
is selected by writing a value which contains both the stack
pointer value and the substack number to the Efillil .

Each stack has a Stack Start Flag (PSF and RSF) which is
used for stack error detection (not for the stack pointer). For
the Parameter Stack, the Start Flag is bit zero of the ~ ,
and for the Return Stack it is bit eight. If the Stack Start Flag is
one, the stack starts at the bottom of the stack or substack
(location 0). If the Stack Start Flag is zero, the substack starts
in the middle of the stack. An exception to this occurs if the
overflow limit in ~is set for a location below the middle of
the stack. In this case, the stacks always start at the bottom
locations. See Table 5 for the possible stack configurations.

Manipulating the Stack Start Flag provides a mechanism for
creating a virtual stack in memory which is maintained by in­
terrupt driven handlers.

Possible applications for substacks include use as a
recirculating buffer (to allow quick access for a series of
repeated values such as coefficients for polynomial evalua­
tion or a digital filter), or to log a continuous stream of data
until a triggering event (for analysis of data before and after
the trigger without having to store all of the incoming data).
The latter application could be used in a digital oscilloscope
or logic analyzer.

STACK ERROR CONDITIONS

Stack errors include overflow, underflow, and fatal errors.
Overflows occur when an attempt is made to push data onto
a full stack. Since the stacks wrap around, the result is that
existing data on the stack will be overwritten by the new data
when an overflow,occurs. Underflows occur when an attempt
is made to pop data off an empty stack, causing invalid data
to be read from the stack. In both cases, a buffer zone may be
set up by initializing ~ and ~ so that stack error
interrupts are generated prior to an actual overflow or

TABLE 5. STACK/SUBSTACK CONFIGURATIONS FOR GIVEN CONTROL BIT SETTINGS

CONTROL BIT SETTINGS: PARAMETER STACK CONFIGURATION:

STACK
STACK RANGE

lfili1] E§'i!lill ~ SIZE LOWEST HIGHEST FATAL
UNDERFLOW LIMIT OVERFLOW LIMIT

PS vs V4 U2 U1 uo (WORDS) ADDRESS ADDRESS LIMIT s 4 3 2 1 0 s 4 3 2 1

0 x 0 0 0 x 32 0 31 31 0 0 U6 us U4 U3 0 0 V3 V2 V1

0 x 1 0 0 0 32 0 31 1S 0 1 U6 us U4 U3 0 0 V3 V2 V1

0 x 1 0 0 1 32 0 31 31 0 0 U6 us U4 U3 0 1 V3 V2 V1

1 x 0 0 0 x 32 32 63 63 1 0 U6 us U4 U3 1 0 V3 V2 V1

1 x 1 0 0 0 32 32 63 47 1 1 U6 us U4 U3 1 0 V3 V2 V1

1 x 1 0 0 1 32 32 63 63 1 0 U6 us U4 U3 1 1 V3 V2 V1

x 0 x 0 1 x 64 0 63 63 0 U7 U6 us U4 U3 0 V4 V3 V2 V1

x 1 x 0 1 0 64 0 63) 31 1 U7 U6 us U4 U3 0 V4 V3 V2 V1

x 1 x 0 1 1 64 0 63 63 0 U7 U6 us U4 U3 1 V4 V3 V2 V1

CONTROL BIT SETTINGS: RETURN STACK CONFIGURATION:

STACK
STACK RANGE

lfili1] ril\"!lil ~ SIZE LOWEST HIGHEST FATAL
UNDERFLOW LIMIT OVERFLOW LIMIT

P13 V13 V12 U10 U9 us (WORDS) ADDRESS ADDRESS LIMIT s 4 3 2 1 0 s 4 3

0 x 0 0 0 x 32 0 31 31 0 0 U14 U13 U12 U11 0 0 V11

0 x 1 0 0 0 32 0 31 1S 0 1 U14 U13 U12 U11 0 0 V11

0 x 1 0 0 1 32 0 31 31 0 0 U14 U13 U12 U11 0 1 V11

1 x 0 0 0 x 32 32 63 63 1 0 U14 U13 U12 U11 1 0 V11

1 x 1 0 0 0 32 32 63 47 1 1 U14 U13 U12 U11 1 0 V11

1 x 1 0 0 1 32 32 63 63 1 0 U14 U13 U12 U11 1 1 V11

x 0 x 0 1 x 64 0 63 63 0 U1S U14 U13 U12 U11 0 V12 V11

x 1 x 0 1 0 64 0 63 31 1 U1S U14 U13 u12 U11 0 V12 V11

x 1 x 0 1 1 64 0 63 63 0 U1S U14 U13 U12 U11 1 V12 V11

NOTES: 1. ~ - Stack Pointer Register;~ - Stack Overflow Limit Register; EIWJI - Stack Underflow Limit Register

2. PO through P1 s are the ~ bits; VO through V1 s are the Bl~ bits; UO through U1 s are the 1mJi1 bits.

3. The Overflow Limit is the stack memory address at which an overflow condition will occur during a stack write operation.

4. The Underflow Limit is the stack memory address below which an underflow contition will occur during a stack read operation.

S. The Fatal Limit is the stack memory address at which a fatal error condition will occur during a stack read or write operation.

6. Stack error conditions remain in effect until a new value is written to the lfil.'!il.

2 1

V10 VS

V10 VS
V10 VS

V10 VS

V10 VS
V10 VS

V10 vs
V10 vs
V10 VS

0

VO

VO
VO

VO

VO

VO

VO

VO

VO

0

VS

VS

VS

VS

VS

VS

vs
VS
VS

7. Stacks and substacks are circular: After writing to the highest location in the stack, the next location to be written to will be the lowest location;

after reading the lowest location, the highest location will be read next.

13

RTX 2001A

underflow. The limits may be determined from the contents of
§!Ii) and. E3!li) using Table 5. The state of all stack errors
may be determined by examining the five least significant bits
of ~ , where the stac;:k error flags may be read but not
written to. All stack error flags are cle~red whenever a new
value is written to ~ .

FATAL STACK ERROR: Each stack can also experience a
fatal stack error. This error condition oc.curs when an attempt
is made to push data onto or to pop data off of the highest
location of the substack. It does not generate an interrupt
(since the normal stack limits can be u~ed to generate the in­
terrupt). The fatal errors for the stacks EJ.re logically OR'ed to­
gether to produce bit o of the Interrupt Base Control Regi­
ster, and they are cleared whenever ~ is written to. The
implication of a fatal error is that data on the stack may have
been corrupted or.that invalid data may have been read from
the stack.

RTX 2001A Timer/CountftrS
The RTX 2001A has three 16-bit time~s. each of Which can
be configured to perform timing or: event counting. ·All
decrement synchronously with the rising edge of TCLK.
Timer registers are readable in a singlE:l machine cycle.

The timer selection bits of the mI!I determine whether a timer
is to be configured for external event counting or internal
time-base timing. This configures. the. respective counter
clock inputs to the on-chip TCLK signal forinternal timing, or
to the El5-El3 input pins for external signal event counting.
EIS, El4, and El3 are synchronized internally with TCLK. See
Table 6 for Timer/Clock .selection by mI!I bit values.

TABLE 6. TIMER/CLOCK SECTION

~BITVALUES TIMER CLOCK SOURCE

BIT09 BIT08 ~ mu ~

0 0 TCLK TCLK TCLK

0 1 TCLK TCLK El3

1 0 TCLK El4 El3
·.

1 1 El!? El4 El3

The timers (il!!J , il!il and ll!f)) are all free-running,
and when they time out, they reload automatically with the
programmed initial value from their respective Timer Preload
Registers (Him - il!!l , iW - il!il , and Bia -
~), then continue tirning or counting.

Each timer provides an output to the Interrupt Controller to
indicate when a time-out for the timer has occ;:urred.

The RTX 2001A can determine the state of a timer at anytime
either by reading the timer's value, or upon a time-out by
using the timer's interrupt (see the Interrupt Controller section
for more information about how timer interrupts are handled).
Figure 15 shows the sequence of Timer/Counter operations.

FIGL/RE 15. RTX 2001A TIMER/COUNTER OPERATION

14

J

I

RTX 2001A

RTX Interrupt Controller

The RTX 2001 A Interrupt Controller manages interrupts for
the RTX 2001 A Microcontroller core. Its sources include two
on-chip peripherals and six external interrupt inputs. The two
classes of on-chip peripherals that produce interrupts are the
Stack Controllers and the Timer/Counters.

INTERRUPT CONTROLLER OPERATION

When one of the interrupt sources requests an interrupt, the
Interrupt Controller checks whether the interrupt is masked in
the Interrupt Mask Register. If it is not, the controller
attempts to interrupt the processor. If processor interrupts are
enabled (bit 4 of the Configuration Register), the processor
will execute an Interrupt Acknowledge cycle, during which it
disables interrupts to ensure proper completion of the INTA
cycle.

In response to the Interrupt Acknowledge cycle, the Interrupt
Controller places an Interrupt Vector on the internal ASIC
Bus, based on the highest priority pending interrupt. The pro­
cessor performs a special Subroutine Call to the address in
Memory Page O contained in the vector. This special
subroutine call is different in that it saves a status bit on the
Return Stack indicating the call was caused by an interrupt.
Thus, when the Interrupt Handler executes a Subroutine
Return, the processor knows to automatically re-enable
interrupts. Before the Interrupt Handler returns, it must

ensure that the condition that caused the interrupt is cleared.
Otherwise the processor will again be interrupted immediate­
ly upon its return.

Processor interrupts are enabled and disabled by clearing
and setting the Interrupt Disable Flag. When the RTX is
reset, this flag is set (bit 04 of the l!ill =1), disabling the
interrupts. This bit is a write-only bit that always reads as 0,
allowing interrupts to be enabled in only 2 cycles with a
simple read/write operation in which the processor reads the
bit value, then writes it back to the same location. The actual
status of the Interrupt Disable Flag can be read from bit 14 of

l!iiJ.

During read and write operations to the Configuration
Register, (l!ill), interrupts are inhibited to allow the
program to save and restore the state of the Interrupt
Enable bit, allowing safe manipulation of the Stack Pointer
Register.

In addition to disabling interrupts at the processor level, all
interrupts except the Non-Maskable Interrupt (NMI) can be
individually masked by the Interrupt Controller by setting the
appropriate bit in the Interrupt Mask Register (mai)).
Resetting the RTX 2001 A causes all bits in the lli!iliJ to be
cleared, thereby unmasking all interrupts.

TABLE 7. INTERRUPT SOURCES, PRIORITIES AND VECTORS

lli!ilil VECTOR ADDRESS BITS

PRIORITY INTERRUPT SOURCE SENSITIVITY BIT 09 08 07 06 05

0 (High) NMI Non-Maskable Interrupt PosEdge N/A 0 1 1 1 1

1 E11 External Interrupt 1 High Level 01 0 1 1 1 0

2 PSU Parameter Stack Underflow High Level 02 0 1 1 0 1

3 RSU Return Stack Underflow High Level 03 0 1 1 0 0

4 PSV Parameter Stack Overtlow High Level 04 0 1 0 1 1

5 RSV Return Stack Overflow High Level 05 0 1 0 1 0

6 E12 External Interrupt 2 High Level 06 0 1 0 0 1

7 TCIO Timer/Counter O Edge 07 0 1 0 0 0

8 TCl1 Timer/Counter 1 Edge 08 0 0 1 1 1

9 . TCl2 Timer/Counter 2 Edge 09 0 0 1 1 0

10 El3 External Interrupt 3 High Level 10 0 0 1 0 1

11 E14 External Interrupt 4 High Level 11 0 0 1 0 0

12 EIS External Interrupt 5 High Level 12 0 0 0 1 1

13(Low) SWI Software Interrupt High Level 13 0 0 0 1 0

N/A None No Interrupt N/A N/A 1 0 0 0 0

15

RTX 2001A

The Interrupt Controller prioritizes interrupt requests and
generates an Interrupt Vector for the highest priority interrupt
request. The address that the vector points to is determined
by the source of the interrupt and the contents of the
Interrupt Base/Control Register (mI,!I). See Figure 4 for
the Interrupt Vector Register bit assignments. Because
address bits MA19-:-MA16 are always zero in an Interrupt
Acknowledge cycle, the entry point to the Interrupt Handlers
must reside on Memory Page zero.

Because address bits MA04-MA01 are always zero in an
Interrupt Acknowledge cycle, Interrupt Vectors are 32 bytes
apart. This means that Interrupt Handler routines that are 32
bytes or less can be compiled directly into the Interrupt Table.
Interrupt Handlers greater than 32 bytes must be compiled
separately and called from the Interrupt Table.

The rest of the vector is generated as indicated in Table 7. To
guarantee that the Interrupt Vector will be stable during an
INTA cycle, the Interrupt Controller inhibits the generation of a
new Interrupt Vector while INTA is high, and will not begin
generating a new Interrupt Vector on either edge of INTA.

The Interrupt Vector can also be read from the Interrupt
Vector Register (l1!ill) directly. This allows interrupt
requests to be monitored by software, even if they are
disabled by the processor. If no interrupts are being
requested, bit 09 of the ll!li) will be 1.

External interrupts El5-El1 are active HIGH level-sensitive
inputs. Therefore, the Interrupt Handlers for these interrupts
must clear the source of interrupt prior to returning to the
interrupted code. The external NMI, however, is an edge­
sensitive input which requires a rising edge to request an
interrupt. The NMI input also has a glitch filter circuit which
requires that the signal that initiates the NMI must last at
least two cycles of ICLK.

Finally, a mechanism is provided by which an interrupt can be
requested by using a software command. The Software Inter­
rupt (SWI) is requested by executing an instruction that will
set an internal flip-flop attached to one input of the Interrupt
Controller. The SWI is reset by executing an instruction that
clears the flip-flop. The flip-flop is accessed by 1/0 Reads
and Writes.

Because the SWI interrupt may not be serviced immediately,
the instructions which immediately follow the SWI instruction
should not depend on whether or not the interrupt has been
serviced, and should cause a one- or two-cycle idle condi­
tion (Typically, this is done with one or two NOP instructions).

If an interrupt condition occurs, but "goes away'' before the
processor has a chance to service it, a "No Interrupt" vector
is generated. A "No Interrupt" vector is also generated if
an Interrupt Acknowledge cycle takes less than two cycles
to execute and no other interrupt conditions need to be
serviced.

To prevent unforseen errors, it is recommended that valid
code be supplied at every Interrupt Vector location, including
the "No Interrupt" vector, which should always be initialized
with valid code.

It is recommended that Interrupt Handlers save and restore
the contents of t!Jil .

16

INTERRUPT SUPPRESSION
The RTX 2001 A allows maskable interrupts to be sup­
pressed, delaying them temporarily while critical operations
are in progress. Critical operations are instruction sequences
and hardware operations that, if interrupted, would result in
the loss of data or misoperation of the hardware.

Standard critical operations during which interrupts are auto­
matically suppressed by the processor include Streamed
instructions (see the description of the D register), Long Call
sequences (see "Subroutine Calls and Returns"), and loading
[!ii) . In addition to this, user defined, external devices can
also suppress interrupts during critical operations by apply­
ing a. HIGH level on the INTSUP pin for as long as required.

Since the NMI can still cause the processor to perform an
Interrupt Acknowledge cycle in the middle of these critical
operations thereby preventing a normal return to the inter­
rupted instruction, a Subroutine Return should be used with
care from the NMI service routine. For this reason, the NMI
should be used only to indicate critical system errors, and the
NMI handler should re-initialize the system.

Interrupts which have occurred while interrupt suppression is
in effect will be recognized on a priority basis as soon as the
suppression terminates, provided the condition which gener­
ated the interrupt has not "gone away".

STACK ERROR INTERRUPTS

The Stack Controllers request an interrupt whenever a stack
overflow or underflow condition exists. These interrupts can
be cleared by rewriting Efilli]. See the section on "Dual
Stack Architecture" for more information regarding how the
limits set into ~ and ~ are used.

STACK OVERFLOW: A stack overflow occurs when data is
pushed onto the stack location pointed to by the ~ , as
determined in Table 5. After the processor is reset, this is
location 63 in either the Parameter Stack or Return Stack. A
stack overflow interrupt request stays in effect until cleared
by writing a new value to the ~ . In addition to generating
an interrupt, the state of the stack overflow flags may be read
out of the mI,!I , bit 3 for the Parameter Stack, and bit 4
for the Return stack. See Figures 5, 7 and 8.

STACK UNDERFLOW: The stack underflow limit occurs
when data is popped off the stack location immediately below
that pointed to by the ~ , as determined in Table 5. The
state of the stack underflow error flags may be read out of
bits 1 and 2 of the lllI!I for the Parameter and Return stacks
respectively. In the reset state of the IID.Iil , an underflow will
be generated at the same time that a fatal error is detected.
An unde!'flow buffer region can be set up by selecting an
underflow limit greater than zero by writing the correspond­
ing value into the ~ . The stack underflow interrupt re­
quest stays in effect until a new value is written into the Efilli] ,
at which time it is cleared.

•

•

RTX2001A

TIMER/COUNTER INTERRUPTS

The timers generate edge-sensitive interrupts whenever they
are decremented to 0. Because they are edge-sensitive and
are cleared during an Interrupt Acknowledge cycle or during
the direct reading of WiJ by software, no action is required
by the handlers to clear the interrupt request.

The RTX 2001A ALU

The RTX 2001A has a 16-bit ALU capable of performing
standard arithmetic and logic operations:

• ADD and SUBTRACT (A-B and B-A; with and without
carry)

• AND, OR, XOR, NOR, NANO, XNOR, NOT

The ~ and mm registers can also undergo single bit
shifts in the same cycle as a logic or arithmetic operation.

In Figure 16, the control and data paths to the ALU are
shown. Except for il!Iiil and mm , each of the internal
core registers can be addressed explicitly, as can other
internal registers in special operations such as in Step
instructions. In each of these cases, the input would be
addressed as a device on the ASIC Bus.

When executing these instructions, the arithmetic/logic
operand (a) starts out in ll!m and is placed on the T -bus.
Operand (b) arrives at the ALU on the Y-bus, but can come
from one of the following four sources: mm ; an internal

PROGRAM
MEMORY

• 5 Least
Significant

Bits

ASIC Bus
Device

Internal
Registers

register; an ASIC Bus device; or from the 5 least significant
bits of Ill) . The source of operand (b) is determined by the
instruction code in ml . The result of the ALU operation is
placed into ilIDil .
Step Arithmetic instructions which are performed through the
ALU are multiply, divide, and square root. Execution of each
step of the arithmetic operation takes one cycle, a 16/32-bit
Step Multiply takes 20 cycles, a 32/16-bit Step Divide takes
21 cycles, and a 32/16-bit Step Square Root takes 25
cycles. Sign and scaling functions are controlled by the ALU
function and shift options, which are part of the coded
instruction contained in [ill. See Table 24 and the Program­
mer's Reference Manual for details.

Signed (2's complement) Step Multiply operation begins with
the multiplier in [i!il!J and the multiplicand in IIWj . If the
LSB of m:aJ] equals 1, the contents of li!jI!J are added
to ilIDil . Otherwise, the contents of ilIDil are left
unchanged.' A 32-bit right shift of il!Iiil and mm is then
performed, shifting the value of CY (the value of the Carry bit
before the operation) into the MSB of~ . When this oper­
ation has been performed 15 times, the LSB of mm is
again tested. If it is equal to 0, the contents of ilIDil are
unchanged~ Otherwise, the contents of ilIDil are subtracted
from lli!illJ , leaving the result in ilIDil . Another 32-bit right
shift of il!Iiil and mm is again performed. When com­
pleted, the 32-bit result will be in ilIDil and mm ' with the
most significant word located in ilIDil . If the operation began
with ilIDil initialized to a value other than zero, that value will
be accumulated with the product.

T ·BUS

' >-

mm
I~
I

IEI DECODE

I
I

I
I
I
I

I I

I
I
I

I
I
I

.... Select
- ----,.- Operand (BJ

I_ - - - - - - _____,.____

NOTE: Data Paths are represented by solid lines; Control Paths are
represented by dashed lines.

FIGURE 16. ALU OPERATIONS-CONTROL PATHS AND DATA FLOW

17

Operand
(A}

RTX 2001A

Unsigned Step Divide operation assumes a double precision
(32-bit) dividend, with the most significant word placed in
iEil ' the less significant word in mm ' and the divisor in
ll!il!] . In each step, if the contents in B!lil are equal to or
greater than the contents in ll!il!] (and therefore no borrow is
generated), then the contents of ll!il!] are subtracted from the
contents of~ . The result of the subtraction is placed into
B!lil . The contents of B!lil and W3aj are then jointly
shifted left one bit (32-bit left shift), where the value shifted
into the least significant bit of maa:J is the value of the
Borrow bit on the first pass, or the value of the Complex Carry
bit on each of the subsequent passes. On the 15th and final
pass, only mm is shifted left, receiving the value of the
Complex Carry bit into the LSB. iEil is not shifted. The final
result leaves the quotient in mm ' and the remainder in
B!lil.
During a Step Square Root operation, the 32-bit argument is
assumed to be in B!lil and IWm , as in the Step Divide
operation. The first step begins with ll!il!] containing zeros.
The Step Square Root is performed much like the Step
Divide, except that the input from the Y-bus is the logical OR
of the contents of l:filJ and the value in ll!il!] shifted one place
to the left (2* ll!il!]). When the subtracth;m is performed, l:filJ
is OR'ed into li!il!J , and ~ is shifted one place to the right.
At the end of the operation, the square root of the original val­
ue is in li!il!l and mm ' and the remainder is in iEil .
RTX 200 1 A ASIC Bus Interface

The RTX 2001 A ASIC Bus services both internal processor
core registers and the on-chip peripheral registers, and eight
external off-chip ASIC Bus locations. All ASIC Bus
operations require a single cycle to execute and transfer a full
16-bit word of data. The external ASIC Bus maps into the last
eight locations of the 32 location ASIC Address Space. The
three least significant bits of the address are available as the
ASIC Address Bus. The addresses therefore map as shown
in Table 8.

TABLE 8. ASIC BUS MAP

ASIC BUS SIGNAL

GA02 GA01 GAOO ASIC ADDRESS

0 0 0 18H

0 0 1 19H

0 ' 1 0 1AH

0 1 1 1BH

1 0 0 1CH

1 0 1 1DH

1 1 0 1EH

1 1 1 1FH

RTX 2001 A Extended Cycle Operation
The RTX 2001A bus cycle timing can be extended for USER
Memory accesses and INTA cycles. This allows the use of
some slower memory devices without the necessity of adding
external wait states. The bus cycle is extended by the same
amount (1 TCLK) as it would be if one wait state were added
to the cycle, but the timing of PCLK is somewhat different
(see Timing Waveforms). In a one wait state bus cycle, PCLK
is High for 1/2 TCLK period, and Low for 1-1/2 TCLK periods

(i.e. PCLK is held Low for one additional TCLK period). In an
extended cycle, which is generated by setting the Cycle
Extend bit (CYCEXT - bit 7 of the [51), PCLK is High for
1-1 /2 TCLK peroids and Low for 1 /2 TCLK period (i.e .. PCLK
is extended High for one additional TCLK period). Wtien the
CYCEXT bit is set, extended cycles are used for all USER
Memory and INTA cycles. Note: it is not recommented that
an extended cycle be used in conjunction with a wait state or
states. In the eventuality that bus cycle timing needs to be
longer than an extended cycle, wait states alone should be
implemented.

RTX 200 TA Memory Access
THE RTX 2001A MEMORY BUS INTERFACE

The RTX 2001 A can address 1 Megabyte of memory, divided
into 16 non-overlapping pages of 64K bytes. The memory
page accessed depends on whether the memory access is
for Code (instructions and literals), Data, User Memory, or
Interrupt Code. The page selected also depends on the
contents of the Page Control Registers: the Code Page Reg·
ister (W:iJ), the Data Page Register ([IDill), the User
Page Register (l!Ilill), and the Index Page Register
(mli)). Furthermore, the User Base Address Register
(mfil)) and the Interrupt Base/Control Register (lllI!J)
are used to determine the complete address for User Memory
accesses and Interrupt Acknowledge cycles. External
memory data is accessed through W3l).

When executing code other than an Interrupt Service routine,
the memory page is determined by the contents of the t!J]ill .
Bits 03-00 generate address bits MA 19-MA 16, as shown in
Figure 10. The remainder of the address (MA15-MA01)
comes from the Program Counter Register ([iI!J). After
resetting the processor, both the [iI!J and the W:iJ are
cleared and execution begins at page 0, word 0.

A new Code page is selected by writing a 4-bit value to the
t!!:ili] . The value for the Code page is input to the W:iJ
through a preload procedure which withholds the value for
one clock cycle before loading the W:iJ to ensure that the
next instruction is executed from the same Code page as the
instruction which set the new Code page. Execution imme­
diately thereafter will continue with the next instruction in the
new page.
An Interrupt Acknowledge cycle is a special case of an In·
struction Fetch cycle. When an Interrupt Acknowledge cycle
occurs, the contents of the W:iJ and [iI!J are saved on the
Return Stack and then the E!Iiill is cleared to point to page 0.
The Interrupt Controller generates a 16-bit address, or "vec­
tor", which points to the code to be executed to process the
interrupt. To determine how the Interrupt Vector is formed, re·
fer to Figure 4 for the register bit assignments, and also to the
Interrupt Controller section.

The page for data access is provided by either W:iJ or
l!IiliJ , as shown in Figures 1 O and 12. Data Memory Access
instructions can be used to access data in a memory page
other than that containing the program code. This is done by
writing the desired page number into the Data Page Regi·

18

(lfilli)) and setting bit 5 (DPRSEL) of the~ register
to 1. If l!IiliJ is set to equal [!iill , or if DPRSEL = o, data will
be accessed. in the Code page. The status of the DPRSEL bit
is saved and restored as a result of a Subroutine Call or Re­
turn. When the RTX 2001 A is reset, Wi) points to page 0
and DPRSEL resets to 0, selecting the lt!J]ill .

•

•

•

•

•

•

RTX 2001A

USER MEMORY consists of blocks of 32 words that can be
located anywhere in memory. The word being accessed in a
block is pointed to by the five least significant bits of the User
Memory instruction (see Table 20), eliminating the need to
explicitly load an address into HID.1 before reading or writing
to the location. Upon RTX 2001 A reset, l!Ifil) is cleared and
points to the block starting at word 0, while [!!;ill is cleared
so that it points to page 0. The word in the block is pointed to
by the five least significant bits of the User Memory instruc·
tion and bits 05-01 of the ll!Ifil) . These bits from these two
registers are logically OR'ed to produce the address of the
word in memory. See Figure 13.

WORD AND BYTE MAIN MEMORY ACCESS

Using Main Memory Access instructions, the RTX 2001A can
perform either word or single byte Main Memory accesses,
as well as byte swapping within 16-bit words.

Bit 12 of the Memory Access Opcode (see Table 19), is used
to determine whether byte or word operations are to be
performed (where bit 12 = 0 signifies a word operation, and
bit 12 = 1 signifies a byte operation). In addition, the determi·
nation of whether a byte swap is to occur depends on which
mode (the "Motorola-Like" or the "Intel-Like") is in effect,
and on whether an even or odd address is being accessed
(see Figures 17 and 18).

DATA ACCESS (16 - BIT) IJjJ t!Ii1 ADDRESS
BIT 12 BIT2 EVEN.ODD

WORD·WRITE
PROCESSOR

:r:1:1:1:1:1:1:t:t:1;1:1:1:1:1:1:

0 0

0

MEMORY

WORD READ PROCESSOR

:r:1:1:1:r:1:1:r:r:1:1:1:1:1:1:t:

0 0

0

1

MEMORY

WORD WRITE

0

0

0

0

0

0

FIGURE 17. MEMORY ACCESS (WORD)

Whenever a word of data is read by a Data Memory operation
into the processor, it is first placed in. the mm register.
By the time the instruction that reads that word of data is
completed, however, the data may have been moved, option·
ally inverted, or operated on by the ALU, and placed in the
HID.1 register. Whenever a Data Memory operation writes to
memory, the data comes from the mm register.

The Byte Order Bit is bit 2 of the Configuration Register,
[!iiJ (see Figure 3 in the "RTX Internal Registers Section).
This bit is used to determine whether the default ("Motorola­
Like") or byte swap ("Intel-Like") mode will be used in the
Data Memory accesses.

Word Access is designated when the llll bit 12 = O in the
Memory Access Opcode, and can take one of two forms,
depending upon the status of [!iiJ , bit 2.

When [!iiJ bit 2 = 0, the "Motorola-Like" mode of word ac·
cess (also known as the "Big Endian" mode) is designated.
This mode of word access is to an even address (AO= 0) and
results in an unaltered transfer of data, as shown in Figure 17.
Word access to/from an odd address (AO = 1) while in this
mode will effectively cause the Byte Order Bit to be comple·
mented and will result in the bytes being swapped.

DATA ACCESS (8 - BIT) IIll [!Iii ADDRESS
BIT 12 BIT 2 EVEN.ODD

BYTE WRITE
0

0

0

0

0 0

MEMORY

BYTE READ

0 0

FIGURE 18. MEMORY ACCESS (BYTE)

19

RTX 2001A

When the lt!!i) Bit 2 = 1, the "Intel-Like" mode of word
access is designated (also known as the "Little Endian"
mode). Access to an even address (AO = 0) results in a data
transfer in which the bytes are swapped. Word access to an
odd address (AO= 1) while in this mode will effectively cause
the Byte Order Bit to be complemented with the net result
that no byte swap takes place when the data word is trans­
ferred. See Figure 17.

Byte Access is designated when the 1IiJ bit 12 = 1 in the
Memory Access Opcode, and can also take one of two forms,
depending on the value of 1!1iJ Bit 2.

When the 1!1iJ Bit 2 = 0, a Byte Read from an even address
in the "Motorola-Like" mode ca.uses the upper byte (MD15-
MD08) of memory data to be read into the lower byte position
(MD07-MDOO) of mm, while the upper byte (MD15-
MD08) is set to 0. A Byte Write operation accessing an even
address will cause the byte to be written from the lower byte
position (MD07-MDOO) of mm into the upper byte position
(MD 15-MD08) of memory. The data in the lower byte position
{MD07-MDOO) in memory will be left unaltered. Accessing an
odd address for either of these operations will cause the Byte
Order Bit to be complemented, with the net result that no
swap will occur. See Figure 18.

When 1!1iJ Bit 2 = 1, memory is accessed in the "Intel-Like"
mode. Accessing an even address in this mode means that a
Byte Read operation will cause the lower byte of data to be
transferred without a swap operation. A Byte Write in this
mode will also result in an unaltered byte transfer. Converse­
ly, accessing an odd address for a byte operation while in the
"Intel-Like" Mode will cause the Byte Order Bit to be comple­
mented. In a Byte Read operation, this will result in the upper
byte (MD15-MD08) of data being swapped into the lower
byte position (MD07-MDOO), while the upper byte is set to 0
(MD 15-MD08 set to 0). See Figure 18. A Byte Write opera­
tion accessing an odd address will cause the byte to be
swapped from the lower byte position (MD07-MDOO) of the
processor register into the upper byte position (MD15-
MD08) of the Memory location. The data in the lower byte
position (MD07-MDOO) in that Memory location will be left
unaffected.

NOTE: These features are for Main Memory data access only, and have no
effect on instruction fetches, long literals, or User Data Memory.

SUBROUTINE CALLS AND RETURNS

The RTX can perform both "short" subroutine calls and
"long" subroutine calls. A short subroutine call is one for
which the subroutine code is located within the same Code
page as the Call instruction, and no processor cycle time is
expended in reloading the (!iiill .

Performing a long subroutine call involves transferring execu­
tion to a different Code page. This requires that the ~ be
loaded with the new Code page as described in the Memory
Access Section, followed immediately by the Subroutine Call
instruction. This adds two additional cycles to the execution
time for the Subroutine Call.

For all instructions except Subroutine Calls or Branch
instructions, bit 5 of the instruction code represents the
Subroutine Return Bit. If this bit is set to 1, a Return is
performed whereby the return address is popped from the
Return Stack, as indicated in Figure 11. The page for the
return address comes from the llili). The contents of the D
register are written to the ~ , and the contents of the lliliJ
are written to the (!iiill so that execution resumes at the point
following the Subroutine Call. The Return Stack is also
popped at this time.

RTX 200 1 A Software

The RTX 2001A is designed around the same architecture
as the RTX 2000, and is a hardware implementation of
the Virtual Forth Engine. As such, it does not require the addi­
tional assembly or machine language software development
typical of most real-time microcontrollers.

The instruction set for the RTX 2001A TForth compiler
combines multiple high level instructions into single machine
instructions without having to rely on either pipelines or
caches. This optimization yields an effective throughput
which is faster than the processor's clock speed, while avoid­
ing the unpredictable execution behavior exhibited by most
RISC processors caused by pipeline flushes and cache
misses.

20

2001A COMPILERS

Harris offers a complete ANSI C cross development
environment for the RTX 2001 A. The environment provides a
powerful, user-friendly set of software tools designed to help
the developers of embedded real-time control systems get
their designs to market quickly. The environment includes the
optimized ANSI C language compiler, symbolic menu driven
C language debugger, RTX assembler, linker, profiler, and
PROM programmer interface.

The RTX 2001A TForth compiler from Harris translates Forth-
83 source code to RTX 2001A machine instructions. This
compiler also provides support for all of the RTX 2001 A
instructions specific to the processor's registers, peripherals,
and ASIC Bus. See the tables in the following sections for
instruction set information.

RTX 2001A

TABLE 9. INSTRUCTION SET SUMMARY

NOTATIONS

m-read Read data (byte or word) from memory location addressed by contents of ii!llJ register into ijl!liJ register.

m-write Write contents (byte or word) of lll3Jj register into memory location addressed by contents of ii!llJ register.

g-read Read data from the ASIC address (address field ggggg of instruction) into ii!llJ register.
A read of one of the on-chip peripheral registers can be done with ag-read command.

g-write Write contents of ii!li register to ASIC address (address field ggggg of instruction). A write to one of the

on-chip peripheral registers can be done with a g-write command.

u-read Read contents (word only) of User Space location (address field uuuuu of instruction) into ii!li register.

u-write Write contents (word only) of iit!J] register into User Space location (address field uuuuu of instruction).

SWAP Exchange contents of ii!llJ and lll3Jj registers

DUP Copy contents of ijl!liJ register to lll3Jj register, pushing previous contents of lll3Jj onto Stack Memory.

OVER Copy contents of~ register to ii!li register, pushing original contents of ii!llJ to W3al register and original

contents of~ register to Stack Memory.

DROP Pop Parameter Stack, discarding original contents of ii~ register, leaving the original contents of W3al in ii!llJ
and the original contents of the top Stack Memory location in~.

inv Perform 1 's complement on contents of ii!li register, if i bit in instruction is 1.

alu-op Perform appropriate cccc or aaa ALU operation from Table 23 on contents of ii!lll and~ registers.

shift Perform appropriate shift operation (ssss field of instruction) from Table 24 on contents of ii!llJ
and/or lll3Jj registers.

J
d Push short literal dfrom dddddfield of instruction onto Parameter Stack (where ddddd contains the actual

value of the short literal). The original contents of ii!llJ are pushed into lll3Jj, and the original contents of
lll3Jj are pushed onto Stack Memory.

D Push long literal D from next sequential location in program memory onto Parameter Stack.
The original contents of ii!lll are pushed into lll3Jj, and the original contents of W3al are pushed onto

Stack Memory.

R Perform a Return From Subroutine if bit= 1.

x Bit fields containing x's are ignored by the processor.

J
TABLE 10. INSTRUCTION REGISTER BIT FIELDS (BY FUNCTION)

FUNCTION CODE DEFINITION

ggggg Address field for ASIC Bus locations

uuuuu Address field for User Space memory locations

cc cc ALU functions (see Table 23)
aaa

ddddd Short literals (containing a value from Oto 31)

ssss Shift Functions (see Table 24)

21

RTX 2001A

TABLE 11. RTX 2001A 0 AND [i1!l ACCESS OPERATIONS*

OPERATION RETURN ASIC
(g-read, BIT ADDRESS

· g-write) VALUE ggggg REGISTER FUNCTION

Read mode 0 00000 D Pushes the contents of U into iit!li (with no pop of the Return Stack)

Read mode 1 00000 D Pushes the contents of II into iit!li, then pertorms a Subroutine Return

Write mode 0 00000 D Pops the contents of iit!li into U (with no push of the Return Stack)

Write mode 1 00000 D Pertorms a Subroutine Return, then pushes the contents of iit!li into U
Read mode 0 00001 D Pushes the contents of D into iit!li, popping the Return Stack

Read mode 1 00001 D Pushes the contents of D into iit!li without popping the Return Stack, then
executes the Subroutine Return

Write mode 0 00001 D Pushes the.contents of iit!li into D popping the Parameter Stack

Write mode 1 00001 D Pertorms a Subroutine Return, then pushes the contents of iiC!li into U
Read mode 0 00010 D Pushes the contents of U shifted left by one bit, into iit!li

(the Return Stack is not popped)

Read mode 1 00010 D Pushes the contents of 1J shifted left by one bit, into iit!li (the Return
Stack is not popped), then pertorms a Subroutine Return

Write mode 0 00010 D Pushes the contents of iit!li into Das a "stream" count, indicating that
the next instruction is to be pertormed a specified number of times;
the Parameter Stack is popped

Write mode 1 00010 D Pertorms a Subroutine Return, then pushes the stream count into D
Read mode 0 00111 ~ Pushes the contents of [i1!l into iI!];:;J

Read mode 1 00111 ~ Pushes the contents of liit.!J into Im.ii, then performs a Subroutine Return

Write mode 0 00111 ~ Pertorms a Subroutine Call to the address contained in ii!IlJ, popping
the Parameter Stack

Write mode 1 00111 ~ Pushes the contents of iit!li onto the Return Stack before executing
the Subroutine Return

* See the RTX Programmer's Reference Manual for a complete listing of typical software functions.

TABLE 12. 2001A RESERVED 1/0 OPCODES

INSTRUCTION CODE OPERATION

15141312 11 10 9 8 7 6 5 4 3 2 0

0 0 0 0 0 0 R 0 0 Select !fillil

0 0 0 0 0 0 0 R 0 0 SelectU

0 0 0 0 0 0 R 0 0 0 0 SetSOFTINT

0 0 0 0 0 0 0 R 0 0 0 0 Clear SOFTINT

0 0 0 0 0 0 R 0 0 Increment [i};j

0 0 0 0 0 0 0 R 0 0 Decrement [i};j

TABLE 13. SUBROUTINE CALL INSTRUCTIONS

INSTRUCTION CODE

15141312 1110 9 8 7 6 5 4

O a a a

Subroutine Call Bit _J
(Bit 15 = 0: Call,
Bit 15 = 1: No Call)

'
a a a a a a a a

22

3 2 0

a a a a

OPERATION

Call word address
aaaa aaaa aaaa aaao, in the page
indicated by t!!im. This address is
produced when the processor
pertorms a left shift on the address in
the instruction code.

•

•

•

)'

•

15141312

Subroutine Return Bit*
(Bit 5, R = 0: No return

R = 1: Return)

15141312

0 0 0

0 0 0

0 0

0 0

Branch Address*

RTX 2001A

TABLE 14. SUBROUTINE RETURN

INSTRUCTION CODE OPERATION

1110 9 8 7 6 5 4 3 2 1 0

R - Return from subroutine

* Does not apply to Subroutine Call or Branch Instructions. A
Subroutine Return can be combined with any other instruction
(as implied here by hyphens).

TABLE 15. BRANCH INSTRUCTIONS

INSTRUCTION CODE OPERATION

1110 9 8 7 6 5 4 3 2 1 0

0 b b a a a a a a a a a DROP and branch if ii!Ii = 0

b b a a a a a a a a a Branch if ii!]i = 0

0 b b a a a a a a a a a Unconditional branch

b b a a a a a a a a a Branch and decrement II if D ""- O;

y Pop0if0 = 0

* See the Programmer's Reference Manual for further information regarding the branch address field.

TABLE 16. REGISTER AND 1/0 ACCESS INSTRUCTIONS

INSTRUCTION CODE OPERATION

1514.131?. 1110 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 i 0 0 R g g g g g g-readDROP inv

1 0 1 1 1 1 1 i 0 0 R g g g g g g-read inv

1 0 1 1 c c ·c c 0 0 R g g g g g g-readOVER alu-op

1 0 1 1 0 0 0 i 1 0 R g g g g g DUPg-write inv

1 0 1 1 1 1 1 i 1 0 R g g g g g g-write inv

1 0 1 1 c c c c 1 0 R g g g g g g-readSWAP alu-op

TABLE 17, SHORT LITERAL INSTRUCTIONS

INSTRUCTION CODE OPERATION

15141312 1110 9 8 7 6 5 4 3 2 1 0

0 0 0 0 x R d d d d d dDROP inv

0 0 R d d d d d d inv

0 c c c c 0 R d d d d d dOVER alu-op

0 R d d d d d dSWAPDROP inv

0 c c c c R d d d d d dSWAP alu-op

23

15141312

0

0

0

0

1 0

15141312

s

s

1 s

1 s

1 s

1 s

s

s

1 s

1 s

1 s

1 s

t

RTX 2001A

TABLE 18. LONG LITERAL INSTRUCTIONS

INSTRUCTION CODE OPERATION

(1STCYCLE) (2ND CYCLE)

1110 9 8 7 6 5 4 3 2 1 0

0 0 0 x 0 R x x x x x DSWAP inv

0 0 R x x x x x DSWAP SWAPinv

c c c c 0 0 R x x x x x DSWAP SWAP OVER alu-op

0 R x x x x x DSWAP DROPinv

c c c c 0 R x x x x x DSWAP alu-op

TABLE 19. MEMORY ACCESS INSTRUCTIONS

INSTRUCTION CODE OPERATION

(1STCYCLE) (2ND CYCLE)

1110 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 R x x x x x m-readSWAP inv

0 0 R x x x x x m-readSWAP SWAPinv

c c c c 0 0 R x x x x x m-readSWAP SWAP OVER alu-op

0 0 0 p 0 R x x x x x {SWAP DROP) DUP NOP
m-readSWAP

p 0 R d d d d d {SWAP DROP) m-read d NOP

a a a p 0 R d d d d d {SWAP DROP) DUP m-read NOP
SWAP d SWAP alu-op

0 0 0 0 R x x x x x OVER SWAP m-write inv

0 R x x x x x OVER SWAP m-write DROPinv

c c c c 0 R x x x x x m-readSWAP alu-op

0 0 0 p R x x x x x {OVER SWAP) SWAP NOP
OVER m-write

p R d d d d d {OVER SWAP) m-write d NOP

a a a p R d d d d d {OVER SWAP) SWAP OVER NOP
m-write d SWAP alu-op

t
If (p = 0), perform either

If s = 0, Memory is accessed by word
{SWAP DROP} or
{OVER SWAP)

If s = 1, Memory is accessed by byte

Note: SWAP d SWAP = d ROT

24

•

•

•

•

•

•

•

RTX 2001A

TABLE 20. USER SPACE INSTRUCTIONS

INSTRUCTION CODE OPERATION

15141312 1110 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 R u u u u u u-readSWAP inv

0 0 0 0 R u u u u u u-readSWAP SWAPinv

0 0 c c c c 0 0 R u u u u u u-readSWAP SWAP OVER alu-op

0 0 0 0 0 0 R u u u u u DUPu-write inv

0 0 0 R u u u u u DUPu-write DROPiiw

0 0 c c c c 0 R u u u u u u-readSWAP alu-op

TABLE 21. ALU FUNCTION INSTRUCTIONS

INSTRUCTION CODE OPERATION

15141312 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 i 0 0 R 0 s s s s inv shift

1 0 1 0 1 1 1 i 0 0 R 0 s s s s DROPDUP inv shift

1 0 1 0 c c c c 0 0 R 0 s s s s OVER SWAP alu-op shift

1 0 1 0 0 0 0 i 0 1 R 0 s s s s SWAP DROP inv shift

1 0 1 0 1 1 1 i 0 1 R 0 s s s s DROP inv shift

1 0 1 0 c c c c 0 1 R 0 s s s s alu-op shift

1 0 1 0 0 0 0 i 1 0 R 0 s s s s SWAP DROP DUP inv shift

1 0 1 0 1 1 1 i 1 0 R 0 s s s s SWAP inv shift

1 0 1 0 c c c c 1 0 R 0 s s s s SWAP OVER alu-op shift

1 0 1 0 0 0 0 i 1 1 R 0 s s s s DUP inv shift

1 0 1 0 1 1 1 i 1 1 R 0 s s s s OVER inv shift

1 0 1 0 c c c c 1 1 R 0 s s s s OVER OVER alu-op shift

TABLE 22. STEP MATH* FUNCTIONS

INSTRUCTION CODE OPERATION

15141312 11109 8 7 6 5 4 3 2 1 0

1 0 1 0 - 1 (See the Programmer's Reference Manual)

*These instructions perform multi-step math functions such as multiplication, division and square root functions. Use of enher the Streamed instruction mode or
masking of interrupts is recommended to avoid erroneous results when performing Step Math operations. The following is a summary of these operations:

Unsigned Multiplication:
Load multiplier into ~
Load multiplicand into llm&ii
Load initial value of product (usually 0) into iI!lij
Clear Carry Bit by executing opcode B8CO
~xecute opcode A89CH 16 times (streamed mode)

Signed Multiplication:
Load multiplier into ~
Load multiplicand into m3J]
Load initial value of product (usually b) into iI!lij
Clear Carry Bit by executing opcode B8CO
Execute opcode A89DH 1 S times
Execute opcode A49DH 1 time

2S

Unsigned Division:
Load dividend into iI!lij and mm
Load divisor into ~
Execute single step form of 02* instruction 1 time
Execute opcode A41A 1 time
Execute opcode A4SA 14 times
Execute opcode A4S8 1 time

The quotient is in mm , the remainder in iI!lij
Square Root Operations:

Load value into iI!lij and mm
Load 8000H into l:li)
Load 0 into~
Execute single step form of 02* instruction 1 time
Execute opcode AS1A 1 time
Execute opcode ASSA 14 times
Execute opcode ASS8 1 time

The root is in mm , the remainder in iI!lij

RTX 2001A

TABLE 23. ALU LOGIC FUNCTIONS/OPCODES

cc cc aaa FUNCTION

0010 001 AND

0011 NOR

0100 010 SWAP-

0101 SWAP - c With Borrow

0110 011 OR

0111 NANO

1000 100 +
1001 +c With Carry

1010 101 XOR

1011 XNOR

1100 110 -
1101 -c With Borrow

TABLE 24. SHIFT FUNCTIONS

SHIFT STATUS
il!lil REGISTER

ssss NAME FUNCTION OF c T15 Tn TO

0000 No Shift CY Z15 Zn zo

0001 O< Sign extend CY Z15 Z15 Z15

0010 2* Arithmetic Left Shift Z15 Z14 Zn-1 0

0011 2*c Rotate Left Z15 Z14 Zn-1 CY

0100 cU2/ Right Shift Out of Carry 0 CY Zn+1 Z1

0101 c2/ Rotate Right Through Carry zo CY Zn+1 Z1

0110 U2/ Logical Right Shift 0 0 Zn+1 Z1

\

0111 2/ Arithmetic Right Shift Z15 Z15 Zn+1 Z1

1000 N2* Arithmetic Lett Shift of DU CY .Z15 Zn zo

1001 N2*c Rotate mm Left CY Z15 Zn zo

1010 02* 32-bit Arithmetic Left Shift Z15 Z14 zn~1 TN15

1011 D2*c 32-bit Rotate Lett Z15 Z14 Zn-1 TN15

1100 cUD2/ 32-bit Right Shift Out of Carry 0 CY Zn+1 Z1

:j: 1101 cD2/ 32-bit Rotate Right Through Carry TNO CY Zn+1 Z1

1110 UD2/ 32-bit Logical Right Shift 0 0 Zn+1 Z1

1111 02/ 32-bit Arithmetic Right Shift Z15 Z15 Zn+1 Z1

:j: See the Programmer's Reference Manual

Where: T1 5 -Most significant bit of ijtIDii
Tn -Typical bit of ijtIDii
TO -Least significant bit of iI!llJ
N15 -Most significant bit of ~
Nn -Typical bit of W3aJ
NO -Least significant bit of ~

C -Carry bit
CY -Carry bit before operation
Zn -ALU output
Z1 5 -Most significant bit 15 of ALU output
TNn -Original value of typical bit of mm

26

c~

!mEliJ REGISTER

N15 Nn NO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN15 TNn TNO

TN14 TNn-1 0

TN14 TNn-1 CY

TN14 TNn-1 0

TN14 TNn-1 CY

zo TNn+1 TN1

zo TNn+1 TN1

zo TNn+1 TN1

zo TNn+1 TN1

•

•

Specifications RTX 2001 A

Absolute Maximum Ratings

Supply Voltage •................•...................... +8.0V Gate Count •.................•....................... 16,700
Input, Output, or 1/0 Voltage Applied ... GND - 0.5V to VCC + 0.5V
Storage Temperature Range•.......... -650C to +1500C

Junction Temperature•........ +175oc
Lead Temperature (Soldering, Ten Seconds) +3oooc

Maximum Package Power Dissipation 2 Watts
9ja 41 OCfW (PGA Package)
9jc 170CfW (PGA Package)

CAUTION: Stresses above those listed in the "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and
operation of the device at these or any other conditions above those indicated in the operation section of the specification is not implied.

Operating Temperature Range: Operating Conditions

RTX 2001A (Industrial)•.... -400C to +850C Operating Voltage Range +4.5V to +5.5V
RTX 2001A (Commercial) ooc to +1ooc Maximum Rise and Fall Times For El5-El3 20ns

D.C. Electrical Specifications vcc = 5V, ±10%, TA= -4ooc to +85oc (Industrial) Temperature Range
VCC = 5V, ±5%, TA= ooc to +1ooc (Commercial) Temperature Range

SYMBOL PARAMETER MIN

VIH Logical One Input Voltage NMI, RESET, ICLK VCCx0.7

Other Inputs 2.0

VIL Logical Zero Input Voltage -

VOH High Output Voltage 3.5

VCC-0.4

VOL Low Output Voltage -
II Input Leakage Current -1

110 1/0 Leakage Current -10

ICCSB Standby Power Supply Current -
ICCOP Operating Power Supply Current -

NOTES: 1. Typical ICCSB: 1 OµA. The RTX 2001 A is a static CMOS part.
Therefore ICCSB > 0 is due to leakage currents.

2. Operating supply current is proportional to frequency. Typical
ICCOP: 5mA/MHz.

Capacitance (TA = +250C; All measurements referred to device GND)

SYMBOL PARAMETER TYP

Cl Input Capacitance 10

CIO 1/0 Capacitance 10

27

MAX UNITS COMMENTS

- v Tested atVCC = 5.5V

- v Tested at VCC = 5.5V

0.8 v Tested at VCC = 4.5V

- v IOH = -4mA, VCC = 4.5V

- v IOH = -1 OOµA, VCC = 4.5V

0.4 v IOL = 4mA, VCC = 4.5V

1 µA VI =VCCorGND, VCC= 5.5V

10 µA VO= VCC or GND, VCC = 5.5V

500 µA VI = VCC or G ND (Note1)

10 mA VI =VCCorGND;
f (ICLK) = 1 MHz; Outputs
Unloaded (10 = O); (Note 2)

UNITS TEST CONDITIONS

pF f = 1 MHz

pF f= 1MHz

Specifications RTX 2001 A

A.C. Electrical Specifications vcc = 5V, ±10%, TA= -4ooc to +a5oc (Industrial) Temperature Range

VCC = 5V, ±5%, TA= ooc to +1ooc (Commercial) Temperature Range

CLOCK, WAIT AND TIMER TIMING (Notes 1 and 2)

SYMBOL PARAMETER

REQUIREMENTS

t1 ICLKPeriod .••

t2 ICLK High Time

t3 ICLK Low Time

t4 WAIT Set Up Time

t5 WAIT Hold Time

t6 El High to El High

t7 El HighTime

ts EILowTime

RESPONSES

t11 ICLK to TCLK High

t12 TCLK Low Time

t13 TCLK High Time

t15 ICLK to PCLK High

t16 PCLK Low Time

t17 PCLK High Time

t19 ICLK to TCLK Low

t20 ICLK to PCLK Low

NOTES: 1. High and low input levels for A.C. test:
ICLK, NMI, and RESET: 4.0V and 0.4V

Other Inputs: 2.4V and 0.4V
2~ Output load: 1 OOpF.
3. Tested with t1 = t1(min). For t1 > t1(min),

add t1 - t1 (min).

SM Hz

MIN MAX

62 -

24 -

24 -

5 -

3 -

t1 x4 -

10 -

10 -

3 25

52 -

64 -

3 25

52 -

64 -

- 35

- 30

10MHz

MIN MAX UNITS COMMENTS

50 - ns

20 - ns

20 - ns

5 - ns

3 - ns

t1x4 - ns External Clock/Timer Input

10 - ns External Clock/Timer Input

10 - ns External Clock/Timer Input

3 24 ns

40 - ns Note3

52 - ns Note3

3 25 ns

42 - ns Note3

52 - ns Note3

- 32 ns

- 26 ns

28

•

•

•

•

•

)

Specifications RTX 2001 A

A.C. Electrical Specifications (Continued) VCC = sv, ±10%, TA= -4ooc to +asoc (Industrial) Temperature Range
VCC = SV, ±S%, TA= ooc to +1ooc (Commercial) Temperature Range

MEMORY BUS TIMING (Notes 1 and 2)

SYMBOL PARAMETER

REQUIREMENTS

t21 MD Setup Time

t22 MD Hold Time

RESPONSES

t26 PCLK to MA Valid

t28 MA Hold Time

t29 PCLK to MR/W, UDS,
LOS, NEW and BOOT Valid

t31 MR/W, UDS, LOS, NEW and
BOOT Hold Time

t32 PCLK to MD Valid

t33 MD Hold Time

t34 MD Enable Time

t3S PCLK to MD Disable Time

NOTES: 1. High and low input levels for A.C. test:
ICLK, NMI, and RESET: 4.0V and 0.4V
Other Inputs: 2.4V and 0.4V

2. Output load: 100pF.

SM Hz

MIN MAX

16 -

4 -

- S1

20 -

- so

20 -

- 16

20 -

-2 -

- so

3. Output enable and disable times are characterized only,

4. Tested with 11 at specified minimum and t2 = 0.5•t1.
For t2 > 0.5•t1(min), add t2 - (0.5•11(min)) to this specification.

5. Tested with t1 at specified minimum and t2 = 0.5•11.
For t2 < 0.5•t1 (min), subtract (0.5•t1 (min)) - t2 from this specifi­
cation.

29

10MHz

MIN MAX UNITS COMMENTS

14 - ns Read Cycle

4 - ns Read Cycle

J

- 43 ns Note4

20 - ns Notes

- 44 ns Note4

20 - ns Notes

- 14 ns Write Cycle

20 - ns Write Cycle, Note s

-2 - ns Write Cycle, Note 3

- 44 ns Write Cycle, Notes 3, 4

Specifications RTX 200 1 A

A.C. Electrical Specifications (Continued) VCC = 5V, ±10%, TA= -4ooc to +a5oc (Industrial) Temperature Range
VCC = 5V, ±5%, TA= ooc to +1ooc (Commercial) Temperature Range

ASIC BUS AND INTERRUPT TIMING (Notes 1 and 2)

SM Hz

SYMBOL PARAMETER MIN MAX

REQUIREMENTS

t40 GD Read Setup to PCLK 45 -
--t41 GD Read Setup to GIO 46 -

t42 GD Read Hold from GIO 0 -
t43 GD Read Hold from PCLK 0 -
t44 El/NMI Setup Time 22 -
t46 INTSUP Setup Time 22 -

t47 INTSUP Hold Time 0 -
RESPONSES

t48 PCLK High to GIO Low 55 -
t49 GIO Low Time 52 -
t50 ICLK High to GIO Low - 35

t51 ICLK High to GIO High - 35

t52 PCLK to GA Valid - 51

t54 GIO to GA Hold Time 12 -
t56 PCLKtoGR/WValid - 50

t58 GIO to GR/W Hold Time 12 -
t61 GD Enable Time -2 -
t62 GD Valid Time - 16

t63 GIO to GD Hold Time 12 -

t65 GIO to GD Disable Time - 50

t67 PCLK to INTA High Time - 25

t68 INTA Hold Time 0 -
t69 GIO High Time 62 -

NOTES: 1. High and low input levels for A.C. test:
ICLK, NMI and RESET: 4.0V and 0.4V
Other Inputs: 2.4V and 0.4V

2. Output load: 1 OOpF.

3. Output enable and disable times are characterized only.

4. Tested with 11 at specified minimum and t2 = 0.5•11.
For t2 > 0.5•11 (min), add t2 - (0.5•t1 (min)) to this specification.

5. Tested wtth t1 at specified minimum and 12 = 0.5• 11.
For t2 < 0.5•11 (min), subtract (0.5•t1 (min)) - t2 from this. specifi­
cation.

6. Tested with t1 = t1 (min). For 11 > 11 (min), add t1 - t1 (min).

30

10MHz

MIN MAX UNITS COMMENTS

37 - ns Read Cycle

37 - ns Read Cycle

0 - ns Read Cycle

0 - ns Read Cycle

20 - ns INT/NMI Cycle

20 - ns

0 - ns

48 - ns Note6

40 - ns Note6

- 30 ns

- 32 ns

- 44 ns Note4

12 - ns Note5

- 42 ns Note4

12 - ns Note5

-2 - ns Write Cycle, Note 3

- 14 ns Write Cycle ·

12 - ns Write Cycle, Note 5

- 44 ns Write Cycle, Notes 3, 4

- 25 ns INTACycle

0 - ns INTACycle

50 - ns Note6

•

RTX 2001A

1-----------, tPULSE WIDTH tPULSE WIDTH

I I
I I

TYPICAL
CLOCK OR 4.0V

STROBE
1.5V

tHOLD

OUT (l----41......__ 1
-- I TYPICAL 2.4V ----------.....,....,....,,...,.....,....,...

INPUT o.4v ..lo-'...~~-"'-~-1-.5V--+--1-.5V--'~......,..._..-"'-..._

*TEST HEAD
CAPACITANCE

I I
I I

I
I t I
I IOLI

I
I - - I
I EQUIVALENT CIRCUIT I
___________ _J

TYPICAL
OUTPUT

TYPICAL
DATA

OUTPUT

tDELAY

1.5V

tHOLD

1.7V 1.7V
1.3V 1.3V

Note: Values Are Subject to Change

1.5V

FIGURE 19. TEST CIRCUIT FIGURE 20. A.C. DRIVE AND MEASURE POINTS - CLK INPUT

NOTE: For A.C. testing input rise and fall limes are driven at 1 volt/ns

Timing Diagrams

ICUC

t11

TCUC

t5

"":f ~·~ NJ;i~ :117 -.,._.t
NOTES:

PCL.IC__/
NOTE2

\...._ __ _,/

1. NORMAL CYCLE: This waveform describes a normal PCLK cycle and a PCLK cycle with a Wait state.

t4

2. EXTENDED CYCLE:. This waveform describes a PCLK cycle for.a USER memory access or an Interrupt Acknowledge cycle when the CYCEXT bit is set.
To ensure compatibility with future parts, Walt stales should not be used with extended cycles.

FIGURE 21. CLOCK AND WAIT TIMING

l \\\\\\\\\\ EIS- El3

ta

FIGURE 22. TIMER/COUNTER TIMING

31

RTX 2001A

Timing Diagrams (Continued)

PCLK ----"I

LOS
UDS

NEW==========~~*=t:========::t:====:$E~c::==:: BOOT
MR/W

MD
IN

2001A27.µEM

NOTES: 1. If both LOS and UDS are low, no memory access is taking place in the current cycle. This only occurs during streamed instructions that do not
access memory.

2. During a streamed single cycle instruction, the Memory Data Bus Is driven by the processor.

FIGURE 23. MEMORY BUS TIMING

ICU< / ' :1 150 :t ' ,/
151

GIO

PCLK

GA

GR/W

GD
IN

148

152

156

2001A28.GEM
161

OGUDT .))))))))) . ________ _ ... _ ___ _
NOTES: 1. GIO remains high for internal ASIC !bus cycles.

149

2. GRffl goes low and GD is driven f<,>r all ASIC write cycles, including internal ones.

--154

--158

143
142

169 ----ii~

3. During non-ASIC wrfte cycles, GD is not driven by the RTX2001A. Therefore, ft is recommended that all GD pins be pulled to VCC or GND to
minimize power supply current and:nolse. ·

FIGURE 24. ASIC BUS TIMING

32

c

•
RTX 2001A

Timing Diagrams (Continued)

e1 e2 e3 e4 es

PCL.K

El

INTSUP

INTA

MA

FIGURE 25. INTERRUPT TIMING: WITH INTERRUPT SUPPRESSION

NOTES: 1 . Events in an interrupt sequence are as follows:

e1. The Interrupt Controller samples the interrupt request inputs on the rising edge of PCLK. If NMI rises between e1 and es, the interrupt vector
will be for NMI.

e2. If ariy interrupt requests were sampled, the Interrupt Controller issues an interrupt request to the core on the falling edge of PCLK.

e3. The core samples the state of the interrupt requests from the Interrupt Controller on the falling edge of PCLK. If INTSUP is high, maskable
interrupts will not be detected at this lime.

94. When the core samples an interrupt request on the falling edge of PCLK, an Interrupt Acknowledge cycle will begin on the next rising edge of
PCLK.

es. Following the detection of an interrupt request by the core, an Interrupt Acknowledge cycle begins. The interrupt vector will be based on.the
highest priority interrupt request active at this time.

2. 144 is only required to determine when the Interrupt Acknowledge cycle will occur.

3. Interrupt requests should be held active until the Interrupt Acknowledge cycle for that interrupt occurs.

e1 e2 e4 es

PCL.K

El

INTSUP

INTA

MA

FIGURE 26. INTERRUPT TIMING: WITH NO INTERRUPT SUPPRESSION

33

RTX 2001A

Timing Diagrams (Continued)

PCLK

NMI

t26

MA r·~

FIGURE 27. NON-MASKABLE INTERRUPT TIMING

NOTES: 1 . Events in an interrupt sequence are as follows:

e1. The Interrupt Controller samples the interrupt request inputs, on the rising edge of PCLK. If NMI rises between e1 and e5, the interrupt vector
will be for NMI.

e2. If any interrupt requests were sampled, the Interrupt Controller issues an interrupt request to the core on the falling edge of PCLK.
e3. The core samples the state of the interrupt requests from the Interrupt Controller on the falling edge of PCLK. If INTSUP is high, maskable

interrupts will not be detected a,t this time.

e4. When the core samples an inter;upt request on the falling edge of PCLK, an Interrupt Acknowledge cycle. will begin.on the next rising edge of
PCLK.

e5. Following the detection of an interrupt request by the core, an Interrupt Acknowledge cycle begins. The interrupt vector will be based on the
highest priority interrupt request active at this time.

2. t44 is only required to determine when the Interrupt Acknowledge cycle will occur.

3. Interrupt requests should be held a~tive until the Interrupt Acknowledge cycle for that interrupt occurs.
'

34

Packaging

I

•

RTX 2001A

84 PIN GRID ARRAY

TOP VIEW

r--lliQ---1
I 1.180 I

m Harris

RTX2001A

L ·"-------Li' -----'·
I .

"" - - INDEX MARK

BOTTOM VIEW

----- 1.140 ----
1.180

--~~1.000 ssc---

-.---+-f4il © © @ © © @ @ © @ L
@@@@@@@@@@@K

@© @@@ @@J

U @@ @@ H
~ @@@ ©@@ G

~1~ g @@@ @@@ F
.~~ 3 @@@ @@@ E LL @© @@o

"

@© @@@ @@c J.
@@@@@@@@@@@e

@@o@@@@@@(g).A

1 2 3 4 5 6 7 6 9 10 11 [
.080 MAX

INDEX MARK - .003 MIN

NOTE: All Dimensions are MMin , Dimensions are in inche~ ..
ax

35

SIDE VIEW

I.

I

.100 BSC

_J
l_.016

.020

L .080
.120

Packaging (Continued)

1.185 1.150

1.195 1.1.58

NOTES:

RTX 2001A

84 LEAD PLCC

TOP VIEW

_J 1-.026
.032

-' 1-.oso ssc

1. BODY SIZE DIMENSIONS DO NOT INCLUDE MOLD FLASH

.021

Jfili
.200

SIDE VIEW

.020 MIN

I
1.090
1.130

J
NOTE: All Dimensions are !:11!!. , Dimensions are in inches.

Max

Ordering Information

RTX

FAMILY
RTX (Real Time Express)

PART NUMBER

PACKAGE TYPE
G: PGA
J: PLCC
X: UnpackagE;id

I

COMMERCIAL/INDUSTRIAL

2001A G I -10

T
SPEED/PERFORMANCE ·

10: 10MHz
8: 8MHz

TEMPERATURE RANGE
I: Industrial -4ooc to +asoc

C: Commercial ooc to + 1ooc
X: +2soc

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at

any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is

believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other

rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its

subsidiaries.

36

•

~
I

•

RTX 2001A.

•

•

•

•

•
37

RTX 2001A

Notes

•

•

•
38

RTX 2001A

Notes

I

I

•

•

•
39

Index

RTX2001A

ALU, Description ...• ; .

ALU, Functions ... ,, ,

Buses: Address, Data•. ··' .. .

Extended Cycle Operation . ,•...

Instruction Set Information .•..

Interface, ASIC Bus , .. · ,

Interface, Memory Bus , ;

Interrupt Controller

Interrupt Sources, Priorities, Vectors .. .

Memory Access , , ;

Operation, General · .. .

Ordering Information ,

Packaging Information .. .

Pin/Signal Assignments

Pinouts .. .

Registers, ASIC Addresses

Registers, Bit Assignments ·-· ... ·.· .. .
Registers, Initialization .. .

Registers, Internal To Core•................................

Registers, On-Chip Peripheq:d

Signal Descriptions, 1/0•..........................

Software Information .. .

Specifications, A.C•.......................

Specifications, D.C .. .

Specifications, Maximum Ratings

Specifications, Operating Conditions ;

Stacks, Architecture ,

Stacks, Controllers .. : , .

Subroutine Calls And Returns .. ; ..

Timers/Counters ;

Timing Diagrams•............................. ·

Sales Offices

Page

17-18

25-26

6

18

21-26

18

18

15-17

15

18-20

6

36

35-36

3

2

11

7-10

11

7

7-10

3-4

20

28-30

27

27

27

12

12-14

20

14

31-34 .

U.S. HEADQUARTERS
Harris Semiconductor

EUROPEAN HEADQUARTERS
Harris SelT)iconductor

SOUTH ASIA
Harris Semiconductor H.K. Ltd
13/F Fourseas Building
208-212 Nathan Road
Tsimshatsui, Kowloon

NORTH ASIA
Harris K.K.

1301 Woody Burke Road
Melbourne, Florida 32902
TEL: (407) 724-3739

Mercure C~ntre
Rue de la Fusse 1 00
Brussels, Belgium 1130
TEL: (32) 2-246-2111 Hong Kong

TEL:(852)3-723-6339

Ell HARRIS
. COMMERCIAL PRODUCTS GROUP

40

Shinjuku NS Bldg. Box 6153
2-4-1 Nishi-Shinjuku
Shinjuku-Ku, Tokyo 163 Japan
TEL:81-3-345-8911

•

