
Progress on Defining Standardized Classes
for Comparing the Dependability of Computer Systems

Don Wilson Brendan Murphy Lisa Spainhower
NonStop Enterprise Lab. Microsoft Corporation International Business Machines

Hewlett-Packard Company Cambridge Poughkeepsie, NY
Aptos, CA, USA UK USA

Abstract

A number of the industrial partners of the IFIP WG 10.4
Dependability Benchmarking SIG (SIGDeB) have
identified a set of standardized classes for characterizing
the dependability of computer systems. The proposed
classification system seeks to enable comparison of
different computer systems in the dimensions of
availability, data integrity, disaster recovery, and security.
Different sets of criteria are proposed for computer
systems that are used for different application types, e.g.
transaction processing, process control, etc. This paper
describes the classification system, and gives a progress
report on the work to fill in the details of the classification
criteria

1. Introduction

As computer systems become more and more
continuously integrated into the daily activities of
business, engineering, and scientific users, there is
increased interest in being able to evaluate and compare
the dependability of these systems. Considerable research
has been done in an effort to establish benchmark tests for
this purpose (e.g., see [1-5]), usually based on some form
of fault-injection testing focused on single computers
[6,11].

In spite of these efforts, and even considering that fault
injection techniques are commonly used by developers to
assess and tune their designs (e.g., see [7-10]), nothing has
emerged which has gained even modest adoption in the
industry for making comparisons among systems.
Researchers acknowledge that:
• emulated faults will not represent the variety and scope

of actual field faults [6, 14],
• fault injection cannot predict actual availability or

MTBF [13],
• comparison of dissimilar architectures is extremely

problematic [7, 13, 14].

The authors, working as members of the IFIP WG 10.4
Dependability Benchmarking SIG (SIGDeB) [15], are
proposing a different method for making dependability

comparisons. This method is to create a standardized
classification system that could rate systems in each of the
dimensions that affect dependability.

Unlike performance benchmarks, which need to compare
only the rate at which specific, pre-defined work gets
done, dependability comparisons must consider many
different aspects [12]. Is the system accessible when
needed? Are the results correct? Is the data protected
from physical hazards and unauthorized access?

To simplify the creation of comparison classes, it is useful
to separate the various threats to dependability and treat
them as different dimensions of the problem space. The
authors have chosen Availability, Data Integrity, Disaster
Recovery, and Security as the dimensions to be
considered. When a system is rated according to the
proposed classification scheme, it would receive an
independent rating for each of these dimensions.

These dimensions are not truly independent; for example
corrupted data could easily make an application
unavailable. Thus, the problem space could certainly be
divided up differently. However, these dimensions were
chosen because they are readily understandable and are
important concerns to users. It may also be argued that
there are still other dimensions to the problem, such as
physical safety. The structure of this proposal makes it
simple to add further dimensions if they are deemed useful
enough to the user community.

Unlike performance benchmarks, it was felt that
dependability assessments should not restrict the system
under test to be a single computer. Very few customers,
requiring a highly dependable solution, would implement
it on a single computer with a single data store. Any
solution would likely be designed with a minimum of two
interconnected computers, with some form of highly
dependable storage configuration. As the system
configuration is unrestricted, then any comparison of
different systems should include the cost of each solution.

Users of different types of applications tend to have
differing priorities when it comes to dependability.

A telephony application prizes availability and
responsiveness very highly, but can afford minor data
errors.

A stock trading application prizes data integrity above all
else, requires high availability, must often adhere to strict
securities regulations, but may have frequent off-hours
where maintenance can be done.

A factory control system finds availability and accuracy
essential, but is not concerned about operating during a
power failure.

The authors have accordingly divided the application
space into types that appear to have similar dependability
requirements, as listed in Table 1.

The proposed classification scheme will define a different
set of classes for each application type, on each
dependability dimension. This structure is shown in
Table 2.

The boundaries between classes are intended to be natural
breakpoints in the spectrum of user-perceived availability
requirements. The highest class is always intended to be
essentially perfect behavior, whether or not it is
achievable with current technology.

Transaction
Processing

Typical applications are order processing, automated billing, credit authorization,
automated retail, securities trading, reservations.

Message
Handling

Typical applications are telephony, email, packet switching and routing, protocol
conversion.

Process
Control

Typical applications are manufacturing control, embedded device controllers, servo
systems, network and system management.

Search
and Retrieval

Typical applications are web-page serving, decision support, classical business
reporting, broadcasting.

Analytical
Calculation

Typical applications are simulation, modeling, and scientific data reduction.

Table 1: Application Types

Application
Type

Availability
Classes

Data Integrity
Classes

Disaster Recovery
Classes

Security
Classes

Transaction
Processing

1. Perfection 1. Perfection 1. Perfection 1. Perfection

2a. Retryable
Workload

2. Complete
Detection

2. Resume with
Delay

2. Less

2b. Retryable /
Planned Outages

3. Enhanced 3. DB Preservation 3. Lesser

3a. Delayable
Workloads

4. Unprotected 4. Unprotected 4. Unprotected

3b. Delayable /
Planned Outages

4. Enhanced

5. Unprotected

Message
Handling

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Process
Control

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Search
and Retrieval

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Analytical
Calculation

Classes 1 to n Classes 1 to n Classes 1 to n Classes 1 to n

Table 2: Classification Structure

The authors have been developing the details of the
proposal for Transaction Processing applications.

A discussion of the classes defined for Availability will
illustrate how the classification system will function and
suggest the work that still needs to be done for other
application types and dimensions.

Systems are assigned to one of five Classes by meeting
Basic Requirements over a set of Factors that affect
availability. The Classes and Basic Requirements are
shown in Table 3. The Factors are shown in Table 4.

The criteria vary widely in scope, so each will need to be
evaluated by its own appropriate method, e.g. a standard
benchmark, a design audit, or analysis of field data. Since
there are very many criteria to be satisfied, it is proposed
that systems may still be evaluated for a given class, even
if their designs do not meet all of the criteria, as long as all
exceptions are disclosed.

One of the drawbacks of standardized performance
benchmarks is the high cost of conducting and certifying a
test run. Since a comprehensive dependability benchmark
would be more complex, the implementation cost would
be even more discouraging and the authors believe that
vendors would not bear it.

Class Basic Requirements

1. Perfection • The system must be able to correctly process every transaction submitted to it, within normal response
times, all of the time.

• All single failures, corrective actions, maintenance, and other potentially disruptive events are handled by the
system without any noticeable effect on the users.

2a. Retryable
Workload

• The system must be able to correctly process every transaction submitted to it, either within normal response
times, or after a brief delay to recover from a disruptive event.

• Disruptive events may not cause users to have to re-establish connection to the system nor to suspend
submitting transactions.

• No transactions may be lost nor may the database be left with inconsistent data due to incomplete
transactions.

• The system may request that incomplete transactions be re-submitted after recovering from an event, but the
number of such transaction may not exceed 1 second worth of Normal Transaction Processing Capacity.

• The Recovery Period for disruptive events may not exceed 10 minutes. Average capacity during the period
may not be below 80% of Normal Transaction Processing Capacity.

2b. Retryable /
Planned Outages

• Same as 2a, but the system may rely on taking an outage to perform certain planned operations,
maintenance, repair, and upgrade tasks.

3a. Delayable
Workloads

• The system must be able to respond to disruptive events and be ready to process transactions within
5 minutes.

• The recovery period for disruptive events may not exceed 25 minutes. Average capacity during the recovery
period may not be below 60% of Normal TP Capacity.

• No transactions may be lost, nor may the database be left with inconsistent data due to incomplete
transactions.

• The users may be required to re-establish connection to the system and to identify and re-submit
transactions that did not complete before the event. The number of such transactions may not exceed
1 second worth of Normal Transaction Processing Capacity.

3b. Delayable /
Planned Outages

• Same as 3a, but the system may rely on taking an outage to perform certain planned operations,
maintenance, repair, and upgrade tasks.

4. Enhanced • The user can evaluate, for cost and effectiveness, the individual features that are intended to improve
availability.

• Disruptive events may result in a total outage of a system (requiring user intervention to perform reboot and
recovery).

• No transactions may be lost, nor may the database be left with inconsistent data due to incomplete
transactions.

5. Unprotected • None.

Table 3: Basic Requirements for Transaction Processing Availability Classes

The intention of this classification system is that the
evaluation would be self-certified. Vendors or others
wishing to classify a particular system would do the
evaluation and publish the results, answering a set of
standardized questions or performing tests that validate
the evaluation criteria. This approach rests on the
assumption that vendors would not risk their reputations,
nor product liability claims, by making false statements
against very specific standards.

To date, initial drafts have been written for Availability,
Data Integrity, and Disaster Recovery for Transaction
Processing applications. These drafts include classes,
factors, minimum standards and evaluation criteria.
Evaluation methods have not yet been proposed. A sub-
committee of SIGDeB is currently doing a trial evaluation
of a specific system to see if a standardized set of
questions or evaluation tests can be developed.

Classes Perfection
Retryable

Workloads
Delayable
Workloads

Reduced Impact
of Failure

Minimum Standard • No single HW failure may cause a properly configured system to violate the Basic Requirement.

Required
Disclosures

• What, if anything, is required in the application code or configuration
to meet the standards.

• Any cases where the system might lose its ability to recover from a HW
failure, but not report this condition to the user (e.g., a backup resource
fails, but the system does not detect the failure until it attempts to use the
resource in a recovery action).

• History of user-reported HW defects that violated minimum standards.

• Any exceptions (to the minimum standards) in the system design,
with quantified impacts.

• Cost / benefit of
features to be
evaluated

Comparative
Measurements

• How long is the system susceptible to a second (unprotected) failure,
i.e., while the first failure is detected and repaired?

• Frequency of failures that cause a recovery process or remove a
resource from the system.

• Duration and impact of the recovery process.

• Frequency of failures
that benefit from
each feature

Table 5: Evaluation Criteria for Hardware Failure

Factor Description

HW Failure Intermittent or permanent HW fault, including design errors that manifest as component failure.

SW Failure Improperly designed, built, or installed software that results in a detected failure that takes
resources out of use.

Environmental Failure A failure to provide power, cooling or other environmental requirement of the system.

HW Repair or Upgrade Repair failed components, re-integrate repaired components, or install newer version
(same form, fit, function).

SW Repair or Upgrade Action to replace a faulty component, or install newer versions (same external interfaces);
or to revert to previous versions.

Operating Configuration Change Action to adjust system parameters for performance tuning, policy administration, access
control, etc.

System Maintenance Action required to maintain the integrity of the application, e.g. data backups, log dumps,
resource monitoring.

Capacity Expansion
(or Reduction)

Scaling the system for changes in volume of usage, e.g. additional HW, new SW, database
reorganization.

System Management Skills The level of skills, training, process control, and other human factors required to obtain the
desired availability.

Denial of Service Attack Attempt by un-authorized users to render the system inaccessible or unusable

Table 4: Factors that Affect Availability

[1] D. P. Siewiorek, J. J. Hudak, B.-H. Suh and
Z. Segall, “Development of a Benchmark to
Measure System Robustness”, in Proc. 23rd Int.
Symp. on Fault-Tolerant Computing (FTCS-23),
Toulouse, France, 1993, pp. 88-97 (IEEE CS
Press).

[2] T. K. Tsai, R. K. Iyer and D. Jewitt, “An Approach
Towards Benchmarking of Fault-Tolerant
Commercial Systems”, in Proc. 26th Int. Symp. on
Fault-Tolerant Computing (FTCS-26), Sendai,
Japan, 1996, pp. 314-323 (IEEE CS Press).

[3] P. Koopman and J. DeVale, “Comparing the
Robustness of POSIX Operating Systems”, in
Proc. 29th Int. Symp. on Fault-Tolerant Computing
(FTCS-29), Madison, WI, USA, 1999, pp. 30-37
(IEEE CS Press).

[4] A. Brown and D. A. Patterson, “Towards
Availability Benchmarks: A Cases Study of
Software RAID Systems”, in Proc. 2000 USENIX
Annual Technical Conference, San Diego, CA,
USA, 2000 (USENIX Association).

[5] J. Arlat, J.-C. Fabre, M. Rodríguez and F. Salles,
“Dependability of COTS Microkernel-Based
Systems”, IEEE Trans. on Computers, vol. 51,
no. 2, pp. 138-163, February 2002.

[6] J. V. Carreira, D. Costa and J. G. Silva, “Fault
Injection Spot-checks Computer System
Dependability”, IEEE Spectrum, vol. 36, pp. 50-55,
August 1999.

[7] R. Chillarege and N. S. Bowen, “Understanding
Large System Failures — A Fault Injection
Experiment”, in Proc. 19th Int. Symp. on Fault-
Tolerant Computing (FTCS-19), Chicago, IL,
USA, 1989, pp. 356-363 (IEEE CS Press).

[8] A. M. Amendola, L. Impagliazzo, P. Marmo and
F. Poli, “Experimental Evaluation of Computer-
Based Railway Control Systems”, in Proc. 27th
Int. Conf. on Fault-Tolerant Computing Systems
(FTCS-27), Seattle, WA, USA, 1997, pp. 380-384
(IEEE CS Press).

[9] C. Constantinescu, “Validation of the Fault/Error
Handling Mechanisms of the Teraflops
Supercomputer”, in Proc. 28th Int. Symp. on Fault-
Tolerant Computing (FTCS-28), M u n i c h ,
Germany, 1998, pp. 382-389 (IEEE CS Press).

[10] H. Madeira, R. Some, F. Moreira, D. Costa and
D. Rennels, “Experimental Evaluation of a COTS
System for Space Applications”, in Proc. Int.
Conference on Dependable Systems and Networks
(DSN-2002), Washington, DC, USA, 2002 (IEEE
CS Press).

[11] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie and
D. Powell, “Fault Injection and Dependability
Evaluation of Fault-Tolerant Systems”, IEEE
Transactions on Computers, vol. 42, no. 8.,
pp. 919-923, August 1993.

[12] J.-C. Laprie, Ed., “Dependability: Basic Concepts
and Terminology”, (Dependable Computing and
Fault Tolerance, vol. 5, A. Avizienis, H. Kopetz
and J.-C. Laprie, Eds.), Vienna: SpringerVerlag,
1992.

[13] M. Hsueh, T. Tsai and R. K. Iyer “Fault Injection
Techniques and Tools”, Computer, vol. 30, no. 4,
pp. 75-82, April 1997.

[14] J. Clark and D. Pradhan, “Fault Injection: A
Method for Validating Computer-System
Dependability”, C o m p u t e r , vol. 28, no. 6,
pp. 47-56, June 1995.

	page F-1: F-1
	PAGE:
	page F-2: F-2
	header: DSN Workshop on Dependability Benchmarking, June 25, 2002
	page F-3: F-3
	page F-4: F-4
	page F-5: F-5

