DSN Workshop on Dependability Benchmarking, June 25, 2002

The Set-Check-Use Methodology for Detecting Error Propagation
Failures in I/O Routines

Michael W. Bigrigg
Institute for Complex Engineered Systems
Carnegie Mellon University
Pittsburgh PA 15217
bigrigg@ices.cmu.edu

Abstract

A methodology is presented that will detect robustness
failures in source code where 1/O errors could occur and
where there is no mechanism in place to handle the error.
The details of the methodology are described showing
how traditional compiler data flow analysis can be aug-
mented to find structurally, within the application, code
that can be used to perform error checking. In addition
we describe how this code can be used to ensure the cor-
rectness of the I/O error checking.

1. Introduction

File systems routinely make extraordinary attempts on
behalf of the application to provide data whenever possi-
ble to the user. Yet, problems such as network congestion
or outages and heavily loaded systems can lead to failure-
like situations, making it impossible for the file system to
complete the entire requested operation. These situations
are usually only transient and still enable the file system to
provide a partial result. An example of a true failure condi-
tion for a file system is a request for data where no data is
available, i.e., a read past the end of a file. This is different
from a situation in which data is available, but is currently
not accessible, such as when using a disconnected mobile
device. When applications not intended for an unreliable
environment are ported from a desktop environment to a
wireless system, the application programmer must account
for all such unpredictable behavior. As programmers, we
often overlook error checking when we are overwhelmed
with the task of identifying all possible error situations, or
neglect checking in the belief that some errors are incon-
ceivable.

Local file system interfaces are typically identical to
those of a distributed file system, though the potential for
failure at each is greatly different. In a local file system,
failures are catastrophic. If the hard drive or other local
storage device fails, it often signals the end of the device’s

F-21

Jacob J. Vos
Institute for Complex Engineered Systems
Carnegie Mellon University
Pittsburgh PA 15217
Jvos@ece.cmu.edu

usable lifetime. Failures in distributed file systems are
more common and it is possible to recover from them.
They are usually the result of unreachable remote storage
devices or device overloading due to network partitioning,
poor load balancing, or denial of service attacks. Users
have fundamental, but not often expressed assumptions
about the reliability of the system an application is built
for. Yet unhandled error conditions lead to potential soft-
ware failures when the underlying system cannot satisfy
our requests and the application was built assuming that it
can.

We present a methodology based upon program static
analysis to track the propagation of error reporting in or-
der to determine the assumptions used when the software
was created.

2. Software Fault Detection Related Work

There are many approaches to using program analysis
for the detection of software faults. These systems are
typically aimed at providing information to the program-
mer in order that the program source code may be modi-
fied to eliminate software faults. In identifying code er-
rors, there are strict guidelines regarding right and wrong
within an application, i.e. dealing with the disabling and
re-enabling interrupts, or the assumptions about integer
size. Our method does not establish the correctness of
code, instead establishing the existence of code that will
ensure correctness.

Errors in an I/O system can only be identified at run-
time and only after checking the status of the I/O call. One
type of fault analysis techniques will run the entire pro-
gram or a subset of the program to observe its behavior.
As well, controlled errors can be introduced to examine
how the software behaves by passing external faults into
the application that cause it to fail. Such approaches in-
clude fault injection through random memory corruption
or corruption of the storage system (FlakylO) [1], passing
values typically known to cause exceptions into an indi-

DSN Workshop on Dependability Benchmarking, June 25, 2002

vidual software module through its software interface
(Ballista) [5], and the creation and use of a comprehensive
test suite. In particular, this type of approach makes it pos-
sible to identify the type of input or condition that has led
to the fault, but does not identify any remedial action that
should be taken by the application.

Compile-time analysis attempts to identify program
features that would cause a program to behave improperly.
The analysis focuses on a particular characteristic that is
typically the base cause of faults such as portability prob-
lems (i.e., when moving an application from one machine
architecture to another (lint) [4]). We, however, are at-
tempting to find portability problems, not between archi-
tectures, but between systems that have different reliability
guarantees on their file system. Other approaches, such as
LcLint [3] and mc [2] use programmer-defined rules that
specify acceptable behavior to drive the analysis. These
two systems are the most closely related projects to ours in
method, but their purpose is to capture the assumptions
about a program in order to establish correctness, while
our focus is to uncover the original assumptions made
about a program.

We present a methodology that will detect robustness
failures in source code where I/O errors could occur and
where there is no mechanism in place to handle the error.
Many programmers fail to incorporate error checking in
specific classes of I/O operations and rely on certain as-
sumptions such as “file output is always guaranteed” to
ensure correct application operation. It is this absence of
error checking that we intend to detect with our methodol-
ogy. Our approach to uncovering these situations com-
bines an augmented data flow analysis with the semantics
of the /O error reporting.

We describe the details of the methodology showing
how traditional compiler data flow analysis can be used to
find structurally, within the application, code that can be
used to perform error checking. In addition we describe
how this code can be used to ensure the correctness of the
error checking.

3. Error Reporting in C I/O Routines

Errors are reported in C I/O routines using out-of-range
values. The return values of these routines are either a
useful result (upon successful completion of the call) or an
indication of the error that occurred (upon an unsuccessful
completion). For instance, the successful return of the
fopen call is a handle to a file. The range of values for a
file handle is an unsigned integer greater than zero. A zero,
also referred to as NULL, is then used to report that the
file system was unable to open the file. The return of a
fread call uses out-of-range values to transmit not only
an error condition, but also specifies an end of file condi-
tion as well. The return identifies the number of bytes that

F-22

have actually been read. The fread call, like all data buffer
operations, will read up to but no more than the number of
bytes that have been requested. A return of zero does not
signify an error condition, just that no data is currently
accessible such as at the end of a file. It is a negative re-
turn value that signifies an error condition. Since a single
value can potentially be both an error condition and also a
valid result, it is not until tested that we know. Just like
Schroedinger’s cat, we cannot tell what the value is until it
is examined. When writing a program, we have to assume
that both outcomes are likely and cannot assume one or
the other.

The values that specify an error condition are based on
the 1/O routine itself. An examination of the C standard
I/O library [8] shows the behavior of I/O function calls
upon an error condition:

¢ Functions that return pointers use a NULL to desig-
nate an error condition: fmpfile, fopen, freopen,
fgets.

e Functions that use EOF as an error condition:
fclose, fgetc, getchar, putchar,
puts, ungetc.

e Functions that use a non-zero for an error condi-
tion :

e Functions that use a negative number for an error
condition: fputs, fset-

fprintf, sprintf,

remove, rename.

fgetpos, fseek,

pos, fscanf, print,

sscanf, viprintf, vsprintf, fputc,

fputs, gets, putc, fread, fwrite.
e Functions that use a -1 for an error condition:

ftell.

Only the data buffer operations (fprintf, £scanf,
sprintf, sscanf, vfprintf, wvsprintf, fputc,
fputs, gets, putc, fread, and fwrite) overload the
return with three potential values.

In addition, we must identify the result value. The re-
sult is the value achieved upon successful completion of
the call and may be passed through a return or through an
argument. The buffer operations have not only the result in
the return but also an argument (a buffer), which is also a
result. Not only is it important to distinguish the error
from the result in the return, but also it is important to
acknowledge the error before using the buffer contents.
Therefore, error checking must occur before the use of any
result values.

print,

4. Identification of Error Checking

Correct error checking associated with an I/O routine
must occur between the set (called a definition or simply
def) of the potential error value and use of a result value or
values along all possible paths of execution. For instance,
the C code example in Figure 1 could lead to a program

DSN Workshop on Dependability Benchmarking, June 25, 2002

crash, while the code example in Figure 2 uses program
logic to safeguard against a possible error condition.

fin = fopen("foo", "r");
fread (buf, sizeof (int), 10, fin);

Figure 1. Code that may lead to a failure

fin = fopen("foo", "r");
if (fin != NULL) {

fread(fin, sizeof (int), 10, buf);
}

Figure 2. Program logic guards against a possible un-
successful result

We augment traditional data flow analysis to identify
missing error checking. Data flow analysis is a traditional
technique used by compilers during the optimization phase
as a tool to guarantee the correctness of program trans-
formations. Value chains, called def-use chains, are identi-
fied between the definition of a value and the places the
value is used. Data analysis is performed on values and
not on variables. Figure 3 shows how a value chain is
formed, dependent on the instance of a value in a variable,
rather than on the name of the variable.

a =3; /* def of a, */
b =a +5; /* use of a; , def of b, */
a =8; /* def of a, */

Figure 3. Formation of a value chain

We augment the def-use chains to additionally include
the check of a value. We define a check as a use of a value
that additionally falls within the expression of a condi-
tional statement. There is already a large body of work on
the mechanisms for computing def-use chains [7]. The
conditional is a guard against incorrect usage of the result
value. The conditional expression that acts as an error
guard may be part of any conditional structure including if’
and if-else statements as well as while and repeat loops as
shown in Figure 4.

n = fread (fin, sizeof (int), 1, buf);
while (n > 0) {

k += buf [0];

n = fread (buf, sizeof (int), 1, fin);

}
Figure 4. Formation of a value chain

While set-check-use is a straightforward approach,
there are a few issues to incorporate into our methodology.
Error values and the result values are not bound to a spe-
cific variable as shown in Figure 5. These values can be
assigned to other variables or even modified. In these
cases, we need to track the values to make sure that the

F-23

use of the result values does not occur before the check of
the error values.

a = fopen ("foo.txt","r");
b = a;
if (b != NULL) {
n = fread(buf, sizeof (int), 1, a);
!

Figure 5. Analysis based on values not variables.lue
chain

It is also important to note that the use of the result
value need not exist only within the body of the condi-
tional, and that the conditional may be used to reset the
result variable as shown in Figure 6. Again this involves
tracking the values through all execution paths. Once the
tracked value is overridden with another value, the track-
ing of the previous value stops along that path of execu-
tion.

a = fopen ("foo.txt", "r");
if (a == NULL) {

a = stdin;
}

Figure 6. Resetting a value for protection

We know that there is a check, but that does not mean
that the expression will accurately identify an error situa-
tion.

Finally, in order to determine if the check is valid we
must examine the conditional expression. This will be ex-
plained in the remainder of this section.

Another aspect to detecting missing robustness checks
is the use of error information from the language, as out-
lined in the previous section, to guide the set-check-use
approach by determining which value identifies the error.
The error propagation information provides a heuristic
approach similar to error classification schemes [6]. An
example is given to show how semantic information would
drive the def-check-use analysis. In the case of file open-
ing as shown in Figure 7, the def, check, and use locations
use the same value for the analysis. Between the def and
use of a, there should be a check of a.

a = fopen("foo","r"); /* def of a */
if (a != NULL) /* check of a */
fread (buf, sizeof (int), 10, fin); /*use of a */

Figure 7. Def-Check-Use of the same value

In an fopen call, the return holds the error value. A
NULL return value designates an error condition. The def,
check, and use is to use the same value, a, which is the
value returned from the fopen call. We acknowledge that
it may not be possible to statistically determine the validity
of the check.

DSN Workshop on Dependability Benchmarking, June 25, 2002

5. Analysis of a Simple Program

The we program is part of the GNU textutils collection
of programs. Its purpose is to count the number of lines,
words, and characters in a file or files identified on the
command line. The v2.0 program consists of 371 text lines
with 118 lines of code. It can be identified to have been in
use for the past 16 years (from 1985 to 2001). It was writ-
ten in C and consists of four functions. There are no in-
stances of control flow issues where error checking only
exists in a subset of execution paths. A hand analysis of
the main source program was performed using the meth-
odology presented to detect failure and to check for error
conditions. The results are summarized in Table 1.

Table 1. Hand Analysis of the wc program

Routine Total | Checked | Unchecked
fprintf 1 0 1
Printf 7 0 7
Puts 1 0 2
putchar 1 0 2
fstat 1 1 0
Iseek 2 2 0
read 3 3 0
open 1 1 0
close 2 2 0
setlocale 1 0 1
SUMMARY | 20 9 11

A simple calculation of the number of checks that
should be performed against the number of checks actually
produced results in a 45% reliability rating. The usefulness
of this rating is not promoted as it does not reflect the fre-
quency of each call, but can be included as a guide to un-
derstand the program behavior.

The major assumption that was made by the wc pro-
gram is that all output is guaranteed to succeed.

6. Future Work

The Set-Check-Use Methodology (SCUM) work is part
of the PARIS project at CMU, which is attempting to use
program analysis techniques to analyze the reliability of
programs. We can see the strength of this methodology for
determining the reliability of an I/O program, and are in
the process of implementing it in a tool that will report on
the presence and absence of error checking in programs to

F-24

construct a rating of reliability. At the same time, we are
attempting to classify the missing error checks, and so
become able to specify the types of assumptions that are
made about the operating environment for I/O applications
automatically.

7. Acknowledgements

This work supported by the Pennsylvania Infrastructure
Technology Alliance and also as part of the PASIS project
supported by DARPA/ISO’s Intrusion Tolerant Systems
program (Air Force contract number F30602-99-2-0539-
AFRL). We would also like to thank Joan Digney for her
help in preparing this paper.

8. References

[1] Michael W. Bigrigg and Joseph Slember. Testing the Port-
ability of Desktop Applications to a Networked Embedded Sys-
tem. Workshop on Reliable Embedded Systems, Oct. 2001.

[2] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
Hallem. Checking System Rules Using System-Specific, Pro-
grammer-Written Compiler Extensions. Proceedings of the
2000 OSDI Conference, Oct. 2000.

[3]
Tan. LCLint: A tool for using specifications to check code.
SIGSOFT Symposium on the Foundations of Sofiware Engi-
neering, Dec. 1994.

[4] S.C. Johnson. lint, a C Program Checker, Computer Sci-
ence Technical Report, Number 65, 1978.

[5] Philip Koopman. Toward a Scalable Method for Quantify-
ing Aspects of Fault Tolerance, Software Assurance, and Com-

David Evans, John Guttag, Jim Horning, and Yang Meng

puter Security. Computer Security, Dependability, and Assur-
ance: From Needs to Solutions (CSDA'98), Nov. 1998.

[6] Roy A. Maxion and Robert T. Olszewski. Improving Soft-
ware Robustness with Dependability Cases. 28th International
Symposium on Fault Tolerant Computing, June 1998.

[7] Steven S. Muchnick. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann Pub. 1997.

[8] P.J. Plauger. The Standard C Library. Prentice Hall, 1992.

	page F-21: F-21
	PAGE:
	page F-22: F-22
	header: DSN Workshop on Dependability Benchmarking, June 25, 2002
	page F-23: F-23
	page F-24: F-24

