
Self Tuning With Self Confidence∗

Miguel Matos
University of Minho

mm@lsd.di.uminho.pt

José Pereira
University of Minho
jop@di.uminho.pt

Rui Oliveira
University of Minho
rco@di.uminho.pt

1. Introduction

Recent research on managing complex computing sys-
tems has focused on the autonomic computing vision: Sys-
tems should manage themselves according to high level ad-
ministrative goals [5]. As an example, system components
should monitor the environment and self-tune to meet qual-
ity of service expectations, without requiring manual inter-
vention in selecting concrete configuration options or in co-
ordinating the reconfiguration process.

In a distributed system, the usual approach is to have
several alternative protocols for each key distributed sys-
tem function, each serving a different performance tradeoff.
Depending on the assessment of the environment and on the
policy set by the administrator, the ideal protocol is chosen
and configured. The result should be a simple feedback con-
trol loop that provides the desired self-tuning capability.

This approach has however several disadvantages. First,
having multiple implementations, that may be seldom used,
increases the complexity of the system and has implications
in the reliability of the software. Second, the switchover
mechanism is itself complex and often requires distributed
agreement, thus introducing a large overhead and not sel-
dom the need to “stop the world” while in progress. Also,
by switching among a limited set of options, the system can
only cope with a limited number of scenarios. And finally,
practical implementations often rely on a centralized coor-
dinator component, which is in itself an obstacle to depend-
ability. In short, all these issues combined make current
systems fall short of the autonomic computing vision.

In this paper we show how two fundamental building
blocks for dependable distributed systems – consensus and
reliable multicast – can be extended to support autonomic
principles. In fact, we point out that existing protocols [6, 1]
support decentralized decisions and fine grained adaptation
with a single algorithm thus surpassing the impairments
pointed above. Furthermore, the correctness of the algo-
rithms is always ensured no matter what adaptive decisions
are taken. Finally, we speculate on realizing actual sys-

∗This work was partially supported by project ”P-SON: Probabilisti-
cally Structured Overlay Networks” (POS C/EIA/60941/2004).

tems based on this approach and on extending it to other
distributed systems building blocks.

2. Case Study: Consensus

The consensus problem [8] abstracts agreement by a set
of processes in a distributed system in the presence of faults.
This has been shown to be key in many building blocks for
dependable distributed systems, such as the replicated state
machine, atomic multicast, or view synchrony. Solving con-
sensus efficiently has thus been the focus of a number of
research efforts.

As an example, a key performance factor in an asyn-
chronous message passing model is the way how votes are
collected to form a quorum. In certain protocols, the votes
are collected by a coordinator and the result broadcast af-
ter a decision has been reached [2], while on others, votes
are directly broadcast to all the participants which indepen-
dently count them [7]. The former minimizes the use of
bandwidth, the latter reduces decision latency.

A particularly interesting tradeoff is achieved by the mu-
table consensus protocol [6]: The same protocol allows runs
in which votes are collected by a single coordinator, runs in
which votes are broadcast to all participants, as well as a
number of message exchange patterns in between. In fact,
different message exchange patterns can be induced by ju-
diciously chosen transmitting delays applied local and in-
dependently. Regardless of the resulting configuration, the
algorithm’s correctness proved in the asynchronous model
is always preserved.

3. Case Study: Reliable Multicast

The reliable dissemination of information to a very large
number of destinations is at the core of distributed systems
middleware, such as publish/subscribe and media stream-
ing. The goal is to ensure that messages are reliably de-
livered according to some criteria, namely regarding how
different receivers get the same data, while making efficient
use of resources.



The usual approach is to build a spanning tree and then
use it to relay messages [4]. The gathering of acknowledg-
ments and retransmissions to repair from losses, as required
to meet reliability criteria, are also performed along the tree.
The tree can also be optimized to make use of higher capac-
ity links and nodes, thus making better use of available re-
sources. The downside is that the cost incurred in setting up
and maintaining the structure is prohibitive when reconfig-
uration is frequent, such as, when nodes continually enter
and leave the system.

A radically different approach is provided by gossip-
based or epidemic multicast [3]. Although the basic proto-
col is disarmingly simple – each node relays each message
to a small random subset of neighbors – it can be shown
that all destinations receive it at least once with high prob-
ability. Besides avoiding the cost of setting up and main-
taining the spanning tree, the inherent load balancing and
redundancy make it highly resilient to reconfiguration and
message loss. On the other hand, it fails to take advantage
of links and nodes with higher capacity as each node is cho-
sen randomly and thus over time each node will process
approximately the same number of messages. Furthermore,
as each message is transmitted multiple times this approach
leads to a large bandwidth consumption.

It has however been shown that by judiciously schedul-
ing the transmission of message payload in epidemic mul-
ticast, it is possible to combine the advantages of both ap-
proaches [1]. In detail, when relaying messages each node
may omit the payload and transmit it later only upon re-
quest. This ensures the desirable resilience properties of
epidemic multicast. However, depending on the policy used
to schedule payload transmission, it can be observed that re-
dundant retransmission of payload can be entirely avoided
without negative impact in end-to-end latency and that some
nodes and links contribute with much higher probability
of payload transmission: The result is thus a probabilistic
structure that emerges from the operation of the gossip pro-
tocol itself (based on efficiency criteria) instead of being
imposed by construction.

4. Discussion

The protocols discussed in the previous sections [6, 1]
share a number of desirable features for self-tuning systems.
In detail:

Single Protocol. Proof of correctness and correct imple-
mentation of the protocol needs to be done only once, since
a single protocol is able to deliver a wide range of perfor-
mance tradeoffs.

Out-of-Model Tuning. Tuning for performance is done
by adjusting implementation parameters on which the pro-
tocols’ correctness does not depend. Namely, delays in an
asynchronous model and packet scheduling in an epidemic

communication pattern, respectively.
Local Adaptation. Since protocol corretness is oblivious

to tuning, the protocol remains correct even if each partici-
pant independently adjusts local parameters with no global
coordination whatsoever. This reduces overhead and obvi-
ates the need for a switching mechanism.

Progressive Adaptation. Even if there are only a few
configurations, tradeoffs in-between can still be achieved
if different amount of nodes choose different configurations
or if nodes alternate between different configurations.

Low Adaptation Latency. Since adaptation is local and
progressive, the feedback control loop has low latency and
fine grained control over the system, and is thus much more
likely to achieve stable configurations.

In particular, Out-of-Model Tuning and Local Adapta-
tion, definitely contribute to a safe, and therefore confident,
self adaptation of the protocols. There are however some
outstanding challenges in realizing a dependable distributed
autonomic system using the suggested approach. The first
is to derive the performance of the proposed protocols in a
wide range of environments and configurations. The sec-
ond is to determine to what extent can effective global per-
formance be achieved based on strictly local tuning deci-
sions. Finally, whether the proposed approach is applicable
to other distributed systems problems.

References

[1] N. Carvalho, J. Pereira, R. Oliveira, and L. Rodrigues.
Emergent structure in unstructured epidemic multicast. In
IEEE/IFIP Intl. Conf. Dependable Systems and Networks
(DSN), 2007.

[2] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J. ACM, 43(2):225–267, 1996.

[3] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulie.
From epidemics to distributed computing. Computer, May
2004.

[4] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang.
A reliable multicast framework for light-weight sessions and
application level framing. IEEE/ACM Trans. Networking,
5(6), Dec. 1997.

[5] J. Kephart and D. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[6] J. Pereira and R. Oliveira. The mutable consensus protocol. In
IEEE Intl. Symp. Reliable Distributed Systems (SRDS), 2004.

[7] A. Schiper. Early consensus in an asynchronous system with a
weak failure detector. Distrib. Comput., 10(3):149–157, 1997.

[8] J. Turek and D. Shasha. The many faces of consensus in dis-
tributed systems. Computer, pages 8–17, 1992.


