Software

Robustness BAltl:Sﬁ

Testin g Service

http://www.ices.cmu.edu/ballista

John P. DeVale
devale@cmu.edu - (412) 268-4264 - http://www.ece.cmu.edu/~jdevale

Institute p—r——

for Complex l/‘“‘s\
Engineered DARP - ’
Systems SO

Carnegie
Mellon

Overview: Ballista Automated Robustness Testing

0 System Robustness
« Motivation

e Ballista automatic robustness
testing tool

0 OS Robustness Testing
« Raw results for 15 Operating System ¢

0 Testing Service !
0 Conclusions

A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.

BALLISTA.

System Robustness

Ariane 5 Flight 501 Robustness Failure

0 June, 1996 loss of inaugural flight
» Lost $400 million scientific payload (the rocket was ext

0 Efforts to reduce system costs led to the failure
* Re-use of Inertial Reference System software from Ariane 4

* Improperly handled exception caused by variable overflow duri
new flight profile (that wasn’t simulated because of cost/schedu
— 64-Dbit float converted to 16-bit imssumeadhot to overflow

— Exception caused dual hardware shutdown (because it wg
assumed software doesn't fail)

0 What really happened here?

* The narrow view: it was a software bug -- fix it

— Things like this have been happening for decades -- Apol-' -
LEM computer crashed during lunar descent :

* The broad view:the loss was caused by a lack of syster
robustness in an exceptional (unanticipated) situation

0 Our research goal:improved system robustness

System Robustness -- Improves Dependability

0 Graceful behavior in the presence of exceptional conditions
* Unexpected operating conditions
« Activation of latent design defects

0 Robustness definition also includes operation in overloads
* Not in current research, but is set as an eventual goal
* We conjecture overload robustness also hinges on exception handling

0 Current test case -- Operating Systems (POSIX API)
* Goal:metric for comparative evaluation of OS robustness

« If a mature OS isn’t “bullet-proof”, what hope is there for application
software?

Ballista Software Testing Heritage

0 SW Testing requires: Ballista uses:
 Test case “Bad” value combinations
 Module under test Module under Test
 Oracle (a “specification”) Watchdog timer/core dumps
SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE
ROBUST
SHOULD VALID OPERATION

WORK INPUTS

I\(IJOI\IEI?)LIJELRE REPRODUCIBLE
UNDEFINED~ | NP FAILURE
SHOULD INVALID UNREPRODUCIBLE
RETURN /y INPUTS FAILURE

ERROR

0 Ballista combines:
 Domain testing ideas / Syntax testing ideas

* In general, “dirty” testing BAlLI:SﬁE;

Ballista Fault Injection Heritage

Name Method _Level Repeatability

FIAT Binary Image Changes Low High

FERRARI Software Traps Low High

Crashme Jump to Random Data Low Low

FTAPE Memory/Reqgister Alteration Low Medium

FAUST Source Code Alteration Middle&ligh

CMU- Random Calls and High Low
Crashme Random Parameters

Fuzz Middleware/Drivers High Medium

Ballista Specific Calls with High High

Specific Parameters

CRASH Severity Scale

L Catastrophic

« Test computer crashes (both Benchmark and Starter abort or hang)
e |rix 6.2: munmap(malloc((1<<30)+1), ((1<<31)-1)));

0 Restart
« Benchmark process hangs, requiring restart

1 Abort
 Benchmark process abortsd.,“core dump”)

0 Silent

* No error code generated, when one should have been
(e.g.,de-referencing null pointer produces no error)

L Hindering
* Incorrect error code generated

Ballista: Scalable Test Generation

API|

TESTING
OBJECTS

TEST
VALUES

TEST CASE

inttrap(double a, double b, int N)

DOUBLE PRECISION DOUBLE PRECISION INTEGER
FLOATING POINT FLOATING POINT VALUE
TEST OBJECT TEST OBJECT OBJECT
ZERO ZERO MAXINT
ONE ONE MININT
NEGONE NEGONE ZERO
TWO TWO ONE
Pl Pl NEGONE
PIBYTWO PIBYTWO 2
TWOPI TWOPI 4
E E 8
DBLMAX DBLMAX 16
DBLMIN DBLMIN 32
SMALLNOTZERO SMALLNOTZERO 64
NEGSMALLNOTZERO NEGSMALLNOTZERO 1K

64K

inttrap(ONE, DBLMAX, 64K)

Test Value Inheritance

Date String 12/1/1899
1/1/1900
Generic String BIGSTRING 2/29]1984
STRINGLEN1 igﬁﬁggg
- - ALLASCII
Generic Pointer NONPRINTABLE 12/0/1994
NULL 8/31/1992
DELETED | 8/32/1993
1K 12/31/1999
PAGESIZE 1/1/2000
MAXSIZE 12/31/2046
SIZE1 1/1/2047
INVALID 1/1/8000

Date string inherits test cases from all parents Bﬂltl&ﬁ
10

Ballista: “High Level” + “Repeatable”

0 High level testing is done using API to perform fault injection

o Send exceptional values into a system through the API
— Requires no modification to code -- only linkable object files needed
— Can be used with any function that takes a parameter list

* Direct testing instead of middleware injection simplifies usage

0 Each test is a specific function call with a specific set of
parameters

o System state initialized & cleaned up for each single-call test
 Combinations of valid and invalid parameters tried in turn
o A “simplistic’ model, but it does in fact work...

0 Early results were encouraging:
 Found a significant percentage of functions with robustness failures

* Crashed systems from user mode
BALLISTA
11

OS Robustness Testing

Comparing Fifteen Operating Systems

Ballista Robustness Tests for 233 Posix Function Calls

aix 4.1 - |

rree BsD 2.2.5 |

Hp-ux .05 - N
HP-Ux 10.20 | © C-:-strophic
rix 5.3 | N

rix 6.2 | T : C:iostoohic :

Linux 2.0.18 - B Abort Failures

ynxos 2.4.0 - coosiophic | T RestrtFailure

Nerssp 1.3 - [
osr 132 [| | C:astrophic

osr 140 [

onx 422 - [- C--siophics
onx 4.2« I
sunos 4.1.3 - [|

sunos 5.5 - [

0% 5% 10% 15% 20% 25%

Normalized Failure Rate

C Library Is A Potential Robustness Bottleneck
Portions of Failure Rates Due To System/C-Library

Aix 4.1 T

Free BSD 2.2.5 | |
p-ux 9.05 [I
HpP-Ux 10.20 - ; catastrophic
irix 5.3 - T I

Irix 6.2 _ 1 Catastrophic

Linux 2.0.18

LynxOS 2.4.0 _ 1 Catastrophic
NetssD 1.3 - [N S
osr 132 [N Catastroph/c
osF 14.0 [N
QNX 4.22 — 2 Catastrophics
CDERZ I e —

sunos 4.3 - I I
sunos 5.5 [N

I System Calls
N C Library

|
0% 5% 10% 15% 20% 25%

Normalized Failure Rate -
14

Common Faillure Sources

0 Based on correlation of failures to data values, not traced to
causality in code

0 Associated with a robustness failure were:
* 94.0% of invalid file pointers (excluding NULL)
e 82.5% of NULL file pointers
« 49.8% of invalid buffer pointers (excluding NULL)
e 46.0% of NULL buffer pointers
o 44.3% of MININT integer values
o 36.3% of MAXINT integer values

Testing Service

16

Robustness Testing Service

O Ballista Server 0 Ballista Client
o Selects tests e Links to user's SW under test
« Performs pattern Analysis « Can “teach” new data types to
« Generates “bug reports” server (defn. language)

e Never sees user’'s code

BALLISTA F e | WWW & [T|USER'’S
SERVER i INTERFACE 1 RPCy |} BALLISTA ! |COMPUTER
i SPECIFICATION} (=i TEST |
i CAPTURE | i CLIENT |
{ RESULT |i TEST | MODULE
{ PATTERN i SELECTION ; UNDER
: DISCOVERY ; TEST
{TEST !
i REPORTING ;
{ |ARDENIN(|}
i \VRAPPER !
i CREATION !

..................

Ballista Capability Summary

0 Automated testing of software components
* Generically applicable to modules having parameter lists

0 Minimal knowledge of component
* Interface specification is typically available (data types)
* No source code, no reverse compilation, no functional specification

0 Highly scalable
o Effort to create tests sub-linear with number of functions tested
* No per-function test scaffolding

0 Repeatable results
* Robustness failures that are identified are repeatable on demand

« Single-function-call failure generation
— Creation of very simple “bug report” code

— Makes it possible to create reasonably simple wrappers e)
— Only addresses a subset of problems (but, a big subset” BAll.lS
18

Conclusions

0 Ballista robustness testing approach
« Scalable, portable, reproducible
e Can include considerable state information (although that’'s not obvious)

0 Also applied to DoD HLA/RTI simulation backplane
o C++, call-backs, client/server, throws signals for exception handling
« Specifically written for robustness; has lower failure rates than OS code

O Internet-based testing service available

BALLISTA

http://www.ices.cmu.edu/ballista

