The Dimensionality of Failures — A Fault Model for
Characterizing Software Robustness

Jiantao Pan
LElectrical and Computer Engineering Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA
Jpan(@cmu.edu

Abstract

Software robustness is a major concern in using Com-
mercial Off-The-Shelf (COTS) software components in
mission-critical applications. Exceptional inputs are a
major cause of robustness problems, but it can be diffi-
cult to properly guard against them. In this paper we in-
troduce the Dimensionality Model — a model for char-
acterizing the triggers for sofiware robustness failures.
The model is based on pin-pointing how many function
call parameters are responsible for a failure. The study
reveals that approximately 82% of robustness failures
found in operating systems we have tested are attribut-
able to 1-dimensional values, namely, failures caused by
exceptional values for a single parameter. This result
suggests that screening based on a I-dimensional as-
sumption might be useful in hardening COTS software
modules against robustness failures triggered by excep-
tional input values.

1. Introduction

Writing robust software [3] is costly. The problem is
aggravated by increasingly severe constraints such as
tight budget, rapid time-to-market and short product life
cycle. Using Commercial Off-The-Shelf (COTS) software
modules or legacy software components to assemble ap-
plications might be a good way to cut cost; but the COTS
and legacy modules may not have been written to handle
exceptional conditions well. Usually COTS software is
designed to function correctly with normal inputs under
normal situations, but may crash, hang, or exhibit other
non-robust behaviors under exceptional inputs or in ab-
normal execution environments. If such software mod-
ules are used in mission-critical or safety-critical appli-
cations, they may cause losses or even entire mission
failure, such as happened with Ariane Flight 501 [6].
This creates a dilemma: while on one hand we want to
use COTS software modules because of cost issues, on

© 1999, Jiantao Pan

the other hand non-robustness of the COTS software
modules might put mission success at risk.

If candidate software modules can be tested, analyzed
and hardened automatically to improve robustness, that
might promote the use of COTS and legacy software in
an even broader range of applications including mission-
critical and safety-critical areas. Such a capability might
also make it cheaper and more efficient to improve the
robustness of newly written software components. But,
there are no existing characterizations of the types of
values that must be hardened against for this approach to
work.

This paper introduces a fault model, called the Di-
mensionality Model, to characterize Application Pro-
gramming Interface (API) level software robustness fail-
ures. Using test results gathered by a combinatorial test-
ing method, this model helped explain the patterns
formed by parameter(s) contributing to observed failures.
Preliminary results in the POSIX [5] API found that 82%
of the robustness failures identified were caused by a sin-
gle parameter.

Section 2 discusses the Ballista testing method for
data gathering. Section 3 introduces the Dimensionality
Model, while Section 4 gives the preliminary results
based on analyzing the test data gathered from 15 POSIX
API implementations in UNIX operating systems. Con-
clusions can be found in Section 5.

2. Testing methodology

This work is built upon the prior work of the Ballista
project [1]. The Ballista project has implemented an
API-level automated testing tool for COTS software
modules. The test cases are specified per data type, with
identical test cases applied to every function that takes
any particular set of data types.

A combinatorial testing method is used to generate the
test cases for each module. For example, the system call
read() accepts three parameters: £fd* file des, char

*buffer, int size, and each of these three parameters
has a set of tests associated with it. During testing, a test
harness generates all the possible combinations of prede-
fined test cases, drawing upon tests for each parameter
data type. Each combination is tested individually, and
robustness failure results (pass, crash, or hang) are
logged into a file.

3. The Dimensionality Model

In this section we take steps to introduce the Dimen-
sionality Model. We introduce two important definitions
that summarize the Dimensionality Model.

e Parameter dimensionality: Consider a software
module £, taking a list of arguments (x1, x2,
...). The parameter dimensionality is defined as
the number of arguments taken by the software mod-
ule.

The definition stems from the dimensionality of the
function when drawing the pattern of test response in
space. For example, £ (x1) has a parameter dimension-
ality of 1, but g(x1, x2) is 2-dimensional. Function
read(file des, buffer, bytes) takes three pa-
rameters, so its parameter dimensionality is three.

e Robustness failure dimensionality: Given a particular
set of parameter values that cause a robustness fail-
ure, the number of the parameters that actually con-
tributes to the failure is defined as the robustness
failure dimensionality. For example, suppose that
f(x1l, x2, x3) fails when x1=NULL, regardless of
the values of x2 and x3 (normal or exceptional). In
this case the NULL value of parameter x1 is the only
contributing factor to the failures. So all the failures
where x1=NULL would be 1-dimensional fail-

Failure dimensionality information is crucial for
writing efficient protection code. After testing a function,
a list of robustness failures is generated, many of which
may be the result of several low-dimensionality failure
values left unguarded. Using the Dimensionality Model,
we may categorize the failures into different groups. For
example, a NULL file pointer, when not checked,
can lead to many 1-dimensional failures. We can choose
to write code to check for 1-dimensional values like this
first to improve run-time efficiency, or even just harden
1-dimensional failures if resources or capabilities are too
limited to address multi-dimensional failure modes.

4. Low dimensionality is common

Although perhaps not articulated as such, the idea of
dimensionality has existed for a long time. In the testing
domain (e.g., [2]), failures caused by interactions of mul-
tiple parameters are assumed to be rare, so that test case
generation is optimized to cover 1 or 2 parameters. The
prevalence of low dimensionality is assumed to be true,
according to programmer experience. The question of
whether that assumption is justified remains open until
now, mainly because there are not enough data studies.

With the help of the Ballista robustness testing serv-
ice, we have gathered 1.1 million data points from the
testing of 15 POSIX compliant operating systems from
10 vendors. The overall failure rate of an operating sys-
tem is the average of all the POSIX functions tested on
that operating system. The results are normalized by the
number of tests within each function, and then averaged
across all the functions tested. These results (potentially
weighted by execution profile) can be interpreted as the

ures.

It is obvious that the failure dimensionality can
not exceed the parameter dimensionality. In the ex-
ample of read (file des, buffer, bytes), an
invalid file des may trigger 1-dimensional fail-
ures, if the function does not check to prevent inva-
lid file des values. It is also possible that if
bytes (to read) 1is greater than buffer
(length), we can expect 2-dimensional failures,
since both of the parameter values contribute to the
failures. Note that it is possible for a specific failure
to belong to both a high- and low-dimensionality
failure set. In such cases, we can count that failure
as having the lowest possible dimensionality. In
other words, for our measurements the lower dimen-
sionality characteristic prevails.

15 POSIX OS Versions

from Ten Vendors

Impact on Robustness after Guarding against
1-Dimensional Failures

AIXa1] 9.99%
HP-UX A.09.05 11.39%
Lynx0S240 11.89%
LINUX 2.0.18| 12.54%
IRIX6:2| 12.62%
HP-UXB.10.20 13.05%
IRIX53] 14.45%
Sun0sS 5.5 14.55%
Digital Unix 4.0, 15.07%
Digital Unix 3.2 15.63%
Sun0sS4.1.3 15.84%
NetBSD 1.3 16.39%
FreeBSD 2.25 20.28%
QNX4.22) 21.00%
GNX422] 22.69%

W Not 1-D Failures
@ 1-D Failures

0% 5% 10% 15% 20%

Robustness Failure Rate

" Thereisa special case that a function accepts no parameters at all, which
is beyond the scope of this paper.

© 1999, Jiantao Pan

Figure 1. Impact of 1-Dimensional Failures

25%

relative likelihood of encountering a robustness failure
when passing an exceptional data value to POSIX API
functions on that platform. In Figure 1, the robustness
failure rate ranges between 9.99% for IBM AIX and
22.69% for QNX 4.24. The variation is substantial, al-

The Dimensionality Model is intended to be general,
so that it can be extended to characterize other kinds of
software defects, or other characteristics in a parameter
space. Extending its applicability is an areca of future
work.

though they are all implementations of the same in-
terface specification. For some applications, those
levels of robustness might not be acceptable. In cer-
tain cases, it might therefore be desirable to auto-
matically harden those POSIX calls against robust-
ness failures, if they are to be used in mission-critical
and safety-critical situations, which is our future re-
search goal.

In our experiment, we focused on the “likelihood”
that a robustness failure is 1-dimensional. In Figure
1, the light portion of the bars indicates this likeli-
hood. In other words, if we have successfully pro-
tected against 1-dimensional failures, all the scores of
the operating system will be significantly improved,
from 15.16% failure rate on average down to merely
2.76%, cutting down the failures to 18% of the origi-

Percentage of System Failure Rate Induced by 1-D Failures
\I:I %1-Dfailures B % not 1—Dfai|ures\

100%
9N0%
80% - S P2 e = s P o o1 S
<o B
e s N B M N e e s s E
o T8 EN T . o)] d R
.= B O I | = © [@2 2 N N
60% 1R 10 | | N~
50% + — — —1 — —
40% 1+ 1 — — —1 — —
30% + — — — —1 — —
20% + — — — —1 — —
10% 1 — — —1 — —
0% T T T T T T T T T T T T T T
- 0 © ® o o ® 1 x X ©® o A o X
< 5© <« g © 5N 0o 0 5 5 - < @ o I3
X g8 9 F X dS X @9 —o-a ¥ o Ba T 3
< Ig @ w X Id I (2 S 85 @ g oo B 2
Q 5 - - S o o e} =W s} s}
g z ®a a 5 2
> = =z
— —

15 POSIX OGS Versions from Ten Vendors

nal failure rate if we simply check for 1-dimensional
robustness failures.

Figure 2 gives another view of the same information,
stretching the system failure rate to 100% scale. The
graph indicates that although the variation of the failure
rate is significant from one operating system to another,
the relative portion of failures that are 1-dimensional is
approximately a constant. Specifically, on average
81.75% of the system failure rate is attributed to 1-
dimensional failures, with a standard deviation of 3.24%.
This provides evidence that 1-dimensional failures, the
simplest form of robustness failures in the Dimensional-
ity Model and presumably the casiest to protect against,
are uniformly prevalent across all the operating systems
we have tested.

5. Conclusions

In this paper we have presented the Dimensionality of
Failures, a new model for characterizing software
robstness failures. We discussed how the model is related
to combinatorial testing, and showed that one-
dimensional failures are prevalent across a wide range of
POSIX operating system implementations.

Based on these results, we speculate that robustness
hardening can be done with the help of the
Dimensionality Model. The dimensionality information
can be automatically distilled given combinatorial testing
results. The correct sequence of analyzing and protecting
against robustness failures should start with low
dimensionality failures, in order to be cost-effective.

© 1999, Jiantao Pan

Figure 2. Percentage of Failure Rate Due to
1-Dimensional Failures

6. Acknowledgements

This resecarch was sponsored by DARPA contract
DABT63-96-C-0064 (the Ballista project) and ONR
contract N0O0014-96-1-0202. Thanks to my advisor Philip
Koopman and co-advisor Daniel Siewiorek for their
helpful advice on this paper and my research.

7. References

[1] Kropp, N., Koopman, P. & Siewiorek, D., "Automated Ro-
bustness Testing of Off-the-Shelf Software Components",
FTCS, Munich, Germany, June 23-25, 1998.

[2] Cohen, D., S. Dalal, M. Friedman & G. Patton, "The AETG
System: an approach to testing based on combinatorial de-
sign", IEEE Trans. on Software Engr., 23(7), July 1997, pp.
437-444.

[3] IEEE Standard Glossary of Software Engineering Termi-
nology (IEEE Std 610.12-1990), IEEE Computer Soc., Dec.
10, 1990.

[4] Beizer, B., Black Box Testing, New York: Wiley, 1995.

[5] IEEE Standard for Information Technology — Portable
Operating System Interface (POSIX) — Part 1: System Ap-
plication Program Interface (API) — Amendment
1:Realtime Extension [C Language] (IEEE Std 1003.1b-
1993), IEEE Computer Society, 1994.

[6] Lions, J. (Chair), Ariane 5 Flight 501 Failure, European
Space Agency, Paris, July 19, 1996.
http://www.esrin.esa.it/htdocs/tidc/Press/Press96/arianeSre
p-html, Accessed Dec. 4, 1997.

