
Software
Robustness
Testing Service
 http://www.ices.cmu.edu/ballista

Philip Koopman
ECE Department
koopman@cmu.edu - (412) 268-5225 - http://www.ices.cmu.edu/koopman

,QVWLWXWH

IRU &RPSOH[

(QJLQHHUHG
6\VWHPV

2

Overview: Practical Issues in a Testing Service
◆ Brief review of Ballista testing
◆ Robustness testing over the

Internet
◆ Supporting features:

• Setting global state

• Fine-grain test coverage

• Test scaffolding

• Legitimate exceptions

◆ Future work
• What we can do

• What we can’t do
 A Ballista is an ancient siege

weapon for hurling objects at
fortified defenses.

3

Object-Oriented Test Generation
API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

TEST
VALUES

TEST CASE

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST
OBJECT

FD_CLOSED

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

FD_OPEN_READ
BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE
BUF_16

BUF_NEG_ONE
BUF_NULL

SIZE_1

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

SIZE_16

4

Test Value Inheritance

B IG S T R IN G
S T R IN G L E N 1
A L L A S C II
N O N P R IN TA B L E
…

G e n e ric Str in g

N U L L
D E L E T E D
1 K
PA G E S IZ E
M A X S IZ E
S IZ E 1
IN VA L ID

G e n e ric P o in te r

D a te S tr in g 1 2 /1 /1 8 9 9
1 /1 /1 9 0 0
2 /2 9 /1 9 8 4
4 /3 1 /1 9 9 8
1 3 /1 /1 9 9 7
1 2 /0 /1 9 9 4
8 /3 1 /1 9 9 2
8 /3 2 /1 9 9 3
1 2 /3 1 /1 9 9 9
1 /1 /2 0 0 0
1 2 /3 1 /2 0 4 6
1 /1 /2 0 4 7
1 /1 /8 0 0 0
…

Date string inherits test cases from all parents

5

Robustness Testing Service
◆ Ballista Server

• Selects tests

• Performs pattern Analysis

• Generates “bug reports”

• Never sees user’s code

◆ Ballista Client
• Links to user’s SW under test

• Can “teach” new data types to
server (definition language)

BALLISTA
SERVER

TEST
REPORTING

TEST
SELECTION

RESULT
PATTERN

DISCOVERY

INTERFACE
SPECIFICATION

CAPTURE

TESTING
OBJECT

COMPILER

USER’S
COMPUTERBALLISTA

TEST
CLIENT

MODULE
UNDER
TEST

WWW &
RPC

6

Specifying the Test
◆ Simple demo interface; real interface has a few more steps...

7

Viewing Results
◆ Each robustness failure is one test case (one set of parameters)

8

“Bug Report” program creation
◆ Reproduces failure in isolation (>99% effective)

/* Ballista single test case Sun Jun 13 14:11:06 1999

 * fopen(FNAME_NEG, STR_EMPTY) */

...

 const char *str_empty = "";

...

 param0 = (char *) -1;

 str_ptr = (char *) malloc (strlen (str_empty) + 1);

 strcpy (str_ptr, str_empty);

 param1 = str_ptr;

...

 fopen (param0, param1);

9

Estimated Failure Rates After Analysis

Normalized Failure Rate by Operating System

Normalized Failure Rate (after analysis)
0% 10% 20% 30% 40% 50%

O
p

er
a

tin
g

S
ys

te
m

T
es

te
d

SunOS 5.5

SunOS 4.13

QNX 4.24

QNX 4.22

OSF-1 4.0

OSF-1 3.2

NetBSD

Lynx

Linux

Irix 6.2

Irix 5.3

HPUX 10.20

HPUX 9.05

FreeBSD

AIX

Abort %
Silent %
Restart %

Catastrophic

10

Support Features
◆ Test selection / pattern discovery

• Randomly selected subset of tests for large testing spaces

• In future, smarter testing to identify failure-free regions

• Need fine-grain tests to achieve notion of “adjacent” test cases

◆ Data type compiler
• Define new testing objects for new data types

• Want finer grain testing for better testing coverage

• Want automatic composition of data structures from existing primitives

◆ Hardening wrappers
• Easy wrappers are easy (e.g., NULL pointer hardening)

• Hard wrappers get harder the more we think about them

11

Physical Structures (work in progress)
◆ Flatten structure and use existing primitive constructors

• Example of single element; linked list of complex numbers

32,17(5D

32,17(5E)/2$7F)/2$7G

WHVWBFDVH�32,17(5D� �32,17(5E� �)/2$7F� �)/2$7G�

FRQVWUXFW 32,17(5D
FRQVWUXFW 32,17(5E ZLWKLQ VWUXFWXUH
FRQVWUXFW)/2$7F ZLWKLQ VWUXFWXUH

FRQVWUXFW)/2$7G ZLWKLQ VWUXFWXUH
FDOO �32,17(5D�IXQFWLRQ

3K\VLFDO�

%DOOLVWD

5HSUHVHQWDWLRQ�

$W 5XQWLPH�

12

Setting Global State
◆ Use phantom parameter idea to set global state

• User specifies:
function(+param0, param1, …)

• System executes all constructors

• But, system only passes physical parameters:
function(param1)

Example:
random(+seed_value)

establishes a random number seed via a constructor, then calls random()

◆ Permits setting substantial amount of state using testing objects
• Execute test scaffolding (e.g., create federation; join federation)

• Set global state (e.g., fill up hard disk before file I/O)

• Set hidden state: (e.g., testing random number generator)

13

3DVV RU HUURU FRGH

5REXVWQHVV)DLOXUH �$ERUW�5HVWDUW�

◆ fprintf(File_Pointer, STRing) in HP-UX

Patterns of Testing Result (Jiantao Pan’s work)

All 1-D failures this line
◆ 1-D failures:

• They form a line in a
2-D function (function
that parameter
dimensionality=2)

• They form a
hyperplane in a n-D
function

14

Toward Fine-Grain Characterization
◆ Problem: detailed coverage of rich data types

(e.g., file handle)
• Current tests have large grain size

• Want tests with high degree of flexibility

• Want useful notion of “adjacency” in test results

◆ Solution: Logical Structs
• Decompose data type into logical struct of

orthogonal sub-types

• Example for file handle:
1) File exists, does not exist, deleted after creation

2) Open for: read, write, r/w, closed

3) File system permissions for: read, write, r/w, none

4) File positioned at: beginning, middle, end, past end

5) ...

15

What About Required Scaffolding?
◆ Operating system code:

• No scaffolding required

• All durable system state set in
constructors / restored by destructors

– File creation/deletion

– Process creation/deletion

◆ HLA RTI distributed simulation framework:
• Requires scaffolding

– e.g., create Federation, create Federate, join Federation

• But, not that many distinct scaffolding sets
– 10 sets of scaffolding for 86 modules

– Only a few lines of code each

• Expect to see a similar outcome on many other applications

16

What About Different Exception Models?
◆ Not all programs use error return codes

• What is a “robustness failure” in context of thrown exceptions?

• But, assume that interface spec. defines all valid exceptions

◆ We consider these failures (based on HLA RTI results):
• System crashes/hangs = Catastrophic

• Task hangs = Restart

• Exception system panic = Abort+

• “Unknown/default” exception = Abort

• SIGSEGV (uncaught system exception) = Abort

• No exception thrown = Silent (difficult to test for)

• Undocumented exception = Hindering

17

Future Work
◆ Heavy load testing

• Resource exhaustion

• Timing-dependent failures

◆ Varied applications
• HLA RTI simulation backplane

– Paper submitted to ISSRE

– Plans to make Ballista testing part of RTI certification suite

• Windows (Win32 API)

• State-intensive object repository for train control (ABB)

• Factory process control (Emerson)

18

What Ballista Does (and Doesn’t Do)
◆ Quantification of exception handling robustness

• Scalable, inexpensive compared to traditional testing approaches

• Makes a contribution toward the ~80% of code for exception handling

• In the future, will include heavy-load testing

• But, any such metric is difficult to relate to an operational profile

◆ Currently, uses heuristic tests
• Fine grain searching will enable use of adaptive testing + search methods

◆ Easier than it appears to test some system state
• Small amounts of system state in parameter-based tests

• Larger system state possible using phantom parameters

• But, will it work on a database-like system? (we’ll find out…)

19

Other Potential Uses
◆ Best used as a QA technique

• Quality must be designed in, not tested in

◆ Perhaps extend to light-weight correctness testing
• Dynamic tension between scalability and specificity

• Can other behaviors be represented with a simple oracle?
– Memory consumption

– Touching (or not touching) safety critical objects

◆ High-level security check
• Buffer over-run testing

• Detect touching non-permissible items (e.g., security logs)

◆ Potentially useful as a metric for diversity

