
Comparing the
Robustness of
POSIX Operating Systems
 http://www.ices.cmu.edu/ballista

Philip Koopman & John DeVale
ECE Department
koopman@cmu.edu - (412) 268-5225 - http://www.ices.cmu.edu/koopman

,QVWLWXWH

IRU &RPSOH[

(QJLQHHUHG
6\VWHPV

2

Overview: Ballista Automated Robustness Testing
◆ Generic robustness testing

• Based on data types

◆ OS Testing results
• Raw results for 15 Operating Systems

• System calls vs. C Library

◆ Exception Handling Diversity
• Does everyone core dump on the

same exceptions? (no)

◆ Approximating “Silent” failure
rates (missing error codes)

◆ Conclusions/Future work
 A Ballista is an ancient siege

weapon for hurling objects at
fortified defenses.

3

Ballista: Software Testing + Fault Injection Ideas
◆ SW Testing requires: Ballista uses:

• Test case “Bad” value combinations

• Module under test Module under Test

• Oracle (a “specification”) Watchdog timer/core dumps

◆ Ballista combines ideas from:
• Domain testing ideas / Syntax testing ideas

• Fault injection at the API level

INPUT
SPACE

RESPONSE
SPACE

VALID
INPUTS

INVALID
INPUTS

SPECIFIED
BEHAVIOR

SHOULD
WORK

UNDEFINED

SHOULD
RETURN
ERROR

MODULE
UNDER

TEST

ROBUST
OPERATION

REPRODUCIBLE
FAILURE

UNREPRODUCIBLE
FAILURE

4

Scalable Test Generation
API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

TEST
VALUES

TEST CASE

FILE
DESCRIPTOR
TEST OBJECT

MEMORY
BUFFER
TEST OBJECT

SIZE
TEST
OBJECT

FD_CLOSED

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

FD_OPEN_READ
BUF_SMALL_1
BUF_MED_PAGESIZE
BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE
BUF_16

BUF_NEG_ONE
BUF_NULL

SIZE_1

SIZE_PAGE
SIZE_PAGEx16
SIZE_PAGEx16plus1
SIZE_MAXINT
SIZE_MININT
SIZE_ZERO
SIZE_NEG

SIZE_16

5

CRASH Severity Scale

◆ Catastrophic
• Test computer crashes (both Benchmark and Starter abort or hang)

• Irix 6.2: munmap(malloc((1<<30)+1), ((1<<31)-1)));

◆ Restart
• Benchmark process hangs, requiring restart

◆ Abort
• Benchmark process aborts (e.g., “core dump”)

◆ Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

◆ Hindering
• Incorrect error code generated

6

Comparing Fifteen Operating Systems

Normalized Failure Rate

Ballista Robustness Tests for 233 Posix Function Calls

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0

1 Catastrophic

2 Catastrophics

Free BSD 2.2.5

Irix 5.3

Irix 6.2

Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

1 Catastrophic

1 Catastrophic

HP-UX 10.20

Abort Failures
Restart Failure

1 Catastrophic

7

Failure Rates By POSIX Fn/Call Category

8

C Library Is A Potential “Robustness Bottleneck”

Normalized Failure Rate

Portions of Failure Rates Due To System/C-Library

0% 5% 10% 15% 20% 25%

AIX 4.1

QNX 4.22

QNX 4.24

SunOS 4.1.3

SunOS 5.5

OSF 1 3.2

OSF 1 4.0

Free BSD 2.2.5

Irix 5.3

Irix 6.2

Linux 2.0.18

LynxOS 2.4.0

NetBSD 1.3

HP-UX 9.05

HP-UX 10.20

1 Catastrophic

2 Catastrophics

1 Catastrophic

1 Catastrophic

1 Catastrophic

C Library
System Calls

9

Common Failure Sources
◆ Based on correlation of failures to data values, not traced to

causality in code

◆ Associated with a robustness failure were:
• 94.0% of invalid file pointers (excluding NULL)

• 82.5% of NULL file pointers

• 49.8% of invalid buffer pointers (excluding NULL)

• 46.0% of NULL buffer pointers

• 44.3% of MININT integer values

• 36.3% of MAXINT integer values

◆ Operational profile results vary depending on workload
• IBS benchmarks: 19% to 29% weighted average failure rate

• SPEC floating point less than 1% weighted average failure rate

10

Does Everyone Abort on the Same Things?

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2

Number of versions compared at a time

Resid ual F ailu re Rate

41;

$,;

$,;�)UHH%6'

$,;���41;

)UHH%6'

168 POSIX Calls

LESS DIVERSE

MORE DIVERSE

11

17% (Normalized) Common Mode Aborts

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of versions compared at a time

Resid ual F ailu re R ate

168 POSIX Calls

(9(5<�26�$%257('

21�7+(6(�7(676

12

Most System Call Aborts Potentially Avoidable

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of versions compared at a time

Resid ual Failu re Rate

168 POSIX Calls
Only 72 System Cal ls

13

Data Analysis Using N-Version Detection
◆ Use N-version software voting to refine data

(and use manual sampling to check effectiveness)
• Eliminate non-exceptional tests -- 12% of data; method ~100% accurate

– e.g., reading from read-only file

• Identify Silent failures

◆ Silent failures -- 6% to 17% additional robustness failure rate
• 80% accurate when one OS reports “OK” while at least one other OS

reports an error code
– ~2% were bugs involving failure to write past end of file

– 28% of remainder due when POSIX permits either case

– 30% of remainder due to false alarm error codes (many in QNX)

– ~40% of remainder just out of scope of POSIX standard

• 50% accurate when one OS reports “OK” but another OS dumps core
– Half of remainder due to order in which parameters are checked

– Half of remainder due to FreeBSD floating point library
Abort failures (e.g., fabs(DBL_MAX))

14

Estimated Failure Rates After Analysis

Normalized Failure Rate by Operating System

Normalized Failure Rate (after analysis)
0% 10% 20% 30% 40% 50%

O
p

er
a

tin
g

S
ys

te
m

T
es

te
d

SunOS 5.5

SunOS 4.13

QNX 4.24

QNX 4.22

OSF-1 4.0

OSF-1 3.2

NetBSD

Lynx

Linux

Irix 6.2

Irix 5.3

HPUX 10.20

HPUX 9.05

FreeBSD

AIX

Abort %
Silent %
Restart %

Catastrophic

15

Is Dumping Core The “Right Thing?”
◆ AIX has only 10% raw Abort failure rate -- on purpose

• Wish to avoid Abort failures in production code

• Ignores some NULL pointer reads by setting page 0 to read permission

• BUT -- 21% adjusted Abort failure rate; 12% Silent failure rate

◆ FreeBSD has 20% raw Abort failure rate -- on purpose
• Intentionally aborts to flag bugs during development cycle

• 31% adjusted Abort failure rate; BUT -- 17% adjusted Silent failure rate

◆ Future challenges:
• Flag defects during development

– Boundschecker-like systems need a workload to find problems

• And still tolerate robustness problems once system is fielded
– Truly Portable exception handling for POSIX API

– Perhaps wrappers to manage complexity of exception handling
(e.g., Bell Labs XEPT work)

16

Next Step: Robustness Testing Service
◆ Ballista Server

• Selects tests

• Performs pattern Analysis

• Generates “bug reports”

• Never sees user’s code

◆ Ballista Client
• Links to user’s SW under test

• Can “teach” new data types to
server (definition language)

BALLISTA
SERVER

TEST
REPORTING

TEST
SELECTION

RESULT
PATTERN

DISCOVERY

INTERFACE
SPECIFICATION

CAPTURE

USER’S
COMPUTERBALLISTA

TEST
CLIENT

MODULE
UNDER
TEST

WWW &
RPC

17

Wrap-up
◆ “Lofty Goal:” harden legacy and COTS software components

• For mission-critical systems
 Without extensive re-engineering to improve robustness

◆ Robustness metric for Operating Systems
• Failure rates look high; true impact depends on operational profile

• Controversy as to whether Abort failures are OK

• Metrics help stimulate demand for improvement

◆ Ballista robustness testing approach
• Scalable, portable, reproducible

• C library has higher failure rate, less diverse than OS system calls

• Currently available as web server; applying to several domains

◆ Future: Windows NT, more system state, heavy system loads

http://www.ices.cmu.edu/ballista

18

