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Overview: Ballista Automated Robustness Testing
◆ Generic robustness testing

• Based on data types

◆ OS Testing results
• Raw results for 15 Operating Systems

• System calls vs. C Library

◆ Exception Handling Diversity
• Does everyone core dump on the

same exceptions?  (no)

◆ Approximating “Silent” failure
rates (missing error codes)

◆ Conclusions/Future work
      A Ballista is an ancient siege

weapon for hurling objects at
fortified defenses.
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Ballista: Software Testing + Fault Injection Ideas
◆ SW Testing requires: Ballista uses:

• Test case “Bad” value combinations

• Module under test Module under Test

• Oracle   (a “specification”) Watchdog timer/core dumps

◆ Ballista combines ideas from:
• Domain testing ideas / Syntax testing ideas

• Fault injection at the API level
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Scalable Test Generation
API

TESTING
OBJECTS

write(int filedes, const void *buffer, size_t nbytes)

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

TEST
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TEST CASE

FILE
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MEMORY
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OBJECT

FD_CLOSED

FD_OPEN_WRITE
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FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT_BLOCK
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FD_SHM_RW
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BUF_SMALL_1
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CRASH Severity Scale

◆ Catastrophic
• Test computer crashes (both Benchmark and Starter abort or hang)

• Irix 6.2:  munmap( malloc((1<<30)+1), ((1<<31)-1)) );

◆ Restart
• Benchmark process hangs, requiring restart

◆ Abort
• Benchmark process aborts (e.g., “core dump”)

◆ Silent
• No error code generated, when one should have been

(e.g., de-referencing null pointer produces no error)

◆ Hindering
• Incorrect error code generated
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Comparing Fifteen Operating Systems

Normalized Failure Rate

Ballista Robustness Tests for 233 Posix Function Calls
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Failure Rates By POSIX Fn/Call Category



8

C Library Is A Potential “Robustness Bottleneck”

Normalized Failure Rate

Portions of Failure Rates Due To System/C-Library
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Common Failure Sources
◆ Based on correlation of failures to data values, not traced to

causality in code

◆ Associated with a robustness failure were:
• 94.0% of invalid file pointers (excluding NULL)

• 82.5% of NULL file pointers

• 49.8% of invalid buffer pointers (excluding NULL)

• 46.0% of NULL buffer pointers

• 44.3% of MININT integer values

• 36.3% of MAXINT integer values

◆ Operational profile results vary depending on workload
• IBS benchmarks: 19% to 29% weighted average failure rate

• SPEC floating point less than 1% weighted average failure rate
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Does Everyone Abort on the Same Things?
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17% (Normalized) Common Mode Aborts
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Most System Call Aborts Potentially Avoidable
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Data Analysis Using N-Version Detection
◆ Use N-version software voting to refine data

(and use manual sampling to check effectiveness)
• Eliminate non-exceptional tests -- 12% of data;  method ~100% accurate

– e.g., reading from read-only file

• Identify Silent failures

◆ Silent failures -- 6% to 17% additional robustness failure rate
• 80% accurate when one OS reports “OK” while at least one other OS

reports an error code
– ~2% were bugs involving failure to write past end of file

– 28% of remainder due when POSIX permits either case

– 30% of remainder due to false alarm error codes  (many in QNX)

– ~40% of remainder just out of scope of POSIX standard

• 50% accurate when one OS reports “OK” but another OS dumps core
– Half of remainder due to order in which parameters are checked

– Half of remainder due to FreeBSD floating point library
Abort failures  (e.g., fabs(DBL_MAX) )
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Estimated Failure Rates After Analysis

















Normalized Failure Rate by Operating System
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Is Dumping Core The “Right Thing?”
◆ AIX has only 10% raw Abort failure rate -- on purpose

• Wish to avoid Abort failures in production code

• Ignores some NULL pointer reads by setting page 0 to read permission

• BUT -- 21% adjusted Abort failure rate; 12% Silent failure rate

◆ FreeBSD has 20% raw Abort failure rate -- on purpose
• Intentionally aborts to flag bugs during development cycle

• 31% adjusted Abort failure rate; BUT -- 17% adjusted Silent failure rate

◆ Future challenges:
• Flag defects during development

– Boundschecker-like systems need a workload to find problems

• And still tolerate robustness problems once system is fielded
– Truly Portable exception handling for POSIX API

– Perhaps wrappers to manage complexity of exception handling
(e.g., Bell Labs XEPT work)
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Next Step: Robustness Testing Service
◆ Ballista Server

• Selects tests

• Performs pattern Analysis

• Generates “bug reports”

• Never sees user’s code

◆ Ballista Client
• Links to user’s SW under test

• Can “teach” new data types to
server (definition language)
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SERVER

TEST
REPORTING

TEST
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RESULT
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COMPUTERBALLISTA

TEST
CLIENT
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TEST

WWW &
RPC
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Wrap-up
◆ “Lofty Goal:” harden legacy and COTS software components

• For mission-critical systems
         Without extensive re-engineering to improve robustness

◆ Robustness metric for Operating Systems
• Failure rates look high; true impact depends on operational profile

• Controversy as to whether Abort failures are OK

• Metrics help stimulate demand for improvement

◆ Ballista robustness testing approach
• Scalable, portable, reproducible

• C library has higher failure rate, less diverse than OS system calls

• Currently available as web server; applying to several domains

◆ Future:   Windows NT,  more system state, heavy system loads
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