Comparing the BAltI:Sﬁ

Robustness of
POSIX Operating Systems

http://www.ices.cmu.edu/ballista

Philip Koopman & John DeVale
ECE Department

koopman@cmu.edu - (412) 268-5225 - http://www.ices.cmu.edu/koopman

Institute D B e o
for (_)omplex AR Cal'llegle
9 sytems i’ Mellon

Overview: Ballista Automated Robustness Testing

0 Generic robustness testing
 Based on data types

0 OS Testing results
 Raw results for 15 Operating Systems
« System calls vs. C Library

0 Exception Handling Diversity

* Does everyone core dump on the
sameexceptions? (no)

0 Approximating “Silent” failure
rates (missing error codes)

0 Conclusions/Future work

A Ballista is an ancient siege
weapon for hurling objects at
fortified defenses.

Ballista: Software Testing + Fault Injection Ideas

0 SW Testing requires: Ballista uses:
 Test case “Bad” value combinations
 Module under test Module under Test
 Oracle (a “specification”) Watchdog timer/core dumps
SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE
ROBUST
SHOULD VALID OPERATION

WORK INPUTS

I\(IJOI\IEI?)LIJELRE REPRODUCIBLE
UNDEFINED~ | NP FAILURE
SHOULD INVALID UNREPRODUCIBLE
RETURN /y INPUTS FAILURE

ERROR

0 Ballista combines ideas from:
 Domain testing ideas / Syntax testing ideas

e Fault injection at the API level BAlLIOSﬁ
3

Scalable Test Generation

API write(int filedes, const void *buffer, size t nbytes)

TESTING
OBJECTS

TEST
VALUES

TEST CASE

FILE MEMORY SIZE
DESCRIPTOR BUFFER TEST
TEST OBJECT TEST OBJECT OBJECT
FD_CLOSED BUF_SMALL_1 SIZE 1
FD_OPEN_READ BUF_MED_PAGESIZE LSIZE_ 16

FD_OPEN_WRITE
FD_DELETED
FD_NOEXIST
FD_EMPTY_FILE
FD_PAST_END
FD_BEFORE_BEG
FD_PIPE_IN
FD_PIPE_OUT
FD_PIPE_IN_BLOCK
FD_PIPE_OUT BLOCK
FD_TERM
FD_SHM_READ
FD_SHM_RW
FD_MAXINT
FD_NEG_ONE

BUF_LARGE_512MB
BUF_XLARGE_1GB
BUF_HUGE_2GB
BUF_MAXULONG_SIZE
BUF_64K
BUF_END_MED
BUF_FAR_PAST
BUF_ODD_ADDR
BUF_FREED
BUF_CODE

BUF_16

BUF_NULL
BUF_NEG_ONE

SIZE_PAGE
SIZE_PAGEX16
SIZE_PAGEXx16plusl
SIZE_MAXINT
SIZE_MININT

SIZE_ZERO
SIZE_NEG

write(FD_OPEN_RD, BUFF_NULL, SIZE_16)

CRASH Severity Scale

L Catastrophic

« Test computer crashes (both Benchmark and Starter abort or hang)
e |rix 6.2: munmap(malloc((1<<30)+1), ((1<<31)-1)));

0 Restart
« Benchmark process hangs, requiring restart

1 Abort
 Benchmark process abortsd.,“core dump”)

0 Silent

* No error code generated, when one should have been
(e.g.,de-referencing null pointer produces no error)

L Hindering
* Incorrect error code generated

Comparing Fifteen Operating Systems

Ballista Robustness Tests for 233 Posix Function Calls

aix 4.1 - |

rree BsD 2.2.5 |

Hp-ux .05 - N
HP-Ux 10.20 | © C-:-strophic
rix 5.3 | N

rix 6.2 | T : C:iostoohic :

Linux 2.0.18 - B Abort Failures

ynxos 2.4.0 - coosiophic | T RestrtFailure

Nerssp 1.3 - [
osr 132 [| | C:astrophic

osr 140 [

onx 422 - [- C-(-sirophics
onx 4.2« I
sunos 4.1.3 - [|

sunos 5.5 - [

0% 5% 10% 15% 20% 25%

Normalized Failure Rate

Failure Rates By POSIX Fn/Call Category

C Library Is A Potential “Robustness Bottleneck”
Portions of Failure Rates Due To System/C-Library

Aix 4.1 T

Free BSD 2.2.5 | |
p-ux 9.05 [I
HpP-Ux 10.20 - ; catastrophic
irix 5.3 - T I

Irix 6.2 _ 1 Catastrophic

Linux 2.0.18

LynxOS 2.4.0 _ 1 Catastrophic
NetssD 1.3 - [N S
osr 132 [N Catastroph/c
osF 14.0 [N
QNX 4.22 — 2 Catastrophics
CDERZ I e —

sunos 4.3 - I I
sunos 5.5 [N

- - T T T T T 1 T T T]
0% 5% 10% 15% 20% 25%

Normalized Failure Rate -
8

I System Calls
N C Library

Common Failure Sources

0 Based on correlation of failures to data values, not traced to
causality in code

0 Associated with a robustness failure were:
* 94.0% of invalid file pointers (excluding NULL)
e 82.5% of NULL file pointers
« 49.8% of invalid buffer pointers (excluding NULL)
e 46.0% of NULL buffer pointers
o 44.3% of MININT integer values
o 36.3% of MAXINT integer values

0 Operational profile results vary depending on workload
* IBS benchmarks: 19% to 29% weighted average failure rate
« SPEC floating point less than 1% weighted average failure rate

Does Everyone Abort on the Same Things?

0.5
| A 168 POSIX Calls
0.45 wa
0.4 éFreeBSD LESS DIVERSE
0.35 §
03 a
- AIX <« AIX + QNX
0.25 -
| AlX+FreeBSD
0.2 -
0.15
T on MORE DIVERSE
0.05
0 : | |
1 2

Nu mber of versions compared at a time BAI_LIOS?E
10

17% (Normalized) Common Mode Aborts
0.5 -

0.45 A A 168 POSIX Calls o
0.4 -

0.35 §

0.3

>

N
”"‘.\ o |
KA I A, B N

EVERY OS ABORTED
ON THESE TESTS
1 2 3 4 5 6 7 8 9 10 11 12 13

Number of versions compared at a time BAI_LI.S}E
11

0.25

0.2
0.15

0.1
0.05 |

0 -

Most System Call Aborts Potentially Avoidable

0.5

0.45 A A 168 POSIX Calls
i © Only 72 System Calls

0.05 | I i i i b & -
I I I I I I I I

1 2 3 4 5 6 7 8 9 10 11 12 13

Number of versions compared at a time BA ll_l.s.i')
12

Data Analysis Using N-Version Detection

0 Use N-version software voting to refine data
(and use manual sampling to check effectiveness)
« Eliminate non-exceptional tests:2% of data, method ~100% accurate
— e.g.,reading from read-only file
 ldentify Silent failures

0 Silent failures -- 6% to 17% additional robustness failure rate
 80% accurate when one OS reports “OK” while at least one other OS
reports an error code
— ~2% were bugs involving failure to write past end of file
— 28% of remainder due when POSIX permits either case
— 30% of remainder due to false alarm error codes (many in QNX)
— ~40% of remainder just out of scope of POSIX standard
 50% accurate when one OS reports “OK” but another OS dumps core
— Half of remainder due to order in which parameters are checked

— Half of remainder due to FreeBSD floating point library 0
Abort failures €.g.,fabs(DBL_MAX)) BAlllSﬁ
13

Estimated Failure Rates After Analysis

Normalized Failure Rate by Operating System

AIX
FreeBSD

HPUX 9.05]

HPUX 10.20
Irix 5.3
Irix 6.2

Linux

B Abort %
I Silent %
] Restart %
% Catastrophic

Lynx
NetBSD
OSF-13.2
OSF-14.0
QNX 4.22
QNX 4.24
SunOS 4.13
SunOS 5.5

Operating System Tested

0% 10% 20% 30% 40% 50%

Normalized Failure Rate (after analysis) -
14

Is Dumping Core The “Right Thing?”

0 AlIX has only 10% raw Abort failure rate -- on purpose
* Wish to avoid Abort failures in production code
» Ignores some NULL pointer reads by setting page 0 to read permission
 BUT -- 21% adjusted Abort failure rgt&2% Silent failure rate

0 FreeBSD has 20% raw Abort failure rate -- on purpose
* Intentionally aborts to flag bugs during development cycle
« 31% adjusted Abort failure ratBUT -- 17% adjusted Silent failure rate

0 Future challenges:
* Flag defects during development
— Boundschecker-like systems need a workload to find problems

* And still tolerate robustness problems once system is fielded
— Truly Portable exception handling for POSIX API

— Perhaps wrappers to manage complexity of exception handling
(e.g, Bell Labs XEPT work) BAlLTseﬁ
15

Next Step: Robustness Testing Service

0 Ballista Server 0 Ballista Client
e Selects tests e Links to user’'s SW under test
« Performs pattern Analysis « Can “teach” new data types to
« Generates “bug reports” server (definition language)

e Never sees user’'s code

BALLISTA Fr e | WWW & [T|USER'’S
SERVER i INTERFACE 1 RPCy |} BALLISTA ! |COMPUTER
i SPECIFICATION} (=i TEST |
i CAPTURE | i CLIENT |
{ RESULT |i TEST | MODULE
{ PATTERN ! SELECTION : UNDER
: DISCOVERY ; TEST
[TEST !
L REPORTING ;
{ |ARDENIN(|}
i \VRAPPER !
i CREATION !

..................

Wrap-up

0 “Lofty Goal:” harden legacy and COTS software components

* For mission-critical systems
Withoutextensive re-engineering to improve robustness

0 Robustness metric for Operating Systems
« Failure rates look high; true impact depends on operational profile
e Controversy as to whether Abort failures are OK
* Metrics help stimulate demand for improvement

0 Ballista robustness testing approach
« Scalable, portable, reproducible
» C library has higher failure rate, less diverse than OS system calls
« Currently available as web server; applying to several domains

0 Future: Windows NT, more system state, heavy system loads

BALLISTA

http://www.ices.cmu.edu/ballista

