Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

BALLISTA
Automated Robustness Testing of
Off-the-Shelf Software Components

Nathan Kropp ¢ Phil Koopman « Dan Siewiorek
Carnegie Mellon University
http://www.ices.cmu.edu/ballista

Institute
for Complex
Engineered
Systems

The Big Picture: Ballista Project

EXCEPTIONAL EXCEPTIONAL
INPUTS INPUTS
INPUTS WRAPPER
CRASH PREVENTS
SOFTWARE CRASH

COTS/

LEGACY LEGACY
SOFTWARE SOFTWARE
MODULE w\ MODULE Q&
BALLISTA: \» 4y
AUTOMATED N\ ARewe™
BEFORE ROBUSTNESS) -rpp

HARDENING

2

Automated Robustness Testing of Off-the-Shelf Software Components

Overview: Ballista Robustness Testing

& System Robustness

* Must be able to measure & test
before hardening is practical

o Automated Robustness Testing
* Operating Systems as atest case
* Need scalability
* Full-scale testing results
+ Conclusions

A Ballistais an ancient siege
weapon for hurling objects at
fortified defenses.

BALLISTA

System Robustness

A) Graceful behavior in the presence of exceptional conditions
» Unexpected operating conditions
» Activation of latent design defects
» Focus of the current research

B) Operation under extraordinary loads
» The other half of robustness -- but not covered in thiswork

o Current test case -- Operating Systems (POSI X API)
» Goal -- metric for comparative evaluation of OS robustness

* If amature OSisn't “bullet-proof” , what hope is there for
application software?

FTCS 1998

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

M easuring Robustness

& Softwaretesting heritage:
» “Dirty” test cases-- seeif correct error response is generated
— Can significantly out-number “clean” test cases(4:1or 5:1) b
expensivel

« Fault tolerance heritage: fault injection
* Insert an intentional defect and observe how gracefully the system
responds

— Potentially automated (potentially cheap)

» But, there are challenges
— Creating a non-intrusive injection mechanism
— Combinational explosion of potential interactions
— Repeatability / determinism
— Portahility to compare systems/ requirement for special hardware

Ballista Automated Testing Goals

+ No functional specification
» Generically applicable to modules having argument lists
* No source code, no reverse compilation, ... no “peeking”

+ Highly scalable
» Automated operation from test case generation to hardening
 Effort to create tests sub-linear with number of functions tested

+ Repeatableresults
* Robustness failures repeatable on demand
+ Single-function-call fault model
— Enables creation of very simple “bug report” code
— Makes it possible to create reasonably simple wrappers
— Only addresses a subset of problems (but, a big subset?)

Automated Robustness Testing of Off-the-Shelf Software Components

Ballista Softwar e Testing Heritage

* Oracle (a“gpecification™)

o SW Testing requires: Ballista uses:
e Tedt case “Bad” value combinations
e Module under test Module under Test

Watchdog timer/core dumps

SPECIFIED INPUT RESPONSE
BEHAVIOR SPACE SPACE
ROBUST
SHOULD VALID OPERATION
WORK INPUTS
UNDEFINED '\6?\'%%'&'5 REPRODUCIBLE
INVALID, =Sl e
SHOULD UNREPRODUCIBLE
INPUTS
RETURN = FAILURE
ERROR

Ballista Fault I njection Heritage
Name Method L evel Repeatability
FIAT Binary Image Changes Low High
FERRARI Software Traps Low High
Crashme Jump to Random Data Low Low
FTAPE Memory/Register Alteration Low Medium
FAUST Source Code Alteration Middle High
CMU- Random Calls and High Low

Crashme Random Parameters
Fuzz Middleware/Drivers High Medium
Ballista Specific Calls with High High

Specific Parameters
8

FTCS 1998

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

Ballista: “ High Level” + “ Repeatable’

o Exampletest:
read(bad_fd, NULL_buffer, neg_one_length);

+ High level fault injection
» Send exceptional values into a component set through the API

+ Repeatable: single function call for each test:
» System state initialized & cleaned up for each single-call test
» Combinations of valid and invalid parameterstried in turn

* A “simplistic” model, but it doesin fact work...
— Crashes several commercial operating systems

CRASH Severity Scale

L 4 Catastrophic
» Test computer crashes (both Benchmark and Starter abort or hang)

¢ Restart

» Benchmark process hangs, requiring restart
¢ Abort

» Benchmark process aborts (e.g., “core dump”)
& Silent

* No error code generated, when one should have been
(e.g., de-referencing null pointer produces no error)

¢ Hindering
* Incorrect error code generated

10

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

A Challenge: Scalability

+ Precursorsto Ballista achieved high level repeatability
» But, they didn’t scale without significant effort

+ Scaffolding

» Software testing in general requires scaffolding to be erected for
every function to be tested

» But, thismakesit expensive to test asignificant API

& Specification/or acle creation

» Software testing in general requires a specification for each
function

» But, specification (or even source code) may be unavailable

11

Scalable Test Generation -- Scaffolding

o Problem 1: Avoid per-function work for test scaffolding
« Scaffolding required to set appropriate state for each function
* |Insight: Fewer data types than functions

 Solution: Encapsulate scaffolding in data types alone -- no per-
function scaffolding.

+ Each test valueinstance has a constructor & destructor
» Constructor creates state required for a particular test value
— e.g., create afile, put datain it, open it for read, return that file handle
» Destructor cleans up any remaining state after the test
— e.g., close & delete afile that had been created by constructor
» Scaffolding based on data type regardless of function

12

Automated Robustness Testing of Off-the-Shelf Software Components

Ballista: Scalable Test Generation

APl nodul e _nane (int param file param

TESTING INTEGER STRING FILE HANDLE
OBJECTS TEST TEST TEST "
OBJECT OBJECT OBJECT
TEST 0 = NULL STRING | OPEN FOR READ
VALUES 1 LONG STRING OPEN FOR WRITE
TEST CASE
(atuple of

specific gyl e _name <zero, open_for wite>
test values) — - —

+ Only 20 datatypesfor 233 POSI X function calls

13

Scalable Test Generation -- An Oracle

e Problem 2: Avoid per-test work to determine pass vs. fail
» Understanding of functionality required for “ pass’ vs. “fail”
* Insight: Ignore functionality -- use “doesn’t crash; doesn’t hang”
» Solution: Test them all and let the watchdog timer/core dumps sort
them out.
— Test only Catastrophic - Restart - Abort failures (for now, anyway)

— Ignore pass/fail in terms of return code; just look for robustness
failures

¢ Example:
» read() succeedsbutwrite() (hopefully) returnsan error
when accessing aread-only file
» But we can ignore any return codes and just look for an Abort or
Restart in either case

14

FTCS 1998

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

So, Did It Find Anything?

Digital Unix 4.0 Robustness Failures

100%-
90%-
80%-
70%-

60%-

50%-

40%-

30%-

20%-

10%- ‘

0%~ | | | O tathuni) v |

Percent of Tests Failing, per functior

S 5 S
o8 & & FosU%SE BT TS
S & & TS §88 &
& &5 > S
© 5

233 POSIX FUNCTIONS (alphabetical by function name)
15

What We Measured

¢ 233 POSIX Calls (including real-time extensions)
» That take at least one parameter
» That don't intentionally hang or generate signals
* 92,658 tests per OS if al 233 functions are supported

+ “Single-number” summary metric
* Failure rate computed for each function and then averaged

— Should weight by usage frequency for any particular application
environment

* Givesa portable comparative metric for robustness(!)

16

Automated Robustness Testing of Off-the-Shelf Software Components FTCS 1998

Was |t Portable?

Ballista Robustness Tests -- 233 POSIX Function Calls

I Abort Failures
[Restart Failure

AlX 4.1
DUNIX 4.0
FreeBSD 2.2.5

HP-UX 10.20 1 Catastrophic Failure Set
Irix 6.2 1 Catastrophic Failure Set
Linux 2.0.18

LynxOS 2.4.0
NetBSD 1.3
QNX 4.24
SunOS 5.5

1 Catastrophic Failure Set

0% 5% 10% 15% 20% 25%
Normalized Failure Rate

17

Was It Repeatable + Scalable?

& http://www.ices.cmu.edu/ballista -- Digital Unix demo
» Generates single-test “bug report” programs
* Reproduces results by executing a program from the command line

¢ Yes, it'sscalable

» Generates ~100,000 test cases for 233 functions

» ~2000 linesof “easy” C codeto test 20 datatypes
— (plus Ballista test harness)

* A reasonable amount of system state is tested without per-test

scaffolding

— e.g., files, memory arrays, data structures
— The encapsulation of system state within test cases really worked

» Work on asimulation backplane API for looks promising

18

Automated Robustness Testing of Off-the-Shelf Software Components

Conclusions

+ Ballista testing quantifies one aspect of robustness
 Scalable -- base scaffolding on data types, not functions
* Repeatable -- single-call approach is simple, but effective
» Portable -- use API for fault injection

¢ But, itisonly astart
» Testsone aspect of system robustness

 Currently uses only heuristic tests (want broader coveragein
future)

19

BALLISTR

Anybody can build a system that works when it works,
but it's how it works when it doesn't work that counts.

FTCS 1998

10

