
AUTOTESTCON 99, 30 August to 2 September 1999, San Antonio, Texas.

A DIMENSIONALITY MODEL APPROACH
TO TESTING AND IMPROVING SOFTWARE ROBUSTNESS

Jiantao Pan
Electrical and Computer

Engineering Department &
Institute for Complex
Engineered Systems

Carnegie Mellon University,
Pittsburgh, PA 15213

412-268-4264
jpan@cmu.edu

Philip Koopman
Electrical and Computer

Engineering Department &
Institute for Complex
Engineered Systems

Carnegie Mellon University,
Pittsburgh, PA 15213

412-268-5225
koopman@cmu.edu

Daniel Siewiorek
Computer Science

Department & Institute
for Complex

Engineered Systems
Carnegie Mellon University,

Pittsburgh, PA 15213
412-268-5228

dps@cs.cmu.edu

Abstract - Software robustness problems may
hinder the use of Commercial Off-The-Shelf
(COTS) software modules and legacy software
modules in mission-critical and safety-critical
applications. This research focuses on
hardening COTS and legacy software modules
against robustness failures triggered by
exceptional inputs. An automated approach is
presented that is capable of identifying the
triggers of the robustness failures. A fault
model – the Dimensionality Model – is used to
guide analysis. An experiment is described
which demonstrates the feasibility of
automating the process of analyzing failure
causes and hardening against certain data
types in POSIX function calls, for example,
NULL pointer values and scalar data types such
as INT and FLOAT. The final goal of this
research is to provide users a tool to harden
COTS and legacy software modules
automatically.

I. INTRODUCTION

The robustness of a software component is a
measure of how it functions in the presence of
exceptional inputs or stressful environmental
conditions [10]. Software robustness is gaining
more and more significance among application
developers. The reasons are three-fold:

First, our lives are becoming more
“computerized”. Traditional analog devices are
being replaced by their cheaper digital
counterparts. The use of micro-controllers is

growing in automobiles, airplanes, weapons,
medical devices, consumer products, etc. New
services based on computerized facilities are
also emerging. Hence, more and more
aspects of our life are dependent on software.

Second, in order to cut development cost and
time, application developers are being
pressured to use Commercial Off-The-Shelf
(COTS) software modules or legacy software
components to assemble applications [1][2].
Often, COTS software components are
optimized for cost or performance, and have
not been specifically designed to operate in
mission-critical or application-critical systems.
COTS components may function correctly
under normal conditions, but they may crash,
hang or exhibit other robustness failures when
exceptional or unspecified conditions occur.

Third, robustness may not have been a design
priority in COTS software. With the shortening
of software product cycles and shrinking of
profit margins, development cost is becoming
a dominant concern along with time-to-market.
High performance and new functionality, as
opposed to robustness, are often given first
priority.

A particular source of robustness problems is
exceptional inputs. As many as two-thirds of
system crashes might be caused by exception-
handling failures. Decades ago, the Apollo 11
Lunar Lander computer rebooted three times

due to exceptional operating conditions, nearly
causing an aborted mission. More recently, the
maiden flight of the Ariane 5 rocket failed, with
an estimated loss of $500 million, due to an
improperly handled exception in the software
of the dual-redundant on-board control
computer [3].

There is every indication that exception
handling will continue to be a problem in
critical applications, and may well become a
serious problem in everyday computing as
well. To make matters worse, the trend to
using COTS software may mean that a lack of
source code or detailed specifications will
make improving robustness of systems even
more challenging than it has been in the past
with custom-written software.

The goal of the Ballista project
(http://www.ices.cmu.edu/ballista) is automatic
hardening of COTS and legacy software
modules against exceptional inputs that cause
robustness problems. There are three major
steps toward achieving this goal: automated
robustness testing, automated failure analysis,
and automated protection code generation.

Automated robustness testing has already
been accomplished [2][9]. Additionally, a
Dimensionality Model [11] has shown that
more than 80% of the robustness failures
found in the 15 POSIX compliant operating
systems we have tested are caused an
exceptional value on only a single parameter.

In this paper we introduce an analysis method
guided by the Dimensionality Model that can
pinpoint the triggers for robustness failures
automatically. Additionally, we show that
automated protection code generation is
feasible for at least some exceptional
parameter values. Experiments have proven
successful in analyzing and hardening against
NULL pointer values and exceptional scalar
values for integers and floating-point numbers.

II. BACKGROUND

Historically, limited effort has been devoted to
understanding software robustness. Research
in software robustness focuses on testing
methods and fault-injection techniques. Both
approaches are combined in the work
presented here.

Black-box testing [4] assumes only inputs and
outputs are accessible for the unit under test.
There is no need to know the code structure
and execution paths. In addition to tests for
validating the module’s functional correctness,
a significant portion are “dirty tests”, which
consist of combinations of valid and invalid
inputs, in order to stimulate abnormal
behaviors in the software module.

The AETG system [6] uses a combinatorial
testing method. Based on programmer
experience that faults caused by interactions
of parameter values are relatively rare, AETG
uses the minimum number of test cases to
cover test for parameters singly, in pairs, and
in small tuples.

Fault-injection is another way to elicit software
robustness problems. Faults and exceptional
values are injected into the module under test.
A more robust software module can withstand
more and longer “attacks” before breaking
down or gracefully degrading. Because in most
cases the testing domain is infinite, randomly
generated values are used to probe the
module. Examples include CRASHME [14],
CMU-Crashme [13], and Fuzz [7]. The
randomness of these approaches and their
dependence on concurrent execution of many
tests makes any robustness failures that are
found difficult to reproduce and isolate.

The Xept [8] project at Bell Labs has
developed an instrumentation tool to intercept
library function calls to link in error detection
and error recovery code. It provides a
language to write specifications for interception
and handling code for functions, and an object-
code instrumentation tool, called Xmangler, to
link application code with error detection and
error recovery code. Although not focused on
automated code generation technique, Xept
provides a convenient framework and proves
that a software wrapper can be used to
intercept library function calls in object code.

III. TOWARD AUTOMATIC
ROBUSTNESS HARDENING

Our goal is to automate the process of testing
and hardening COTS and legacy software
modules against robustness failures triggered
by exceptional inputs. The process works as
follows:

1. Test the software module using normal
and exceptional inputs.

2. Analyze the test results; identify the
corresponding parameter(s), and
exceptional value(s) that trigger
robustness failures.

3. Generate protection wrapper code to
guard against the exceptional values that
caused robustness failures.

4. Link the protection wrapper code to the
module being hardened.

While Bell Labs has developed methods [8] for
the linking stage, technological advances are
required in the first three steps. The second
step is important to bridge the gap between
the testing results and protection code
generation. Once the exceptional parameters
have been identified, protection code can be
generated to check for these parameter
values.

Automated Robustness Testing

A full-scale, web-based client-server testing
engine [9] has been developed for automated
robustness testing at the API level. It has the
ability to test 233 POSIX system calls specified
in standard POSIX.1b. [5] Test cases are
predefined in the template file. User programs
can also be tested, provided that the
parameter data types are recognized by the
server. Users can define their own data types
and test cases to expand the testing capability
by writing a template for each new data type.
Test instances are generated using a

combinatorial method. The CRASH scale [2] is
used to measure the severity of the robustness
failures. The testing method and the CRASH
scale metric are described in the remainder of
this section.

 The Combinatorial Testing Method

A combinatorial testing methodology is used to
generate tests. As an example, testing of the
POSIX function call read is shown in Figure 1.
The system call read accepts three
parameters, fd* file_des, char
*buffer, and int size. The testing
harness maintains a test data template file
containing all the test cases defined for each
data type. During testing, the harness will
generate all possible combinations of the
parameters from the template file. In this
example, there are a total of 3120 possible
combinations of the test values for the three
parameters, so 3120 actual tests can be
executed to exercise this function. A single
combination is tested at a time, with necessary
setup and tear down of the environment
performed individually for each test.

To achieve scalability, the test cases are
defined per data type rather than for each
function. New functions can be easily tested if
the data types have already been defined. To
test all 233 POSIX calls, only 20 data types are
needed.

The CRASH Scale Metric

In general we categorize the test responses
into passes and fails. When an appropriate
error code is returned, the test case is

considered a “Pass”. Failures are
categorized by a scale called
“CRASH”, which stands for
Catastrophic, Restart, Abort, Silent
and Hindering. Catastrophic failures
refer to failures that can cause the
whole system to stop functioning,
requiring rebooting the machine.
Restart failures mean that the process
hangs, requiring intervention such as
killing the test task. Restart failures
are detected by a watchdog timer
process. Abort failures refer to the
abnormal termination of the tester
process (i.e., core dumps in UNIX
operating systems). Silent failures are

Test instances: read(-1, very_large_buf, 4K)
…

int read(file_descriptor, buffer, bytes_to_read)

P
ar

am
et

er
 v

al
u

e
d

at
a

b
as

e

Buffer pointer
(15 cases)

1
4K
freed buffer
NULL
very large buffer
...

valid file, closed
valid file, read only
valid file, read-write
-1
empty file
...

File descriptor
(13 cases)

0
1
4K
-1
-64K
...

Integer
(16 cases)

Figure 1. Example of parametric test generation for
POSIX function read

false successes, which means that a success
is returned when actually an error code should
have been. Hindering failures mean returning
incorrect error codes. In this study Restart and
Abort failures are the initial targets.

Automated Failure Analysis

We seek an automated approach for analyzing
the patterns of test responses to determine
which parameter values cause failures. Ideally,
the analyzer algorithm should also provide
guidance to the testing engine. 1.1 million data
points gathered from Ballista robustness
testing on 15 POSIX API implementations1 in
UNIX operating systems have been analyzed.
Based on this analysis, a Dimensionality Model
method [11] has been developed to guide the
code generation process. The remainder of
the section describes the Failure Analysis
process.

The Dimensionality Model [11]

The idea of dimensionality is illustrated by two
definitions.

• Parameter dimensionality: Consider a
software module f, taking a list of
arguments (x1, x2, ...). The
parameter dimensionality is defined as the
number of arguments taken by the
software module.

For example, the POSIX function
read(file_des, buffer,
bytes_to_read) takes three parameters, so
its parameter dimensionality is three.

There is also a special case that a function
accepts no parameters at all, which is beyond
the scope of this model.

• Robustness failure dimensionality: Given a
particular set of parameter values that
cause a robustness failure, the number of
the parameters that actually contributes to
the failure is defined as the robustness
failure dimensionality.

1 Includes QNX 4.22, QNX 4.24, FreeBSD 2.2.5,
NetBSD 1.3, SunOS 4.1.3, Digital Unix 3.2, Digital
Unix 4.0, SunOS 5.5, IRIX 5.3, HP-UX B.10.20,
IRIX 6.2, LINUX 2.0.18, LynxOS 2.4.0, HP-UX
A.09.05, AIX 4.1.

For example, suppose that f(x1, x2, x3)
fails when x1=NULL, regardless of the values
of x2 and x3 (both normal and exceptional).
In this case the NULL value of parameter x1 is
the only contributing factor to the failures. So
all the failures where x1=NULL would be 1-
dimensional failures.

It is obvious that the failure dimensionality can
not exceed the parameter dimensionality. In
the example of read(file_des, buffer,
bytes_to_read), an invalid file_des may
trigger 1-dimensional failures, if the function
does not check to prevent invalid file_des
values. It is also possible that if
bytes_to_read is greater than buffer
(length), we can expect 2-dimensional
failures, since both of the parameter values
contribute to the failures. Note that it is
possible for a specific failure to belong to both
a high- and low-dimensionality failure set. In
such cases, we can count that failure as
having the lowest possible dimensionality. In
other words, for our measurements the lower
dimensionality characteristic prevails.

Experimental results in POSIX API testing
show that 1-dimensional failures are the most
common failures encountered, accounting for
more than 80% of the overall failure rate. This
means that if we only choose to protect 1-
dimensional failures, we can lower the overall
system robustness testing failure rate by 80%.

Automatic Identification of Fault
Dimensionality

Robustness failure dimensionality indicates the
number of concurrent triggers required to
activate a particular robustness failure. If we
could automate the process of determining
robustness failure dimensionality, we would be
able to know the exceptional parameter values
that are responsible for observed failures. This
is an important step toward automatic
hardening.

While intuitively parameter dimensionality is
the number of parameters accepted by the
function, robustness failure dimensionality is
not immediately obvious for functions with
parameter dimensionality higher than one.
However, the dimensionality can be revealed
by the pattern of the robustness responses
observed during testing. As an example,

Figure 2 shows the robustness response
pattern of the function fprintf(FP, STR) in
HP-UX B.10.20. This function prints the string
pointed to by STR to the file pointed to by FP.
Each number along the axes represents an
index to an actual test value. For example,
number 9 on axis FP represents test case
NEG_VALUE (an integer value of negative
one). A circle means the test fails at the
combination of the parameters at the point,
exhibiting a robustness failure. A dot means
the test passes.

The test responses form patterns. In the
column FP(index)=9, all the tests fail
regardless of the value of STR. We can not be
100% sure that all this column of robustness
failures are 1-dimensional, caused by an
exceptional value of FP=NEG_VALUE, because
we did not test all possible values that STR can
have (and this is not possible). However, we
can still conclude that the failures in the
column of FP=NEG_VALUE is 1-dimensional,
since it is unlikely that all eight values
coincidentally would give the same behavior,
given that STR has both good and exceptional
values. Furthermore, we know that if we write
protection code to check this single
exceptional input of FP=NEG_VALUE, we can
effectively guard against this column of
exceptional values, including the other infinite
possible STR values not covered in the testing
space. The other four points at (2,5), (2,6),
(5,5), (5,6) are 2-dimensional failures. To
protect against them, both parameters
need to be checked. In general, for n-
dimensional failures, n parameters
must be checked to protect against
them.

More generally, 1-dimensional failures
will form a line in a 2-D graph, as shown
in Figure 2. They will form a plane in a
3-D graph. 2-dimensional failures will
form single or clustered circles in a 2-D
graph, and lines in a 3-D graph.

This process of identifying
dimensionality information from
combinatorial testing response patterns
can be effectively automated. If test
cases are properly defined, the
Analyzer does not need any specific
knowledge of the semantic information
of the function, the function name under

test, data types or the test case values.

Automated Protection Code
Generation

For integer, floating-point data types and NULL
pointers, value checking is sufficient to detect
exceptional values. Therefore, the process of
protection code generation for these data
types are is straightforward. After the
dimensionality information is revealed and the
exceptional values found, value comparison
statements against these exceptional values
are generated and plugged into a skeleton
wrapper program. Any call to the target
function to be protected is redirected to the
wrapper. This call redirection can be achieved
using a tool such as Xmangler [8].

IV. EXPERIMENTAL RESULTS

In the experiment, we have implemented 1-
dimensional failure hardening for integer,
floating-point, and NULL pointer data values.

We selected NULL pointer in our experimental
study on an intuitive basis. NULL pointers are
one of the most commonly encountered of
exceptional inputs and are easily overlooked.
While processing the data gathered in POSIX
API testing, the extraordinarily high failure rate
of NULL drew immediate attention. We
estimate that the overall test result will be 10%

)LJXUH����5REXVWQHVV�UHVSRQVH�IRU�WKH�WZR�SDUDPHWHU�

IXQFWLRQ�ISULQWI�IURP�+3�8;

better if the POSIX implementations add NULL
pointer checking. To be specific, 82.5% of
tests involving a NULL file pointers and 46.0%
of tests involving NULL buffer pointers cause
robustness problems.

As an example of how easily NULL pointers
can arise, Figure 3(a) shows a user program
module myread.c. It opens a file and tries to
read a character from the file. Since the
program does not check for the existence of
the file and necessary access permissions,
there are potential robustness problems if the
access rights are violated. For example, if the
file does not exist, the user will see a core
dump after getting the first output message, as

shown in Figure 3(b).

The failure depicted in Figure
3 happens because the
validity of the file pointer is not
properly checked by POSIX
function fgetc(). To
protect the program against
this failure, function fgetc()
is tested by the Ballista
robustness testing suite. The
robustness failures related to
file pointer are found in the
test result file, shown in Table
1. In Table 1, the first column
shows the testing results,
considering only Abort failures
(core dumps). The second
column shows the return
value if the test passes, or –1
if the test fails. The third
column shows the

combinations of the parameter values of each
test case. In this example, only one parameter
is accepted, which is fpxx. fpxx is the
equivalent name for data type file pointer, or
FILE *. The test value of fpxx is composed of
three orthogonal attributes called “dials”
(because one can imagine spinning various
dials to create combinations of such
attributes): Existence, Access mode, and
Access permissions.

We then perform a dimensionality analysis on
the failure data file. It is obvious that all the
three failures are 1-dimensional, caused by
invalid parameter value fpxx_NOTEXIST. In

Result Return Parameters

Pass 9 fpxx_EXIST fpxx_APPEND fpxx_NOPERMISSIONS

Pass 9 fpxx_CLOSED fpxx_READ fpxx_NOPERMISSIONS

Abort -1 fpxx_NOTEXIST fpxx_WRITE fpxx_NOPERMISSIONS

Pass 0 fpxx_EXIST fpxx_READ fpxx_NOPERMISSIONS

Pass 9 fpxx_CLOSED fpxx_APPEND fpxx_NOPERMISSIONS

Pass 9 fpxx_CLOSED fpxx_WRITE fpxx_NOPERMISSIONS

Abort -1 fpxx_NOTEXIST fpxx_APPEND fpxx_NOPERMISSIONS

Pass 9 fpxx_EXIST fpxx_WRITE fpxx_NOPERMISSIONS

Abort -1 fpxx_NOTEXIST fpxx_READ fpxx_NOPERMISSIONS

Table 1. Test result file for fgetc()

/* Here is a sample user c program that hidden NULL
value can cause robustness failures.*/
#include <stdio.h>

void main(){
 FILE *fp; /* file pointer*/
 char buf;
 fp = fopen ("datafile", "r");
 printf("Reading data file\n\n");
 buf= fgetc(fp);
}

�D��

�E��7KH�RXWSXW�RI�WKH�SURJUDP�ZKHQ�GDWDILOH�GRHV�QRW�H[LVW

)LJXUH�����([DPSOH�XVHU�SURJUDP�ZLWK

$�W\SLFDO�XVHU�SURJUDP�

�KLGGHQ�UREXVWQHVV�IDLOXUHV

Reading data file

Segmentation fault (core dumped)

the Ballista test suite, this is the denotation for
a non-existent file, equivalent to a NULL file
pointer. The analyzer comes to this conclusion
by sorting the testing results by parameter
value fpxx_NOTEXIST and observing that a

NULL value always results in a
test failure.

The actual code segment in the
template file that generates the
test cases for fpxx is shown in
Figure 4. For the case of
fpxx_NOTEXIST, the value is
equivalent to a NULL file pointer.
Based on this knowledge, we can
generate protection code
guarding against this value. In
this case, a checking statement
will be sufficient to intercept the
NULL file pointer causing the
failure. The generated header file
for fgetc is shown in Figure 5.

The call h_fgetc() is the
hardened version of fgetc()
with embedded NULL file pointer
checking. Using the Xmangler
tool, we will be able to redirect
call instances from fgetc()to

h_fgetc() without user intervention. In this
experiment we do not yet have the Xmangler
tool [8] available, so we manually change all
instances of fgetc() to h_fgetc() in the

/*Common Include Files*/
......
/*User defined Include Files*/
......

void Check1Dparam1(FILE* param1){
......

FILE* _theVariable;
char fileMode;

 int fd;
......

/*NOTEXIST*/
_theVariable=NULL;
if(param1 == _theVariable){

puts("Dangerous 1-Dimensional parameter value detected\n");
exit(DEFAULT_RVAL);

}
}/*Check1Dparam1*/

int h_fgetc(FILE* param1){
Check1Dparam1(param1);
return fgetc(param1);

}
#endif /*__HARDENED_FGETC__*/

Figure 5. Generated protection file for fgetc()

name FILE* fpxx;

......

 READ{
 fileMode = ’r’;
 }
 WRITE{
 fileMode = ’w’;
 }
 APPEND{
 fileMode = ’a’;
 }
 EXIST, CLOSED{
 _theVariable = fopen(filename,&fileMode);
 }
 NOTEXIST{
 _theVariable=NULL;
 }
 PERMISSIONS{
 chmod(filename,_PERMISSIONS_INT);
 }
......

Figure 4. Template file for file pointer

user source file to finish the last linking phase.

To verify the effectiveness of the generated
protection file for fgetc(), we first tested it
again using the Ballista testing suite. As
expected, the above three robustness failures
are replaced by successes with error return
code 99. Second, we compile this header file
together with the user function shown in Figure
3(a). As shown in Figure 6, the exceptional
inputs are captured. The function returns with
a warning message.

V. FUTURE WORK

Although the experimental results to date are
successful and promising, the following
aspects should be considered to make the
process more practical for hardening generic
user software.

• Scale the hardening capability to
encompass more data types.

Simple data types are probably easier to
protect than complex parameters such as data
structures. The challenge is to protect these
complex data types while avoiding false
alarms.

• Implement random sampling to increase
dimensionality analysis confidence.

Because the Failure Analyzer bases its
conclusion purely on the test response pattern,
validation testing by random sampling before
reaching a conclusion will increase prediction
accuracy and avoid at least some false
alarms.

• Adopt the Xmangler tool introduced in [8].

Using this tool, we will be able to protect COTS
modules at the object code level. No source
code is required to harden a module.

• Add on user-defined hooks to direct
exceptional input value handling to user
functions.

In the experiment, the hardened version of
fgetc() simply turns Abort failures into a
default error return code. To achieve more
flexibility, we can provide more options before
exiting. For example, for resource related
problems, retrying the task sometimes can fix
the problem. Process migration can keep a
long-running task from aborting when facing
resource contention. Garbage collection or
disk de-fragmentation can also be launched at
some point if a problem is related to memory
or disk resources. For the parameter values
that are not in the testing database, or are

ambiguous, checkpoint-rollback procedure can
be called to save and restore system state.

• Optimize protection code efficiency to
reduce run-time cost.

VI. CONCLUSIONS

The objective of this research is to explore the
possibility of generating robustness failure
protection code automatically. We have been
successful in achieving limited results for
integers, floating point numbers, and NULL
pointer values. This proves that automatic
protection code generation for COTS software
is feasible. It remains to be seen to what
extent it can be generalized to other data
types.

A template-based protection code generation
methodology directed by the Dimensionality
Model is discussed in detail. Protection code
generation includes four phases: detection,
diagnosis, protection code generation and
linking. This paper puts emphasis on the
automation of diagnosis and protection code
generation phases. The Dimensionality Model
is used in the diagnosis phase to pinpoint the
trigger for a failure. The result is utilized by the
code generator to effectively generate
protection code.

The cost and development time of software
could be significantly reduced if there were a
widely used component industry. [1] Automatic

Reading data file

Dangerous 1-Dimensional parameter value detected

Figure 6. Output of the user program after hardening

robustness hardening might enable more
people to use commercial software modules
for mission critical applications and safety
critical applications, and to reuse legacy
software modules for new and existing
applications. Although there are many factors
that must be addressed in using a COTS
software component approach, automated
robustness hardening may be one technique
that helps developers reduce design costs and
improve time to market while producing a
robust system.

ACKNOWLEDGEMENT

This research was sponsored by DARPA ITO
under contract DABT 63-96-C-0064.

REFERENCES

[1] Voas, J., Certifying Off-the-Shelf Software
Components, IEEE Computers, June 1998,
page 53-59

[2] Kropp, N., Koopman, P. & Siewiorek, D.,
Automated Robustness Testing of Off-the-
Shelf Software Components, FTCS,
Munich, Germany, June 23-25, 1998.

[3] Lions, J., Ariane 5 Flight 501 Failure,
European Space Agency, Paris, July 19,
1996.
http://www.esrin.esa.it/htdocs/tidc/Press/Pr
ess96/ariane5rep.html, Accessed May 1,
1999.

[4] Beizer, B., Black Box Testing, New York:
Wiley, 1995.

[5] IEEE Standard for Information
Technology—Portable Operating System
Interface (POSIX)—Part 1: System
Application Program Interface (API)—
Amendment 1: Realtime Extension [C
Language] (IEEE Std 1003.1b-1993), IEEE
Computer Society, 1994.

[6] Cohen, D., S. Dalal, M. Fredman & G.
Patton, The AETG System: an approach to
testing based on combinatorial design,
IEEE Trans. on Software Engr., 23(7), July
1997, pp. 437-444.

[7] Miller, B., et al., Fuzz Revisited: A Re-
examination of the Reliability of UNIX

Utilities and Services, Computer Science
Technical Report 1268, Univ. of Wisconsin-
Madison, 1995.

[8] Vo, K. P., Wang, Y. M., Chung, P. E., &
Huang, Y., Xept: A Software
Instrumentation Method for Exception
Handling, Proc. Int. Symp. on Software
Reliability Engineering (ISSRE), Nov. 1997.

[9] DeVale, J., Koopman, P., Guterndorf, D.,
The Ballista Software Robustness Testing
Service, to appear in Testing Computer
Software Conference (TCS) 1999, June
1999.

[10] IEEE Standard Glossary of Software
Engineering Terminology (IEEE Std 610.12-
1990), IEEE Computer Soc., Dec. 10, 1990.

[11] Pan, Jiantao. The Dimensionality of
Failures – A Fault Model for
Characterizing Software Robustness. To
appear in Proceedings of the 29th

International Symposium on Fault Tolerant
Computing (FTCS-29), Madison, WI, June
1999.

[12] Feibus, Mike. Intel’s new orange bug-fix
strategy. PC WEEK Online, May 04, 1999.
http://www.zdnet.com.au/pcweek/opinion/0
526/26feibus.html accessed May 1, 1999.

[13] Mukherjee, A., Siewiorek, D., “Measuring
Software Dependability by Robustness
Benchmarking,” CMU Technical Report
CS-94-148, 1994

[14] Carrette, G., “CRASHME: Random input
testing”, (no formal publication available)
http://people.delphi.com/gjc/crashme.html
accessed May 12, 1998.

