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Abstract: System resource management for high-assurance applications such as the command and
control of a battle group is a complex problem. These applications often require guaranteed
computing services that must satisfy both hard and soft deadlines. Over time, their resource demands
can also vary significantly with bursts of high activity amidst periods of inactivity. A traditional
solution has been to dedicate resources to critical application tasks and to share resources among
non-critical tasks. With the increasing complexity of high-assurance applications and the need to
reduce system costs, dedicating resources is not a satisfactory solution. The Amaranth Project at
Carnegie Mellon is researching and developing a framework for allocating shared resources to
support multiple quality of service (QoS) dimensions and to provide probabilistic assurances of
service. This paper is an overview of the Amaranth framework for policy-based QoS management,
the current results from applying the framework, and the future research directions for the Amaranth
project.

Keywords: quality of service (QoS) management, resource management, probabilistic assurances of service,
system management for high-assurance computing.

1. Introduction
High-assurance applications such as the command and control of a naval battle group
require the timely allocation of resources to enable critical computing on demand. The
allocation of resources to support the various mission activities of a battle group is chal-
lenging because the necessary processing and data communications of multiple surface
ships and aircraft are sporadic with periods of inactivity and bursts of activity. Tradition-
ally, system designers dedicate resources to the highly critical tasks and share other
resources among less critical tasks. This solution satisfies high-assurance demands at the
cost of potentially inefficient use of resources, a situation that can result in unnecessarily
high space and maintenance requirements. In addition, the integration of secure data and
communications among tasks operating on heterogeneous, distributed platforms can be
complex. Inefficient use of resources multiplies the problem.

A more cost efficient solution would be to share a set of heterogeneous resources
among the various distributed application and system tasks. Using standardized
communication protocols would simplify the design of tasks that can reliably
communicate across distributed computing nodes. In particular, it is necessary to
multiplex the network bandwidth among soft versus hard real-time tasks and across
bursty versus steady-stream communications. System designers seek to configure a set of
resources that have the potential to maximize the utility of application tasks while
minimizing system costs.
*The Amaranth Project at Carnegie Mellon is supported by the Quorum Program of the Defense Advanced Re-
search Projects Agency (DARPA) under agreement number N66001-97-C-8527. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA or the U.S. Government.
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Likewise, application designers want critical tasks to operate with high assurance and
less critical tasks to execute at performance levels that match the needs of the intended
users. User preferences can vary across QoS features such as timeliness, dependability,
security, and application-specific performance. What is needed is an approach for
managing resources across multiple quality of service (QoS) dimensions in a way that
maximizes their value across user requests while providing some known level of
guaranteed service in the event of high resource demands or resource failure.

The Amaranth solution is a user-centric framework for managing resource allocations
along multiple QoS dimensions and viewpoints. The paper overviews the Amaranth
framework as well as the analytical techniques to support policy-based QoS management
with probabilistic guarantees. The remainder of the paper is organized as follows.

• Section 2 characterizes the target application as well as the representative
application used to validate the Amaranth approach to QoS management.

• Section 3 contains a discussion of related research.
• Section 4 defines the Amaranth terminology and functionality.
• Section 5 details the components of the Amaranth QoS management system

architecture.
• Section 6 describes a language, called Q, for specifying Amaranth QoS parameters.
• Section 7 discusses utility-based QoS management.
• Section 8 describes QoS contracts and probabilistic guarantees.
• Section 9 presents a reserve capacity approach to admission control.
• Section 10 draws conclusions about the current research results.
• Section 11 suggests future research for the Amaranth project.

2. Target Application
The goal of the Amaranth research is to develop capabilities to support the underlying
distributed communication and computation infrastructure that will become increasingly
important in future commercial and military systems. The military units of the twenty-
first century will be radically different from their predecessors. Their computer systems
will support various types of computing from parallel processing embedded in the
twenty-first century surface-combatant (SC-21) computing platform to distributed
processing embedded in tanks such as the M2 A1 Bradley which is equipped with a
missile subsystem. These systems will run a collection of software agents embedded in a
communication and computing infrastructure that provides cognitive support for the
interconnection of soldiers, sailors, and commanders through the “tactical internet” of the
digital battlefield. As another example, the “soldier phone” applies wireless and
multimedia communications to the accomplishment of battlefield objectives.1

 Fig. 1.  Battle group communication among ships with missile tracking and interception.
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As shown in Fig. 1, a typical configuration would be a group of surface ships with a
computing environment that consists of a set of heterogeneous computing nodes. These
nodes execute software to support mission-critical functions such as planning,
communication, and missile tracking and deployment, as well as “housekeeping”
operations such as the management of inventory and personnel records. The bandwidth
for a ship’s local network would be high, while the bandwidth among ships would be
limited.

The mix of tasks utilizing bandwidth would consist of both multimedia data streams
and short, intermittent weapons control messages. Both types of traffic may experience
long periods of relative inactivity (e.g. minutes to hours) with short, intense periods of
high activity (e.g. milliseconds or seconds). Though the bandwidth for the active periods
of the multimedia stream would most likely be greater than that for the bursty weapons
control communication, the control messages would be more critical to the mission of the
battle group and also less resilient to degradations in QoS. Many multimedia applications
can perform effectively with reduced rates of frame update and can employ compression
techniques to minimize bandwidth, whereas weapon control messages are time-critical.

System designers cannot afford to size their systems for the worst case expected appli-
cation mix and behavior to achieve maximum QoS for all task requests. Since many
applications can function usefully at a degraded but acceptable QoS for short periods of
time, system designers can reduce the system size accordingly. The “right” size system
can service critical tasks during periods of peak activity while providing less critical tasks
with minimal periods of degraded service during normal operations. The system resource
management policies and mechanisms should be able to adapt to variation in workload
due to sudden bursts of new jobs such as incoming mission-critical alarms. They should
also be able to provide a high degree of assurance that critical tasks will function properly
despite fluctuations in equipment availability due to maintenance downtime and battle
damage.

The Amaranth framework is a resource management strategy to enable system
designers to scale their systems to minimize cost and to maximize the utility of the
system to the anticipated set of users. Replication of the exact application mix of the
battle group scenario described in the previous paragraphs is not feasible, so
representative workloads simulate the target application mix in our testbed. The
representative application mix consists of a video conferencing application with periods
of varying activity along with workload generators to simulate the burstiness of critical
missile activity. Though our approach for maximizing utility scales to multiple resources,
our current focus is on managing the allocation of network bandwidth. Current policies
implemented within the Amaranth framework enable baseline admission of all task
requests with 100% assurance. With proper sizing of the total available network
bandwidth, all tasks of the target scenario are admissible with a base level of service.
Some tasks may receive higher levels of service depending on the system load and the
QoS policy active within the Amaranth system.

3. Related Research
Earlier work focused on managing QoS across the layers of the network protocol and on
defining the meaning of QoS from source to destination nodes (end-to-end QoS). The
advent of multimedia workstations and high-speed networks enabled a new class of appli-
cations demanding continuous network bandwidth to support streams of data. Critical dis-
tributed control applications requiring reliability and guaranteed bounds on message



International Journal of Reliability, Quality and Safety Engineering
©World Scientific Publishing Company

4

latency, along with multimedia, demonstrated the inadequacy of best-effort communica-
tions and thereby spurred research in the area of QoS management of network resources.
Campbell et al. formally defined the concepts of flow and flow management. They
proposed a QoS-A architecture that is a layered architecture of services and mechanisms
for QoS management and control of continuous media flow in multi-service networks.2

They argued that meeting QoS guarantees in distributed multimedia systems is
fundamentally an application-to-application (end-to-end) issue. The architectures that
they reviewed focus on QoS in the context of individual layers of a network protocol.3

QoS management currently resides primarily in the policies and mechanisms to route
packets of data. Noteworthy is Nahrstedt and Smith’s QoS Broker model for specifying
application requirements and translating these requirements into negotiated resource
allocations. The QoS Broker acts as an intermediary between application processes and
the OS/ network protocol subsystem to communicate the application needs to the lower
level services. The broker orchestrates network resources at the source and destination
nodes by coordinating resource management across the communication layer boundaries
within an end-point node.4

Researchers in the EPIQ project at the University of Illinois at Urbana Champaign de-
signed an open run-time environment for hard real-time applications. The environment
consists of a distributed QoS management architecture and middleware that
accommodates and manages different dimensions and measures of QoS. The middleware
supports the specification, maintenance, and adaptation of end-to-end QoS. This work
integrates real-time scheduling algorithms within a QoS management framework.5, 6

Abdelzaher and Shin designed a middleware layer, called qContracts, which is a pro-
gramming abstraction for building performance-assured services. Programming with
qContracts allows creating, manipulating and terminating QoS contracts with clients or
client categories to achieve performance guarantees. The middleware enforces the
contracted QoS on behalf of the service programmer. This approach provides portable
mechanisms for enforcing contracts; but the middleware does not have control of the
operating system resource allocation to enable hard real-time guarantees. On the other
hand, the middleware can approximate QoS guarantees that are suitable for a large class
of soft real-time applications, such as web services and e-commerce.7

Current research also delineates QoS from multiple viewpoints such as user or
application, system, and resource.8 Sabata et al. outlined a taxonomy that classifies QoS
parameters from different viewpoints. They specified QoS as a combination of metrics
and policies. Metrics measure specific quantifiable attributes of the system components,
and policies dictate the behavior of the system components.9 Researchers at SRI outlined
issues in managing resources for complex distributed systems. They formulated the
Logical Application Stream Model (LASM) for capturing a distributed application’s
structure, resource requirements, and relevant end-to-end QoS parameters. They also
developed the Benefit Function (BF) model for expressing user QoS preferences and for
gracefully degrading an application’s QoS under certain conditions.10, 11

More recently, Bashandy et al. developed a protocol architecture to define distributed
multimedia systems from the application as well as the service providers’ points of view.
Formally defined as finite state machines, their architecture consists of an application
layer, a configuration and synchronization layer, network layers, as well as a database
and computation backbone. Each layer consists of independent functional units that
communicate through a standard framework of messages.12
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Chen and Hsi formulated the design of admission control algorithms for real-time
multimedia servers as a reward optimization problem with the “reward” referring to the
value which the system receives after servicing prioritized clients based on the QoS
requested and delivered. They classified admission control algorithms as “deterministic”
or “best-effort” regarding quality of service (QoS) control and as “priority-reservation” or
“no priority-reservation” regarding reservation control.13 Likewise, Amaranth admission
control attempts to maximize the “reward” to the system, but the formulation of this
reward depends on the active QoS policy or policies. In the Amaranth context,
reservation implies the holding of reserve resources in anticipation of random and bursty
demands for service. Amaranth is one of the first QoS management systems that we have
seen to apply traditional feedback control theory to determine appropriate resource
allocations that maintain a “set-point” of reserve capacity.

The Amaranth research differs from other work by emphasizing the following
features.

• QoS management across multiple QoS dimensions defined with respect to the
needs of the client applications.

• QoS contracts with probabilistic assurances that users will receive contracted
resources.

• Fault monitoring to detect and predict resource failures in order to help prevent
QoS contract violations due to resource downtime.

• Monitoring of resource usage patterns and reserve capacity to preserve contracted
resource allocations in the event of bursts of task requests.

Unlike other research that focuses on mechanism across multiple system layers for
managing QoS, Amaranth research focuses on policy development and deployment. The
goal of the Amaranth framework is to provide a flexible environment in which system
designers can deploy their own QoS management policies.

4. Amaranth Terminology and Functionality
This section presents terminology to describe the Amaranth framework and to develop
mechanisms for communication between applications and the Amaranth QoS manage-
ment system. A use case diagram describes interactions between users and Amaranth.

QoS Dimension:
User point of view - A QoS dimension is a domain-specific feature or application re-

quirement whose performance level can be observed or controlled. These features may be
functional such as application quality (e.g. frames per second or resolution for a
multimedia application) or type of security (e.g. encryption). They may relate to
execution behavior such as timeliness (e.g. latency and allowed lateness) or dependability
(e.g. availability and reliability). Our model for QoS is an n-dimensional space with
utility (reward) values and resource requirements associated with each point in space.

System point of view - A QoS dimension helps to define the QoS space in which each
point corresponds to a specific allocation of required resources and system services.

Application:
User point of view - An application is a type of software that can execute at differing

levels of performance. The application designer specifies the available levels of service
for each QoS dimension. The application user specifies the mapping between the points
in the QoS space and their associated utility values. Higher utility values signify greater
degrees of usefulness or importance of the related points in the QoS space.
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System point of view - An application is a class which, when instantiated and executed,
yields utility in return for consumed resources. The application designer with the help of
the system determines the required resources to achieve each point in the QoS space. The
system has available to it a specification of (or a function to determine) the utility value
versus resource consumption for each point in the QoS space.

Session:
User point of view - A session is an instantiation of an application with a contracted

probability of assurance that the system will provide resources sufficient to achieve an
agreed-upon level of service for the contracted interval of time. The user associates the
usefulness of the session with the contracted QoS level.

System point of view - A session is an entity to which system resources have been
committed for a fixed interval of time with a contracted probability of assurance that the
resource allocation will not be reduced during the interval.

Session Request:
User point of view - A session request is a request to negotiate a QoS contract and to

start an application.
System point of view - A session request involves the negotiation of a QoS contract

and a decision of whether or not a contract for the requested level of service and duration
can be provided with the requested probability of assurance.

Contract:
User point of view - A contract is a guarantee that within a specific session the system

will provide the necessary resources to enable the associated application to perform at the
contracted QoS level with the contracted probability of assurance.

System point of view - A contract is a commitment to allocate the resources necessary
to enable the application to perform at the contracted QoS level with the contracted
probability of assurance.

QoS Violation:
User point of view – A QoS violation is a state in which the application cannot execute

at the contracted QoS level because the system has not provided the contracted service.
System point of view - A QoS violation is a state in which the system has over-

committed resources and thus cannot support the contracted QoS level of a session.

QoS Availability:
User point of view – QoS availability is the fraction of time over the duration of a

session for which the application experienced no QoS violations.
System point of view – QoS availability is the fraction of time over the duration of a

session for which the system actions resulted in no QoS violations.a

QoS Reliability:
User point of view – QoS reliability is the probability R{Qs}(t) that the application has

experienced no periods of QoS violation during the time interval t beginning with the
start of session s.

System point of view – QoS reliability is the probability R{Qs}(t) that the system actions
resulted in no QoS violations during the time interval t starting with the beginning of the
session s.
a Lowered resource allocations due to resource shortages could result in a QoS violation.
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QoS Policy:
User point of view - A QoS policy is a course of action by the system that affects the

negotiation of contracted QoS with probabilistic assurances and fulfillment of the
resulting contract.

System point of view - A QoS policy is a method of action that determines the outcome
of the contract negotiation for a session request and guides the way in which the system
fulfills the contract. The system seeks to allocate resources to satisfy system goals such as
maximizing utility while admitting all application requests at a baseline or better QoS
level.

 Fig. 2.  Amaranth use case diagram.

As shown in Fig. 2, software application or component developers, application users
or clients, and system architects would interact with Amaranth. Each of these users would
specify the QoS parameters that relate to their roles. As discussed below, these users
would specify the QoS parameter values necessary to contract a specified level of QoS
(point in the QoS space) and level of assurance for the duration of a session.

The Application or Component Developer would specify application performance
levels or QoS points for relevant QoS dimensions such as application-specific, timing,
dependability, and security requirements. The following are examples of application-
specific and timing requirements.

• Mathematical model of task arrivals.
• Acceptable time delay between task arrivals and completions (used to calculate

deadlines).
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• Tolerance to lateness or a function that specifies how the value of the task degrades
with respect to the time by which a deadline is missed.

• Mapping between the QoS space and resource consumption.
• Probabilistic model of resource consumption for a particular application.
The Application User or Client would provide the mapping between the QoS space

and the utility or “desirability” of each point in the space. The System Architect would
specify the weighting or priority of each application or user registered with the system
and the system size needed to guarantee minimum acceptable QoS for all critical
applications in the event of the worst case load of application requests.

The UML use case model in Fig. 2 shows a user’s interaction with an Amaranth
system. For demonstration purposes, the user is a human. In practice, the user may be an
application program contracting with the Amaranth system for a specified level of
resource allocation. The following list indicates the major functions of the Amaranth QoS
management system.

1. To receive, process, and admit/reject session requests.
2. To contract, for each session request, levels of QoS and assurance that achieve

system goals as specified by the active QoS policies. Maximizing system utility is
an example system goal. The corresponding policy would be to allocate resources
to tasks so that the utility across all tasks is maximal.

3. To allocate resources according to session contracts.
4. To monitor system parameters such as the following elements.

• resource usage across sessions
• current resource usage per session
• resource usage per session over time
• system resource capacity instantaneously and over time

5. To adjust the resource allocations when necessary to satisfy the session contracts
while adhering to active system policies and reacting in a timely manner to
resource failures and other system disturbances.

6. To monitor and notify the session planner of pending, likely, or actual resource
failures and expected downtimes.

7. To enable the human user to enter session requests and monitor session behavior
through visual and tactile interaction with the system.

8. To enable the human user to simulate session requests without the use of the
actual resources.

The next section diagrams and discusses the Amaranth system architecture and the
component interactions to service a request to run an application within a session of con-
tracted resources.

5. Amaranth Architecture
The Amaranth architecture consists of the components shown in Fig. 3. The description
of how each component contributes to the Amaranth QoS management appears in
Subsection 5.1. The policy stack component embodies the policy modules that are
currently installed in the Amaranth system testbed. The system administrator or
researcher activates the installed policy modules that the Amaranth QoS management
system will use to determine appropriate resource allocations to application requests. The
Amaranth framework currently focuses on utility-based resource allocations with
probabilistic guarantees and resource reserves. The policy stack feature enables the
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framework to be extended to support future policy development efforts. Subsection 5.2
describes the user interface tools to direct a Sesco agent.

 Fig. 3.  Amaranth Architecture.

5.1 Amaranth system components and their functions
The following components compose the Amaranth system architecture.

• QoS/Resource and Resource Usage Visualizers - Assist users in making QoS/
resource trade-offs. The network visualizer currently displays the routes utilized by
one or more application sessions and enables the user to examine how they interact.
In the future, this visualizer will use dynamic aggregation techniques to simplify
information about large networks of more than 100 nodes into manageable maps.

• Amaranth Simulator - Given the application requests for service, available
resources, and active policies, simulates the resource allocations that would be
made by the Amaranth QoS management system.

• DMOD (Dependability Module) - Uses historical information about past
computing node failures to estimate resource availability and to predict node
failures.

• FRUM (Forecasted Resource Usage Module) - Uses historical trends to predict
future resource usage.
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• Remos (Resource Monitoring for Network-Aware Applications) - Enables
network-aware applications to obtain relevant information about their execution
environment.14 Via the Remos API, FRUM can determine the current loads on
network links being monitored by the FRUM module.

• Candidate Resource Selector - Determines the appropriate resources that are
available for a particular application request.

• Q-RAM (QoS Resource Allocation Model) - Determines resource allocations that
optimize total system utility across all application requests for resources while
satisfying resource constraints.15-18 Section 7 presents an explanation of utility-
based QoS management.

• RTQM (Real-Time Queueing Modeler) - Uses arrival and servicing models as well
as real-time queueing theory to estimate the distribution of tasks that would be late
due to system resource constraints.19-22 Further discussion of real-time queueing
appears later in this section.

• RPM (Resource Priority Multiplexing) - Uses resource usage profiles to validate
assurance levels and compute scheduling parameters. Section 8 is a discussion of
contracts with probabilistic guarantees.

• Sesco (Session Coordinator) - Receives and processes session requests, queries the
monitoring modules DMOD and FRUM as well as the active policy advisor
modules (e.g. Q-RAM, RPM, or RTQM) to make resource allocation decisions,
and controls low-level mechanisms to implement resource allocations.

• Darwin Scheduler - Serves as a resource management mechanism for application-
specific handling of network traffic and sharing of resources among traffic streams
that cooperate.23 Amaranth uses Darwin to reserve network resources and to
enforce bandwidth allocations.

• RPM Scheduler (Resource Priority Multiplexing Scheduling Mechanism) -
Implements resource priority multiplexing via a selective dropping queue
mechanism.

Embodied in the components Q-RAM and RPM, the current system policies are to
maximize system utility across application requests and to validate the probabilistic
assurance that a given session will receive the resources for which it contracts. System
utility is a weighted measure of the user-defined utilities associated with the levels of
service (points in the QoS space) of the active applications and of the new requests. RPM
analyzes the resources allocated across sessions and uses their probabilistic resource
requirements to determine the probability that each session will receive its contracted
resources. Using arrival, servicing, and resource availability models, RTQM provides
Sesco information about the expected distribution of application tasks that will not be
able to meet their deadlines.

Timeliness is an important quality dimension for the types of applications targeted for
Amaranth QoS management. For example, the system may need to provide support for
real-time control systems in which the control loops have hard timing constraints as well
as for voice and video packets that have constraints on latency. Real-time resource
management is fairly well understood for the classical periodic task model, but Amaranth
must handle tasks with more stochastic behavior and must strive to achieve high levels of
resource utilization while providing as high a QoS utility as possible to all the
applications. The stochastic behavior of tasks makes it difficult to ensure that the system
will behave properly with respect to real-time requirements. A new approach to this
problem, called real-time queueing theory, provides a set of analysis techniques which
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offer the ability to combine the system predictability associated with hard real-time
scheduling theory and the generality of stochastic task behaviors associated with
queueing models.19-22 The RTQM component implements this theory.

In an Amaranth-managed system, FRUM and DMOD execute on each computing
node to track usage and failure patterns. Sesco executes along with its policy advisors
(currently Q-RAM, RPM, and RTQM) on the network routing nodes. The Darwin
Scheduler executes on the routing nodes to enforce network reservations.23 The
visualizers run on the user nodes, and workload generators execute on nodes which
system experimenters are using to perturb the system. The testbed in the Amaranth
laboratory consists of interior routing nodes running FreeBSD (a version of Unix) and
exterior user nodes executing Microsoft’s Windows NT. The components are
implemented as C++ modules.

Fig. 3 also illustrates the component interactions that enable the session coordinator,
Sesco, to process a session request. Sesco is responsible for receiving and processing ses-
sion requests to achieve the goals of the active system policies. The policy stack keeps
track of the active policy modules and helps SesCo to integrate the system policies. Each
Sesco agent controls the use of the network links connected to the routing node on which
the agent executes. In the event that a requesting application would like to communicate
with another application running on a node outside the set of nodes managed locally, the
local Sesco calls a global Sesco Coordinator to communicate with the Sesco agent that
manages the network in which the target node is located. There can exist a hierarchy of
Sesco agents and Coordinators, each of which is assigned a domain name.

5.2 User interface tools for directing a Sesco agent
There are three user interface tools that can be used to direct a Sesco agent: arq, multiarq
and sesstat. Implemented in Tcl/Tk24, these tools communicate with Sesco via a TCP
connection.

Arq enables the user to manually make admission requests for legacy applications that
cannot directly communicate with Sesco or to modify the default utility curves when
making requests through QoS-aware applications. The interface consists of the following
pages and features. Section 6 contains a description of the Q specifications referenced
here.

• Login page to specify a Sesco user name and password.
• Application selection page to specify an application, a contract, and a mode.
• Application parameters page which is automatically configured from the “ask”

declarations in a Q specification.
• Utility curve editing page to modify the default utility curves specified in the

contract part of a Q specification.
• Notification page to display the actual QoS setpoint selected by Sesco.
• Next and Previous buttons to navigate among the pages.
Multiarq, a tool used for testing Sesco, can generate a stream of simulated admission

request and session termination requests with specified distributions. While there are no
real sessions running, the interaction with Sesco is the same as with a real application.
The simulation model is that of a fixed pool of sessions, each of which can be either in an
active or dormant state. When a session changes from dormant to active, multiarq sends
Sesco an admission request. When the session changes back to dormant, it sends a
session termination request to Sesco. A configuration file, which contains a list of session
specifications, directs the simulation. Each session specification contains the information
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that would be entered through the Arq tool interface as well as average times between
dormant to active transitions and between active to dormant transitions. The assumption
is that both transition times are exponentially distributed.

Sesstat is the Sesco administrative tool to configure the system, to set policy, and to
display system performance information. Sesstat has the following pages that are
accessed through an index tab interface.

• Map page to display a network map of nodes managed by the Sesco agent.
Clicking on a node or link will display detailed information about the link. Clicking
on a session name from the session list displayed on this page will show the
resources used by that session.

• Session page to display detailed QoS information about a session. Clicking on a
session name from the session list will display the application, contract, user, and
QoS setpoint information for that session. A user with Sesco administrative
privileges can forcibly change the QoS setpoint.

• QoS page to display graphs of global QoS performance information such as the
global utility value, the number of sessions in the system, and the QoS
renegotiation rate.

• Users page to edit the user database and to change user weight factors. Only user
with Sesco administrative privileges can access this page.

• Policy page to configure policy information. The display consists of a graphical
representation of the current policy stack and advisors similar to the stack shown in
Fig. 3. Interface commands enable the user to load and unload policies and
advisors, to change the order of policies in the policy stack, to register policies as
being clients of an advisor, and to set the configuration parameters of policies and
advisors.

• Log page to display the Sesco log file that contains records of events such as
session admissions and terminations. A log level filter can be used to display only
events at a certain status level and higher. Only users with Sesco administrative
privileges can access this page.

Section 6 briefly overviews the Q language used to specify Amaranth QoS parameters.

6. Specification of QoS Parameters
Amaranth uses a QoS specification language, called “Q.” Based on the Q-RAM para-
digm, Q describes the QoS requirements of an application in terms of an application
profile that defines the mapping between QoS and resource requirements and with respect
to a user profile that defines the mapping between QoS and utility. Unlike other QoS
contract languages25, Q specifications indicate QoS preferences rather than specific levels
of service or procedural definitions of QoS responses to changes in resource availability.
There are three main types of blocks in Q: system, application, and contract.

6.1 System declarations
System blocks describe system-level state information such as the available resources,
network configuration, and user database. A system administrator can specify the
network configuration and resource availability information manually, or a resource
discovery system such as Remos14 can generate the specification automatically.

The user database contains information about a set of users, the users’ passwords, and
a group affiliation. A group definition is composed of a set of mode definitions
corresponding to different situations. Associated with each mode is a weight factor that
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acts as a modifier to the user profiles and a log-file prominence level that determines the
degree of prominence for logging of session requests made under a particular mode. For
day-to-day use, a user might use “Normal” mode with a modest weight factor and a low
log-file prominence. In an emergency situation, a user can use “Priority” mode to get a
higher weight factor and thus more resources; but the higher log level will cause such
session requests to be logged prominently in the log file to discourage abuse.

System blocks have the form:

system [<name>] {
[declarations...]

};

where “name” is an optional identifier to denote a particular Sesco manager. Sesco uses
only system blocks without a name or those with names that match the domain name of
the Sesco agent reading the Q system file. This allows files without a name identifier to
be shared among multiple domains and, thereby, reduces the maintenance burden.

6.2 Application declarations
Application blocks define the QoS requirements of an application as a function of QoS.
An application block has the syntax:

application <name> {
[declarations...]

};

where “name” is the name of the application. The first part of an application block typi-
cally defines the QoS dimensions for the application as well as possible settings for each
of the dimensions. For example, a video conferencing application such as vic26 might
have the following declarations:

qos frame_rate {5, 10, 15, 20, 25, 30};
qos quality_factor {15, 11, 7, 3};
qos security {none, des, des3};

to define frames-per-second, quality factor, and security level as QoS dimensions. The
values in the braces are possible QoS levels for each of those dimensions.

An optional annotation to a literal or symbol in a Q specification file consists of the #
operator followed by a string. Sesco uses such annotations to automatically configure dia-
log boxes in the user interface. For example, an annotated version of a quality factor dec-
laration might appear as follows.

qos quality_factor#“QualityFactor:”{15#“low”,
11#“medium”,7#“high”,3#“very high”};

Such strings are particularly useful when the actual symbol values are hard to interpret
by the user. In this example, the quality factor values are those for an H.26127 video
stream in vic where lower values mean better quality. Additional operators allow one to
associate icons that are to be used in the user interface.
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The second type of declaration in an application block is an “ask” statement. This
type of statement defines auxiliary parameters needed to complete an admission request.
This information can come directly from a QoS aware application or from a user interface
to enable manual admission requests for legacy applications. For the vic example, the
“ask” block might be as follows.

ask {
host src#”Source Host:”=”algol.ices.cmu.edu”;
host dst#”Destination Host:”=”doradus.ices.cmu.edu”;
int vsrc#”Source Port:”=5555;
int vdsr#”Destination Port:”=5556;

}

Each declaration in an ask sub-block defines one parameter. For example, “src” is the
parameter for source host of the video conference. As with the QoS dimension
declarations, the “#” syntax defines a string to be used in user interfaces for manual
admission requests. The values on the right specify default values for use by a user
interface, but QoS-aware applications may override these values. The typed declarations
(e.g. “host”, “int”, etc.) allow type checking before an application request is actually
presented to the policy stack. The values entered via a user interface or supplied by an
application are bound to the variable names given in the declaration.

The third type of declaration is a “flow” definition. For example, the following Q
specification defines a flow called “videoflow” that starts at the host specified by the
“src” variable on the port specified by the “vsrc” variable and that ends at the host
specified by the “dst” variable on the port specified by the “vdst” variable. An
optional body to the flow declaration can specify additional properties of the flow.

flow videoflow $src/$vsrc -> $dst/$vdst {
protocol=udp;

}

After the flow declarations come the abstract resource definitions. These define ab-
stract resources used by the application that will be mapped to physical resources by the
RSEL policy in the Amaranth policy stack. In the video conference example, one might
write the following Q specification to describe resources needed for the flow and CPU at
the source and destination nodes and associate them with the symbols “Rvpth”,
“Rscpu”, and “Rdcpu.”

resource Rvpth = <<bandwidth videoflow>>;
resource Rscpu = <<cpu $src>>;
resource Rdcpu = <<cpu $dst>>;

The most important statements in the application block are the resource requirement
declarations. Specifications of resource requirements include one or more “map”
declarations that are combined using a “compose” statement. Each map declaration
maps zero or more QoS dimensions to a vector of symbolic values. For example, the Q
specification below defines a map named “FQ”, which maps each combination of settings
for the QoS dimensions “fps” (frame rate) and “qual” (quality factor) to the three
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symbolic values “FQ.bw”, “FQ.scpu”, and “FQ.dcpu”. For example, when fps is
“15” and qual is “1”, FQ.bw, FQ.scpu, and FQ.dcpu receive the values 1700, 240
and 240 respectively.

map FQ [fps, qual] -> [bw, scpu, dcpu] {
<5,1>: <1100, 163, 163>;
<10,1>: <2000, 293, 293>;
<15,1>: <1700, 240, 240>;
<20,1>: <2150, 286, 286>;
<25,1>: <1900, 273, 273>;
<30,1>: <2100, 300, 300>;
...

}

An application block may contain one or more map declarations, and each QoS
dimension may appear in one or more map declarations. Via “compose resource”
statements, the mappings appearing in each of the declarations operate in combination.
For example, the CPU requirements on the source node might be as given below.

compose resource Rscpu = FQ.scpu + SEC.cpuBase +
FQ.bw*SEC.cpuScale;

The CPU requirement is the sum of the CPU requirement for the video encoding, a
base CPU required by the encryptor, and the bandwidth of the video flow multiplied by a
CPU scale factor determined by the encryption setting. The CPU requirement for the
video encoding is derivable from the frame rate and quality factor, both of which are
specified in the FQ map. In the special case where symbols specified in the right-hand
side of each of the map blocks match one of the declared abstract resources and no com-
pose resource statement is given, the resource requirements are the sum of the
mappings in each of the blocks.

By supporting multiple map blocks instead of a single map block, it is possible to
define and empirically estimate the resource requirements even for large numbers of QoS
dimensions and settings on each dimension. For example in an application with ten QoS
dimensions and ten settings on each dimension, there would be a total of 1010 set-points.
It would be impractical to empirically measure and specify this many set-points with a
single map block, but the combination of map blocks and compose statements makes it
possible to characterize the resource requirements for applications with large QoS spaces.

6.3 Contract declarations
The final block type is the contract declaration. Contract declarations specify the utility
curves for a user. Contract blocks also use the application keyword but contain a
two-part literal specifying the base application name and the contract name. For example,
the specification shown below is an excerpt from the default contract for the applica-
tion vic.

application vic::default {
utility A (1.0) [fps] {

<5>: 0.24286;
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<10>: 0.44844;
<15>: 0.62246;
<20>: 0.76976;
<25>: 0.89455;
<30>: 1.0;

}
...

}

The most important types of declarations in contract blocks are the utility curve defini-
tions. A utility curve declaration can specify a utility curve for a single QoS dimension or
a joint utility curve for multiple QoS dimensions. The declaration also specifies a weight
factor for the dimension. The above example specifies the utility values for the QoS
dimension of frames per second (fps). The feasible fps levels for application vic range
from 5 to 30 fps, and the utilities associated with these levels range from 0.24286 to 1.0.
The weight associated with fps is 1.0. As with the map declaration, it is possible to
specify a “compose utility” statement; but it is more common to simply use the
default sum of the utility mappings.

While contract blocks typically include only utility declarations, any of the decla-
rations that can be specified in the application block are allowable in the contract block.
When an application admission request is made, the client specifies an application name
and a contract name. The system combines the matching application and contract blocks
into a single composite block that is the evaluated by the parser.

Section 7 explains the utility-based resource management policy embodied in Q-
RAM.

7. Utility-Based Resource Management
The goal of the Amaranth QoS management is to allocate the system resources in such a
way that user applications can operate effectively according to each application’s require-
ment for assured resource allocations without having to under-utilize or dedicate
resources. This goal motivates the Q-RAM policy: the maximization of system utility
with respect to application utility across multiple performance levels for each QoS
dimension. The feasible combinations of performance levels across the relevant QoS
dimensions form an n-dimensional space of QoS points where n is the number of QoS
dimensions. The user can specify “desirability” (utility) values for individual QoS points
or a function that will assign utility values to a domain of points.

The Amaranth advisor Q-RAM determines a near optimal allocation of resources to
maximize the system utility without exceeding the available resources. The system allo-
cates to each admitted application task an amount of resources that is greater than or
equal to the baseline or minimal amount needed by the task. The Q-RAM advisor
provides polynomial-time algorithms to determine resource allocations that achieve near
optimal utility for systems consisting of a single resource and multiple independent QoS
dimensions or multiple independent resources and a single QoS dimension.15-17

The formulation by Lee et al. illustrates the complexity of maximizing utility for
multiple resources and multiple QoS dimensions, the MRMD optimization problem.
MRMD is an NP-Hard problem.

Let Ki1 ,..., Ki
 
|Qi|

   be an enumeration of the quality space, Qi, for task Ti.
Let ρij1 ,..., ρijNij be an enumeration of the resource usage choices (trade-offs among
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( )max
/r

different resources) associated with Kij for Ti, where Nij is the number of such resource
usage choices. In particular, we require ρijk |=i Kij. The resource vector ρijk must provide
QoS levels Kij to application Ti.

Let xijk = 1 if task Ti is assigned quality point Kij and resource consumption ρijk , and
xijk = 0 otherwise. Hence if task Ti is accepted for processing by the system, then exactly
one of the indicator variables xijk equals 1; while the others are 0. If Ti is not accepted,
then all are 0.

Using this notation, the optimization problem can be stated as shown in Fig. 4.

 Fig. 4.  Formulation of the optimal solution to the MRMD problem.

Note the following.
• ρijkl is the lth coordinate of the vector ρijk.
• The possible QoS levels for application Ti(Kij), their utility (ui(Kij)), resource

requirements using ρijk (ρijkl,, 1≤ l≤m) and total resource availability     
are given constants.

• The variables to be selected to optimize total system utility are the xijk.
The Q-RAM advisor provides a local search technique that is an approximate solution

to MRMD. The Q-RAM solution is several orders of magnitude faster than the optimal
dynamic programming and mixed integer programming solutions. The approximation
algorithm allows the user to trade-off nearness to the optimal solution versus
performance.18

8. Contracts and Probabilistic Guarantees
An Amaranth QoS contract is an agreement between the user and the system that the
resources necessary to support the given QoS level will be provided for the duration of
the session with a given probability. Ideally, the fixed QoS level would map to a fixed
resource demand. But this is not the case for many real world applications such as video
conferencing. Due to the effects of compression and dependent upon the amount of
motion in the scene, the bandwidth requirements for a video stream may vary over time.
Bandwidth requirements are highest when the camera is panning or zooming. They are
lowest when the camera is focused on a low motion scene such as people sitting at a
conference table. Network flows having these characteristics are often called Variable Bit
Rate (VBR) flows.

With a system based on hard reservations, it is difficult to achieve high resource
utilization due to the worst case assumptions that must be made for sessions with VBR
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flows. Therefore, Amaranth provides these sessions with probabilistic guarantees that are
specified in terms of a lower bound on the expected value(s) of one or more Probabilistic
Level of Service (PLoS) metrics. Formulated as probabilities, PLoS values may vary
continuously between 0 for sessions requiring only best-effort flows and 1 for sessions
requiring hard reservation. The Amaranth system currently uses two PLoS metrics: (1)
QoS Availability (fraction of time there is no degradation) and (2) the fraction of packets
delivered (not dropped). Other PLoS metrics, such as the fraction of packets delivered on
time, are feasible. A single session can specify requirements for more than one metric,
and different sessions may use different metrics.

The RPM policy module and RPM kernel-level mechanisms implement the
probabilistic guarantees in Amaranth. To enforce the probabilistic guarantees, the RPM
kernel mechanisms maintain a set of priority modes. Each priority mode j is a strict
ordering of the managed sessions. When there is an overflow of packets in a router’s
queue, the system drops packets of the low priority session associated with the active
priority mode. By time multiplexing through the priority modes, the probabilistic level of
service delivered to each of the sessions can be controlled by varying the mode holding
times. The RPM policy module evaluates session requests to determine if sufficient
resources are available and computes the set of mode holding time parameters needed by
the kernel-level mechanisms to enforce the requested guarantee of service. One can
represent the bandwidth resources required by a session as a Markov model with each
state characterized by a probability and an instantaneous resource demand. One then
formulates a linear program LP to determine the amount of time, αj, that the system
should be in each mode j in order to achieve the required PLoS value for each task i.

where n is the number of modes, i is the task number, ρij is the
estimated value of a particular PLoS metric for task i while in mode j,
Ai is the required PLoS value for task i, and αj is the fraction of time the
system is in mode j.

Since we are only interested in satisfying the constraints and do not have another
objective function, we modify LP to minimize the sum of the αj rather than to specify it
directly as a constraint. This modification, as shown in Eq. 1, helps us to avoid several
numerical instability problems. The left-hand side of the inequality represents the PLoS
delivered to task i in the interval corresponding to αj. The right-hand side represents the
PLoS requirement Ai for task i. All of the constraints are “greater than” constraints
because the delivered PLoS must be at least as good as the required PloS. The
coefficients of the constraints are the estimated PLoS values for a session while in a
particular mode. The sum of the αj must equal one. If the solution to the modified LP
results in the sum of the αj being less than or equal to one, then the original constraint
problem is satisfiable. Since all of the inequality constraints have positive coefficients,
we can safely increase the αj values until they equal one without causing any of the
constraints to be violated. If the solution to the modified LP results in the sum of the αj

being greater than one, then the original constraint problem is unsatisfiable; and we must
reject the admission request or renegotiate for a lower PLoS or QoS setpoint.
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Probabilistic guarantees can result in significant gains in resource utilization. For
example, consider a 100 Mbps link used to carry a number of video conference flows.
Suppose that each flow requires 1.5 Mbps 55% of the time, 2.7 Mbps 37% of the time,
and 5 Mbps 8% of the time. Fig. 5 shows the number of flows that can be admitted on the
link as a function of the QoS Unavailability (one minus the QoS Availability) for each of
the flows. To provide hard guarantees on the flows, the system could admit no more than
20 flows (100 Mbps/5 Mbps). With probabilistic guarantees, the system can admit nearly
double the number of flows because the system does not have to provide each flow with a
100% guarantee of service. In practice, probabilistic guarantees work whenever the
likelihood of synchronized worst-case phasing of flows is small.

 Fig. 5.  An example of the feasible number of the flows with respect to QoS unavailability.

9. Reserve Capacity Approach to Admission Control and Resource Allocation
The Amaranth admission goal is to provide high utility consistent with honoring con-
tracted assurance probabilities for QoS violation rates. To accomplish this goal,
Amaranth researchers are experimenting with holding resources in reserve to handle
random, but statistically likely, bursts of task requests. Using ideas borrowed from
control theory, the system attempts to maintain reserve capacity at or near a
predetermined value (the setpoint). The system compares the amount of actual unused
capacity against the setpoint and, under the guidance of a control policy, determines the
QoS level offered to new task admissions.

The admission control system works in two steps. First, the system admits the session
if there are sufficient resources available for the application’s minimum or baseline QoS
requirement. For critical applications such as the battle group example discussed
previously, the system is sized to be large enough to guarantee admission to all possible
critical tasks at a minimum QoS level. Then the system uses the admission/resource
allocation control parameters to determine the actual amount of resources to be allocated
to the incoming task   and allocates above the minimum level only in accordance with the
admission policy.

Current experiments deal with five policies for network bandwidth allocations. Two
simplistic policies are: (1) to always allocate the maximum bandwidth possible (a greedy
“Best Effort” strategy) and (2) to always allocate the minimum requested bandwidth (a
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pessimistic “Hard Reservation” strategy). Three common control theory policies
complete the set of five policies: (3) Bang-bang control, (4) Proportional control, and (5)
Proportional-Integral-Differential (PID) control. What is novel is not the control policies
themselves but rather the approach of applying them to admission control for QoS
management.

 Fig. 6.  Task rejection ration versus average satisfaction of admitted tasks for inter-arrival times
(IA) 20 through 60 seconds and across various algorithms for allocating resources.

 Fig. 6 shows simulation results for the five control policies applied across a range of
task inter-arrival times. The task inter-arrival times (means shown in Fig. 6 by dashed
lines) as well as the task durations of the simulated tasks (mean of 10 minutes for all
experiments) are exponentially distributed. The resource demand is uniformly distributed
with minimum and maximum bandwidth demands of [1,4) Mbps and (4,7] Mbps,
respectively. The reserve capacity setpoint is 10 Mbps, and the total available bandwidth
is 100 Mbps (i.e., the desired goal is to maintain 10% reserve capacity). A mean inter-
arrival time of 20 seconds represents a heavily loaded resource, while 60 seconds
represents a lightly loaded resource for this scenario. While these experimental
parameters are merely exemplary values, they do provide an example of a system’s
response across a range of loading levels.

 For experimental simplicity, the system rejects a task entirely if there is insufficient
bandwidth to admit the task with its lowest acceptable QoS. (In a real system, alternate
approaches are possible, such as degrading tasks with higher-than-minimum QoS level to
make room for critical task admissions.) Fig. 6 shows the task rejection ratio versus the



International Journal of Reliability, Quality and Safety Engineering
©World Scientific Publishing Company

21

average satisfaction of admitted tasks. The average task satisfaction is computed as
shown in Eq. 2, where alloc is the allocated bandwidth, min is the minimum acceptable
bandwidth, and max is the maximum requested bandwidth.

There are five solid curves in Fig. 6 corresponding to the performance of various
control policies. For any given contracted assurance level, one can use the graph to
indicate viable control policies and their expected average satisfactions (utility values
under these simplified assumptions). This is done by considering portions of dashed lines
below the task rejection ratio having the value of (1-contracted assurance level). For
example, if a particular system must achieve an assurance level of 99% with a mean
arrival rate of 40 seconds, it can do so by using proportional control, PID control, or hard
reservations. Proportional control provides the best average satisfaction in this scenario
(bang-bang control provides higher satisfaction but has a task rejection ratio higher than
0.01).

In general, the trade-off seen in these results is the expected one of lower rejection
levels coming at the price of lower satisfaction levels. However, the use of admission
policies based on control theory provides intermediate trade-off points beyond those
available with either hard reservations or best-effort policies. In comparison to the
simplistic bang-bang control policy, the more sophisticated control policies appear to
better anticipate and avoid downstream problems caused by overly aggressive QoS
allocation, while achieving lower rejection ratios for a given task arrival rate, than overly
conservative schemes.

10. Results and Conclusions
Prototypes for most of the components are complete as well as the test of most
component interactions. The Amaranth simulator currently simulates the RPM scheduler
as well as user sessions and Amaranth-controlled network allocations and routing. D-
MOD is able to detect and predict node failures, and FRUM is able to track and record
resource usage patterns on nodes and their connected network links. The local Sesco is
functional as well as the Q-RAM adviser module. The theoretical models for Q-RAM,
RPM, and RTQM have been developed and validated manually or via simulation.

The goal for high-assurance computing is to guarantee that target application task
arrivals receive at least minimum or baseline QoS. The system designer can use the
application and resource models to size the system to have sufficient resources to satisfy
the worst case arrival of all tasks with each critical and non-critical task receiving at least
its minimum required resources. Alternatively, the system designer can size the system to
handle the worst case arrival of critical tasks. The critical tasks would receive at least
minimum QoS, while the non-critical tasks whose total weighted utility maximizes the
overall system utility without exceeding the available resources would receive resource
allocations. In such high-assurance systems, QoS violations would comprise degrading
previously admitted tasks to minimum QoS rather than denying admission to critical
tasks.
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11.  Summary and Future Research
This paper has discussed the Amaranth framework for providing policy-based QoS man-
agement with probabilistic guarantees that a QoS contract will be upheld. The naval
battle group application, presented in this paper, requires a high degree of assurance that
necessary system resources will be allocated to critical mission activities while
maximizing the utilization of available system resources. Via diagrams and text, the
paper has described the functionality and structure of the Amaranth QoS management
system and architecture. Lastly, the paper has overviewed the Q language for specifying
QoS parameters, utility-based QoS management, contracts and probabilistic guarantees,
and admission control using a reserve capacity approach.

In addition to the utility-based QoS management policy, the Amaranth system will
support other policies for managing resources from the user as well as the system
viewpoints. For example, current research has yielded an innovative way to integrate the
utility and reserve capacity based approaches to resource allocation. Implementation of
the RPM method for providing probabilistic guarantees and work on the integration of
real-time queueing theory with the determination of optimal utility across current
application requests are ongoing. The design of the Global Sesco Coordinator to scale to
interconnected LANs and WANs with local sets of nodes and links each managed by a
different local Sesco is part of future project research. Most importantly, the Amaranth
framework enables the system manager to employ innovative resource management
policies while maintaining probabilistic QoS guarantees and dependable
communications.
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