
Integrating Formal Verification and
High-Level Processor Pipeline Synthesis

Eriko Nurvitadhi, James C. Hoe

Carnegie Mellon University
{enurvita, jhoe}@ece.cmu.edu

Timothy Kam, Shih-Lien L. Lu
Intel Corporation

{timothy.kam, shih-lien.l.lu}@intel.com

Abstract – When a processor implementation is synthesized from
a specification using an automatic framework, this
implementation still should be verified against its specification to
ensure the automatic framework introduced no error. This paper
presents our effort in integrating fully automated formal
verification with a high-level processor pipeline synthesis
framework. As an integral part of the pipeline synthesis, our
framework also emits SMV models for checking the functional
equivalence between the output pipelined processor
implementation and its input non-pipelined specification. Well
known compositional model checking techniques are
automatically applied to curtail state explosion during model
checking. The paper reports case studies of applying this
integrated framework to synthesize and formally verify pipelined
RISC and CISC processors.

I. INTRODUCTION

Motivations. The need to apply a high-degree of

customization within a short time-to-market makes it
intractable to develop application-specific processors (ASIPs)
manually. To address this, prior works (e.g., [11][13][15])
have presented design frameworks that can be used to
automatically synthesize custom pipelined processor
implementations (usually at the register transfer level) from a
precise high-level specification. These frameworks drastically
shorten the time to arrive at an implementation. However, an
overall reduction in time-to-market requires not only saving
the time to create an implementation but also cutting down the
time to verify that the implementation is correct.

Unfortunately, even starting from a presumably correct
specification and assuming hands-free automatic synthesis,
there are ample opportunities for bugs to be introduced in the
many rounds of synthesis and translation that stand between a
high-level specification and its final realization. We can group
the bugs into: (1) a fundamental error in the synthesis
algorithms, or (2) a programming bug in the coding of the
synthesis algorithms. This is not a new problem. An analogous
problem has long existed for the now industry-standard RTL-
downward synthesis flows. In less critical designs, one may
simply put faith in the correctness of the synthesis tools; for
critical designs, one must perform extensive functional design
validation at the lowest practical intermediate representations
and even on the final parts.

Background Technologies. Taking advantage of the

precise semantics of high-level design frameworks, one should
utilize formal verification technologies to ensure functional
equivalence between the initial high-level specification and

the output of subsequent synthesis and translation. With recent
advances in combining model checking and theorem proving
to curtail state explosion, compositional model checking [12]
has been applied successfully to verify the functional
equivalence between non-trivial pipelines and their
specifications [8][10]. Unfortunately, the required expertise
and manual effort are reported to be very high [10].

In this paper, we present an effort to integrate formal
verification with the T-piper high-level pipeline synthesis
framework [13]. To reduce the error prone and tedious
pipelining effort, T-piper automatically generates a pipelined
implementation from an abstract transactional specification
(T-spec) of a non-pipelined datapath. Many implementations
can be derived from a T-spec, as long as the T-spec
transactional semantics is correctly preserved. From a T-spec,
T-piper creates a pipeline implementation that overlaps the
executions of multiple transactions in different pipeline stages
for better performance. A designer can direct T-piper to
rapidly create many pipelines by specifying the pipeline stage
boundaries and selecting from a complete set of hazard
resolution options identified by T-piper. As such, T-spec/T-
piper is well suited for ASIP design explorations and
development.

Contributions. The pipelined implementation synthesized

by T-piper, with its concurrent execution of transactions and
the intricacies of hazard resolutions, nevertheless should result
in the same execution as if the transactions were executed one-
at-a-time as prescribed by the T-spec transactional semantics.
To formally prove this, we propose extending T-piper to
automate the verification of the functional equivalence
between the input T-spec and the output pipeline
implementation. This automation eliminates the high manual
effort and expertise required to generate the verification
models and to apply abstraction and compositional reasoning
techniques for compositional model checking. This fully
automated approach enables users without expert-level formal
verification knowledge to develop formally verified custom
pipelined datapath. In our case studies, we were able to
automatically verify a variety of custom processor pipelines, 9
for the MIPS ISA and 9 for a hypothetical ISA with CISC-like
memory-to-memory instructions.

Outline. The rest of the paper is organized as follows.

Section II provides a background in model checking. Section
III gives an overview of the T-spec/T-piper design framework.
Building on Section II and III, Section IV presents the formal

verification integration with T-piper. Section V reports our
case studies on automatic verification of processor pipelines.
Section VI provides a survey of related work. Finally, Section
VII offers concluding remarks.

II. MODEL CHECKING OVERVIEW

This section uses a simple example from the Cadence

SMV model checker tutorial [12] to explain the process of
compositional model checking and to highlight the high level
of sophistication and manual effort involved. The left-portion
of Figure 1(a) (designated “Specification”) shows a simple
non-pipelined 32-bit processor datapath that only supports
ALU instructions. Each ALU instruction reads two operands
from the register file (RF); performs an ALU operation; and
writes the result back to the RF. The right-portion of Figure
1(a) (designated “Implementation”) depicts a 3-stage pipelined
datapath with maximal data forwarding support.

Fig. 1. A simple verification example from the Cadence SMV model checker

tutorial [12].

A. Model Checking

To verify that the Specification and the Implementation are
functionally equivalent, we first create cycle-accurate and bit-
true RTL models for both the Specification datapath and the
Implementation datapath.

Next, we devise a pipeline correctness property to be
checked. To prove functional equivalence of the Specification
and the Implementation, we can set a property stating that
following all possible instruction execution sequences, the
Specification and the Implementation make the same RF state
updates. Since the RF state update value is produced by the
ALU, which depends on the RF state as input, the correctness
property (let us call this P1) can instead require the ALU
outputs in Specification and Implementation to be the same.

Because the timing of Specification and the
Implementation are different, we need to create a refinement
map that relates the ALU output in the Implementation to the
ALU output in the Specification. In this case, we introduce an
auxiliary pipeline register in the Specification model to

provide a delayed ALU output value that corresponds in timing
with the ALU output in the implementation model.

We next declare certain control signals to be “free”
variables, indicating to the model checker to consider all
possible combinations of values of those variables. In the
current example, the read and write indices (srcA, srcB, dst) of
the RF would be declared as free variables so that the model
checker considers in all possible execution sequences all
combinations of reading and writing the different RF entries.

B. Abstraction and Decomposition

Given correctly formulated (1) Specification and
Implementation models, (2) a refinement map, and (3) a
correctness property, a capable model checker should either
prove that the property is true or produce a counter example.
In practice however, even the simple pipeline in the current
example would cause today’s model checkers to run out of
memory due to the large number of states that need to be
explored (a.k.a., state explosion).

The complex functionality of the ALU (supporting a large
number of 2-to-1 functions, such as multiply-and-shift) is one
cause of state explosions. A standard workaround in model
checking is to assume that the corresponding ALU blocks in
the Specification and the Implementation are identical. Thus,
they can be captured as uninterpreted functions [12] so that
the model checker does not have to consider their internal
details. We can further abstract other details such as the exact
word-size of the datapath. For example, data type reduction
[12] can be applied to the ALU operands and output to verify
the correctness property generally for unbounded word-size
(which is actually much cheaper to verify than an explicit
word-size).

A property that depends on many signals (i.e., has a large
cone of influence) can also lead to state explosion. The
correctness property P1 posed in Section II.A has a cone of
influence that covers the entirety of the Specification and the
Implementation. Compositional reasoning [12] allows a
property to be decomposed, so multiple smaller (more
manageable) properties can be checked instead. For example,
we can introduce another property P2 that states that the ALUs
in the Specification and Implementation receive the same
operands. Instead of proving P1 as a standalone property, we
prove separately P1 assuming P2, and then P2 assuming P1.
When proving P1 assuming P2, the cone of influence is
greatly reduced from before since it is no longer necessary to
consider the RF fetch logic in the Implementation. (Figure
1(b) illustrates the part of the pipeline that can be left out
when proving P1 assuming P2; Figure 1(c) shows the same for
when proving P2 assuming P1.)

Another well-known decomposition is case analysis [12],
which splits a proof into multiple proofs according to different
assignments to a set of variables. For example, we can split P1
into multiple (smaller) cases that consider separately different
combinations of ALU output and input operands. Furthermore,
symmetry can be used on the 32-bit ALU’s input operands to
reduce the number of cases that need to be checked explicitly.

As the example shows, the manual effort needed in
compositional model checking is significant. Expert
knowledge both in pipeline design and model checking is
needed to determine the appropriate abstractions and
decomposition strategies to apply. A similar sentiment was
reported in a recent case study that verified RISC processor
pipelines using compositional model checking [10].

III. T-SPEC AND T-PIPER REVIEW

A. Transactional Datapath Specification (T-spec)

A T-spec is a textual “netlist” that comprises of a set of
architectural states and next-state logic blocks. An
architectural state (register or array) has explicit state-read and
state-write interfaces. Each next-state compute block is treated
as a black-box for synthesis, except for multiplexers which are
primitives understood by T-piper analysis.

Figure 2(c) shows an example T-spec datapath with a
single state element R and a network of next-stage logic
blocks (op1, op2, op3, op4, op5, and m1); R is represented as
its separate read and write interfaces. Note that we chose to
use this simple example for the sake of brevity. Details on T-
spec can be found in [13].

A T-spec captures an abstract datapath, whose execution
semantics is interpreted as a sequence of “transactions” where
each transaction reads the state values left by the preceding
transaction and computes a new set of state values for the next
transaction to see (Figure 2(b)). Many valid implementations
may be derived from a T-spec, as long as the aforementioned
transactional semantics is preserved. The proposed formal
verification approach aims to prove that the in-order pipeline
implementation synthesized by T-piper executes and performs
the same order of transactions and state updates as its T-spec
specification.

B. Pipeline Synthesis (T-piper)

To arrive at a pipelined implementation, T-piper analysis
(Figure 2(a)), based on designer-specified pipeline-stage
boundaries (S-cfg), informs the designer of the available
opportunities for applying forwarding and speculation to
resolve hazards. Next, based on the designer’s choice of
forwarding/speculation optimizations to include (H-cfg), T-
piper generates an RTL-Verilog of the desired pipeline, which
preserves the transactional execution semantics of the T-spec

datapath. From a single T-spec, the designer can rapidly
explore the pipeline design space by submitting different
pipeline configurations to T-piper.

Figure 3 shows three example pipelines that can be
synthesized from the T-spec in Figure 2(c) by specifying a 4-
stage S-cfg where op1, R.rd, op2, and op3 are assigned to
stage 1, op4 to stage 2, op5 and m1 to stage 3, and R.wr to
stage 4. Figure 3(a) shows a simple synthesized pipeline with
stalling, where T-piper generates hazard detection and stall
logic for resolution (dashed lines).

Figure 3(b) shows a synthesized pipeline with data
forwarding. During analysis (Figure 2(a)), T-piper identifies
all possible forwarding points (FwdPt) for R. A forwarding
point represents an output port or a pipeline register where the
write-data value for R is available from an in-flight transaction
downstream in the pipeline, and therefore can be forwarded to
a younger transaction reading R. Based on the available
forwarding points, the designer can select which ones to
implement. In Figure 3(b), only forwarding points 2 and 4 are
enabled. The dashed lines illustrate the forward paths and
logic generated by T-piper in the final pipelined
implementation.

Finally, Figure 3(c) adds a predictor logic pred to the
datapath. T-piper identifies opportunities for forwarding such
prediction (PredFwdPt), and lets the designer choose which
ones to enable. A prediction can be resolved at any forwarding
points in the pipeline, using the actual data that has become
available. T-piper requires the designer to select sufficient set
of prediction resolution points (PredResPt) to ensure a
prediction is resolved fully before any transaction retires. In
Figure 3(c), the prediction is forwarded using PredFwdPt 1,
and resolved in the last stage. The dashed lines depict the
prediction forwarding and resolution logic introduced by T-
piper. More details on T-piper synthesis are available at [13].

IV. AUTOMATIC VERIFICATION

Compositional model checking can be used to prove that a
T-piper synthesized pipelined implementation is functionally
equivalent to its non-pipelined T-spec specification.
Specifically, given the inputs of T-spec, S-cfg and H-cfg files,
T-piper generates a design file that can be submitted to

Fig. 2. Pipeline development using T-spec and T-piper.

Fig. 3. Examples of hazard resolution in T-piper pipelines.

Cadence SMV [12]. Ideally, we would like to model check the
RTL Verilog design directly. The current choice of the SMV
language is simply because Cadence SMV is the only capable
compositional model checker that we have access to. As is, the
Verilog and SMV descriptions are generated from a common
RTL internal representation at the final step of the synthesis
process.

A. Verification Objective

Since the implementation pipeline in our context is
automatically generated from T-spec, any bug in the
implementation would have to be caused by a bug in T-piper.
As noted in the introduction, there are two classes of bugs that
can occur in T-piper: (1) a fundamental bug in the pipeline
synthesis algorithms itself, or (2) a programming bug
introduced in coding the synthesis algorithms. Both types of
bugs can be exposed by the formal verification approach
described in this paper.

Starting from a T-spec netlist, T-piper introduces pipeline
stage registers and pipeline control logic such that the
overlapped transaction executions on the synthesized pipeline
produces the same result as the one-at-a-time, sequential next-
state update of the T-spec model under T-spec’s transactional
execution semantics. The pipelined implementation uses the
same next-state compute blocks (e.g., op1, op2, op3, op4, op5,
and m1 in Figure 2(c)) as the original T-spec. Since these
blocks are a part of the specification, we assume they are
correct and have been verified independently.

Fig. 4. Pipeline model.

The focus of our verification effort is the correctness of the

pipeline register insertion and the pipeline control logic
generated by T-piper. Figure 4 depicts the pipeline structure of
a single pipeline stage generated by T-piper, with the pipeline
control logic in the shaded blocks. In the figure, PstageLogic
(pipeline stage logic) refers to the user-provided next-state
logic blocks specified in T-spec. The pipeline control logic
blocks introduced by T-piper are:
• Pipeline Stage Controller (PstageCtrl) interacts with the

PstageLogic in a given stage and manages communication
with the adjacent pipeline state registers.

• Data Hazard Manager (HazardMgr) detects data hazards
and activates the appropriate resolution logic. Since
hazard is detected at a state-read interface, one HazardMgr
is generated for each state-read interface in a stage.

• Forward Unit (FwdUnit) manages the forwarding of both
actual and predicted values. It includes a forwarding mux
(e.g., fwd in Figure 3(b)) and acts as a proxy to a state
read interface, providing either a forwarded or an actual
state-read value. One FwdUnit is generated for each state-
read interface with forwarding support.

• Prediction Resolution Unit (PredResUnit) compares a
predicted value with the actual value eventually produced
by the datapath. It triggers squash on a misprediction. One
PredResUnit is generated for each PredResPt in the stage.

B. Verification Models

Prior to abstraction, the specification and the
implementation models are cycle-accurate and bit-true
representations of the original non-pipelined T-spec and the
synthesized pipelined implementation, respectively. The
specification model is automatically augmented with the
necessary auxiliary states and logic to establish the refinement
mapping for formal verification.

Uninterpreted Functions. To curtail state explosion, T-

piper generates the simplest possible models while exposing
sufficient details to facilitate the verification of the pipeline
control logic. In the verification models, the internal details of
the next-state compute blocks (PstageLogic in Figure 4) are
abstracted as uninterpreted functions. Recall that these are
user-provided blocks that are assumed correct as given.

On the other hand, the implementation model must expose
faithfully the pipeline control logic (shaded units in Figure 4)
introduced by T-piper. To do so, the abstraction retains the
following details needed by the pipeline control logic for
formal verification:
• State elements and their read/write interfaces, which

expose all possible hazards in the implementation model.
• State write-data sources (e.g., outputs of op4 and op5 in

Figure 2(c)) and write multiplexers (e.g., m1 in Figure
2(c)), which expose all forwarding in the implementation.

• Dataflow dependencies, which are required to maintain
the correct original transactional semantics.

Free Variables. T-piper automatically declares control

signals as ‘free’ variables, so that the model checker will
explore all possible control conditions. More specifically, the
following signals are declared as free variables by T-piper:
• The read and write enables of each state element (and

index of an array state element). Freeing these signals
allows model checking to cover for all possible data
hazard scenarios.

• The select signal of a write multiplexer. This allows the
model checker to explore the state writes from all the
possible write-data sources, thus uncovering all the
possible data forwarding scenarios.

There is no extra analysis required to identify these signals
since they are already needed by T-piper for pipeline
synthesis.

Auxiliary States and Coordination Logic. To establish
formal equivalence, T-piper inserts auxiliary states to buffer
values produced by the specification model. These buffered
values are used to set the refinement maps and correctness
properties. Details on the correctness properties produced by
T-piper are discussed in Section IV.C.

In addition to the auxiliary states, T-piper also generates
logic that coordinates the execution progress of the
specification and the implementation models. Such
coordination logic is needed to ensure proper alignment
between the propagated reference values through auxiliary
states and the values in the pipeline implementation.

When the coordination logic detects a pipeline stall in the
implementation model, the coordination logic needs to
artificially throttle the progress of the specification model to
keep the two models’ progress in synchronization. Since T-
piper is synthesizing the pipeline control logic, it knows which
signals correspond to pipeline stalls and need to be monitored
by the coordination logic.

Modeling Speculation. When a transaction requires an

architectural state value that is due to be updated by an older
transaction and the value is not yet available through
forwarding, automatic speculative mechanisms in a T-piper
pipeline allow the younger dependent transaction to utilize a
predicted value generated by a user-provided value predictor
in place of the actual state update value of the updating older
transaction. T-piper automatically generates the logic to
eventually check the predicted value against the actual value
and, in the case of a misprediction, to restart the pipeline after
squashing any affected transactions. (The transaction for
which the prediction is made for never made use of the
prediction itself and therefore is always correct.)

In the case of a correct prediction, we need to verify that
the predicted value is forwarded correctly. This is essentially
the same as verifying the data forwarding logic, except with a
different type of data source (i.e., value produced by the
predictor logic instead of a logic block from a downstream
stage). In the case of a misprediction, we need to verify both
that the prediction resolution unit (PredResUnit) appropriately
informs the pipeline control units (PstageCtrl) of the event and
that the pipeline is correctly squashed and restarted.

T-piper implements the approach in [8] to model
speculative execution for verification. First, we utilize a free
Boolean flag (e.g., isMispred) to indicate whether a
misprediction happened at a given execution step. If isMispred
is asserted, then the specification model stalls to wait for the
implementation model to detect the misprediction and squash
the affected transactions in the pipeline. If isMispred is not
asserted, the specification model advances normally.

Second, the transactions following a misprediction in the
implementation model are marked as ‘shadow’. They will
eventually be squashed when the misprediction is detected.
Therefore, they do not have any correspondence to those
transactions executed by the specification model. These
shadow transactions are tracked with a shadow bit, which is an
auxiliary state that is set when the isMispred flag is asserted

and cleared when the implementation has handled the
misprediction. The refinement maps are set to ignore these
shadow transactions accordingly.

Finally, to verify the correctness of the forwarding logic
for a predicted value, T-piper uses the value generated by the
specification model as the input to the implementation model.
This value is carried along the pipeline using auxiliary states,
and is used to model the forwarding of a correct prediction.

User-Defined Constraints on State Accesses. By default,

T-spec requires each state access to be predicated by an
explicit enable signal (i.e., a read/write occurs only when its
enable signal is asserted). However, in some cases, a state is
constrained by design to always be read (or written) by every
transaction. For example, the program counter (PC) in an
instruction processor is read and written by every instruction.
To simplify the verification models, we extended T-spec to
allow the user to annotate such constraints. T-piper
incorporates these constraints in the verification model. In the
instruction processor example, the constraint that sets PC to
always be read/written allows pruning the scenarios where PC
is not read/written, which reduces the number of state
transitions to be explored during model checking.

C. Proving Correctness

Correctness Properties. T-piper automatically sets up
refinement maps and the following correctness properties:
• State write value (P-wr): any architectural state updates

made in the implementation model should be consistent to
those in the specification model.

• State read value (P-rd): any architectural state reads made
in the implementation model should be consistent to those
in the specification model. Note that in an implementation
model with data forwarding, state read value is obtained
at the output of the FwdUnit.

• Uninterpreted function output (P-uf-out): the output
produced by each uninterpreted function in the
implementation model should be consistent with the one
in the specification model.

The P-wr properties by themselves are necessary and
sufficient to prove the functional equivalence between the
specification and the implementation models. The P-rd and P-
uf-out properties are included to facilitate decomposition.

Decomposition. T-piper automates similar decomposition

heuristics as those applied manually in [12].
• A P-wr property is proven by assuming that all the write-

data sources are correct. Write-data sources are the
earliest forwarding points (e.g., op4 and op5 in Figure
2(c)), which are already identified by T-piper during
pipeline synthesis. A write-data source is either an output
of an uninterpreted function (assumed correct in P-uf-out)
or a state read interface (assumed correct in P-rd). The
write-data source correctness assumption removes from
the P-wr‘s cone of influence the pipeline logic that
computes the write-data.

• A P-rd property is proven by assuming that all the
possible forwarding sources to that read interface are
correct. As mentioned earlier, T-piper already identified
all forwarding sources. Therefore no additional analysis is
needed to determine these sources. Each forwarding
source should either be an uninterpreted function output
(assumed correct in P-uf-out) or a state read interface
(assumed correct in P-rd). T-piper will not create cyclic
dependency in P-rd. The forwarding source correctness
assumption removes from the P-rd’s cone of influence the
pipeline implementation logic that computes the
forwarded values.

• A P-uf-out property is proven by assuming that all its
inputs are correct. Each of the uninterpreted function
inputs should either be a state read data (assumed correct
in P-rd) or an uninterpreted function output (assumed
correct in P-uf-out). T-piper will not create cyclic
dependency in P-uf-out. The assumption removes from
the P-uf-out’s cone of influence the pipeline
implementation logic that produces the inputs to the
uninterpreted function.

Fig. 5. Examples of verifying pipelines with stalling, forwarding, and

speculative execution.

Case Splitting. T-piper automatically performs case
splitting on the aforementioned properties, as follows:
• A P-wr property is split into cases that consider all

possible values of each of the write-data sources to the
state write-data being proven.

• A P-rd property is split into cases that consider all
possible values of the state read-data. For an array state,

the split also considers all possible values of the array
read index.

• A P-uf-out property is split into cases that consider all
possible values of its output and its inputs.

T-piper defines the variables involved in the case splitting
as symmetric so that the model checker can perform data type
reduction accordingly.

D. Examples

Figure 5(a) depicts the verification model for the
specification datapath from the T-spec in Figure 2(c). 3
uninterpreted functions are used in these models, s1, s2, and
s3. Notice that the next-state compute blocks op2 and op3 in
Figure 2(c) are abstracted as a single uninterpreted function
s1. Figure 5(b), 5(c), and 5(d) show the implementation
models generated by T-piper to verify the pipelines in Figure
3(a), 3(b), and 3(c), respectively. These figures also show the
correctness properties automatically placed by T-piper, which
are used to decompose the verification problem into smaller
sub-problems. Note that without abstractions and
decompositions, SMV would encounter state explosion on
even these simple examples.

In Figure 5(b), the pipeline has no optimization (hazards
are resolved by stalling). Despite the simplicity, the pipeline
still needs to implement a variety of control blocks (i.e.,
PstageCtrl, HazardMgr, PregsCtrl) for correctness (shown in
white boxes in the figure). Also, the read and write enables of
R are declared as free variables so that all possible transaction
sequences in the pipeline are explored.

For the pipeline in Figure 5(c), T-piper includes the
forwarding paths and logic (FwdUnit) in the model.
Additionally, the select signal for the multiplexer m1 is
defined as a free variable, so that the model checker would
explore all possible forwarding scenarios. Although not
shown, the models in Figure 5(b) and 5(c) have coordination
logic to stall the specification model when the implementation
model stalls.

Finally, in the case in Figure 5(d), a predictor logic block
pred is added for speculative execution, with the predicted
value forwarded from stage 2 to stage 1, and the prediction
resolved in stage 4. T-piper exposes the prediction forwarding
path as well as the prediction resolution unit (PredResUnit). It
also augments the model with (1) the isMispred free variable
to emulate speculative execution, (2) the reference RF state
update value (refValue) from the specification that is used to
model the correct prediction forwarding, (3) the coordination
logic to stall the specification model when the implementation
is emulating a misprediction, and (4) the flag bits to track
‘shadow’ transactions in the pipeline (Section IV.B).

E. Applicability to Other Pipeline Synthesis Frameworks

This section has described the proposed automatic
verification approach in the context of T-spec/T-piper.
However, it may be possible to apply the approach to other
high-level pipeline synthesis frameworks, provided that these
frameworks capture at the least the same amount of precise
details of the input specification and the target pipelines as the

T-spec/T-piper framework (e.g., state read/write interfaces,
hazard resolution scheme to apply, etc).

V. CASE STUDIES

We have applied the formal verification integration in

Section IV so that T-piper generates both an RTL-Verilog and
an SMV input file for Cadence SMV [12]. We conducted case
studies based on the processor T-specs in Figure 6. Figure 6(a)
shows a processor T-spec for the MIPS RISC ISA; Figure 6(b)
shows T-spec for a hypothetical ISA with CISC-like memory-
memory instructions. The datapath style in Figure 6(b) is
inspired by the Intel Atom® processor pipeline, which does
not break x86 memory-memory instructions into multiple
RISC-like micro-operands. True to CISC-style architectures,
the pipeline also handles variable length instructions. From
these two T-specs, we used T-piper to synthesize a total of 18
pipelined processor implementations, varying in their pipeline
depths (4, 5, and 6 stages) and hazard resolution schemes
(with stalling only (N), with maximal data forwarding (F), and
with both forwarding and speculative execution (S)).

We collected verification metrics similar to those in [10]:
• The number of correctness properties—this is an

indication of the required level of verification effort and
knowledge.

• The number of state variables for the property with the
largest cone of influence—this static number is an
indication of the likelihood of encountering state
explosion.

• The number of BDD nodes allocated during model
checking—this runtime measure of SMV data size is also
an indication of the likelihood of encountering state
explosion.

• The execution time spent by the model checker to
complete the verification.

A. Results
Figure 7 summarizes the results from verification using

Cadence SMV running on a 2 GHz PC with 4 GB of DRAM.
The results indicate the following:
• Not surprisingly, deeper pipelines are more expensive to

verify (i.e., states, time, and BDD nodes increase), since

each additional stage adds more pipeline registers and
control logic.

• More complicated hazard resolution schemes (forwarding,
speculation) only require a few additional state variables,
but introduce many more possible state transitions (e.g.,
various data forwarding scenarios) that result in
significant increase in model checking time and BDDs.

• Surprisingly (at least at first), MIPS and the CISC-like
memory-memory processor pipelines incur a similar level
of verification effort. One might expect that the CISC-like
pipeline would require a higher verification effort since
the datapath requires a complex memory address compute
module to facilitate instructions reading from and writing
to the memory in a single pipeline pass, as well as a more
sophisticated next PC compute module to accommodate
variable length instructions. However, T-piper abstracts
these memory address and next PC compute modules as
black-boxes using uninterpreted functions during formal
verification. Thus, verification cost is more affected by
the complexity of the pipeline control logic injected by T-
piper.

Fig. 7. Verification of load-store and memory-memory processor pipelines.
Note that the N, F, and S labels correspond to pipelines with no forwarding

and speculation, with forwarding only, and with both, respectively.

Fig. 6. T-specs for processor datapaths under study.

B. Catching Real Bugs
Our case studies did uncover a number of real

“programming” bugs in T-piper and fortunately no
“algorithmic” bugs so far (Section IV.A). One example of a
failed verification was caused by an error in the coding of the
RTL-to-SMV printing function, resulting in an incorrect SMV
model from what is a correct internal representation. Model
checking successfully produced a counter example to help us
pinpoint a T-piper programming bug. While in this case the
internal representation and the Verilog output were both
correct, one can also imagine an opposite scenario where the
typo is in the Verilog instead of in the SMV model. This
speaks strongly for formal verification technologies that apply
directly to the implementation design file.

C. Sanity Check

Lastly, the automatic verification quality of T-piper was
validated against manual effort. We created a T-spec for a
simple 3-stage pipeline example from Cadence SMV tutorial
[12] and automatically verified it using T-piper. We found that
the verification metrics collected from our automated
approach are comparable to those gathered from the original
example from the tutorial, which were done manually.

VI. RELATED WORK

The most common functional verification approach in use

today is still simulation-based validation, where an RTL
description of the design is simulated with test inputs, and its
output is checked for correctness. However, simulation-based
validation can only ensure correctness of the behaviors
exercised by the test inputs. In practice, simulation-based
validation cannot achieve full coverage by brute force due to
the prohibitively long simulation time required. Existing
studies (e.g., [1][4]) proposed generating the test inputs
formally to ensure adequate coverage.

Existing high-level design frameworks (e.g., [11][13][15])
provides correct-by-construction property, but do not have
integrated formal verification to ensure the correctness of the
output implementation that it generates. Thus, they are prone
to aforesaid “programming” and “algorithmic” bugs. [3] has
integrated assertion-based verification with [15]. However, to
the best of our knowledge, no existing high-level framework
has an integrated automatic compositional model checking
capability.

In terms of formal verification approach that can be
integrated with these high-level frameworks, besides SMV
[12], theorem proving involves deriving a mathematical
description of the whole system and creating proofs that
certain properties hold. Burch and Dill [2] derive an
abstraction function by “flushing” the implementation, and
proves a commutative diagram. The proof in [9] leverages
logic with equality, uninterpreted functions, etc. Such theorem
proving techniques including [7][14] can automate the more
menial steps in a proof but require user to figure out a strong
invariant. In contrast, model checking computes the reachable
states automatically, so requires less manual effort in deriving
the formal model, and defining and guiding the proofs. Given

just an implementation, [6] extracts its pipeline control logic
for property verification with its abstracted datapath. This
work leverages knowledge from T-spec and T-piper for more
direct formal verification.

VII. CONCLUSION

 This paper presents an integrated automatic synthesis and

verification framework useful in ASIP development. The
approach formally verify custom pipelined processors
synthesized by T-piper from a given T-spec. T-piper
automatically generates input file to Cadence SMV, which
verifies that the pipeline synthesized by T-piper is functionally
equivalent to its T-spec specification, under the T-spec
transactional semantics. A case study on automatic
verification of various custom RISC and CISC-like pipelined
processors synthesized by T-piper demonstrated the
effectiveness of the proposed approach. The usefulness of the
approach in uncovering real-life implementation bugs in T-
piper was discussed.

ACKNOWLEDGMENT

We thank Prof. Edmund M. Clarke from School of
Computer Science at Carnegie Mellon, Scott Robinson from
Intel, and our colleagues in the Computer Architecture Lab at
Carnegie Mellon for their interaction and feedback.

REFERENCES

[1] M. Behm, et al., “Industrial Experience with Test Generation Languages

for Processor Verification”, Design Automation Conference, 2004.
[2] J. R. Burch and D. L. Dill. “Automated verification of pipelined

microprocessor control”, Computer Aided Verification, 1994.
[3] A. Chattopadhyay, et al., "Integrated Verification Approach during

ADL-Driven Processor Design”, Rapid System Prototyping, 2006.
[4] M. Chen and P. Mishra, "Functional Test Generation using Efficient

Property Clustering and Learning Techniques", IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems, 2010.

[5] E. Clarke, et al., “Model Checking”, The MIT Press, 2000.
[6] P. Ho, A. J. Isles and T. Kam, “Formal Verification of Pipeline Control

using Controlled Token Nets and Abstract Interpretation”, International
Conference on Computer-Aided Design, 1998.

[7] R. Hosabettu, et al., “Verifying advanced microarchitectures that support
speculation and exceptions”, Computer Aided Verification, 2002.

[8] R. Jhala, K. L. McMillan, “Microarchitecture Verification by
Compositional Model Checking”, Computer Aided Verification, 2001.

[9] S. Lahiri, S. Seshia and R. Bryant, “Modeling and Verification of Out-
of-Order Microprocessors in UCLID”, Formal Methods in Computer-
Aided Design, 2002.

[10] A. Lungu and D. J. Sorin. "Verification-Aware Microprocessor Design",
Parallel Architecture and Compilation Techniques, 2007.

[11] M. V. Marinescu and M. Rinard, “High-level Automatic Pipelining for
Sequential Circuits”, International Symposium on System Synthesis,
2001.

[12] K. L. McMillan. “Getting Started with SMV”, Cadence Berkeley
Laboratories, 2001.

[13] E. Nurvitadhi, J. C. Hoe, T. Kam, S. L. Lu, “Automatic Pipelining from
Transactional Datapath Specifications”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2011.

[14] J. Sawada, J. W. A. Hunt, “Trace Table Based Approach for Pipelined
Microprocessor Verification”, Computer Aided Verification, 1997.

[15] O. Schliebusch, et al.,“RTL Processor Synthesis for Architecture
Exploration and Implementation”, Design Automation and Test in
Europe, 2004.

