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Abstract – When a processor implementation is synthesized from 
a specification using an automatic framework, this 
implementation still should be verified against its specification to 
ensure the automatic framework introduced no error. This paper 
presents our effort in integrating fully automated formal 
verification with a high-level processor pipeline synthesis 
framework. As an integral part of the pipeline synthesis, our 
framework also emits SMV models for checking the functional 
equivalence between the output pipelined processor 
implementation and its input non-pipelined specification. Well 
known compositional model checking techniques are 
automatically applied to curtail state explosion during model 
checking. The paper reports case studies of applying this 
integrated framework to synthesize and formally verify pipelined 
RISC and CISC processors. 

 
I.    INTRODUCTION 

 
Motivations. The need to apply a high-degree of 

customization within a short time-to-market makes it 
intractable to develop application-specific processors (ASIPs) 
manually. To address this, prior works (e.g., [11][13][15]) 
have presented design frameworks that can be used to 
automatically synthesize custom pipelined processor 
implementations (usually at the register transfer level) from a 
precise high-level specification. These frameworks drastically 
shorten the time to arrive at an implementation. However, an 
overall reduction in time-to-market requires not only saving 
the time to create an implementation but also cutting down the 
time to verify that the implementation is correct. 

Unfortunately, even starting from a presumably correct 
specification and assuming hands-free automatic synthesis, 
there are ample opportunities for bugs to be introduced in the 
many rounds of synthesis and translation that stand between a 
high-level specification and its final realization. We can group 
the bugs into: (1) a fundamental error in the synthesis 
algorithms, or (2) a programming bug in the coding of the 
synthesis algorithms. This is not a new problem. An analogous 
problem has long existed for the now industry-standard RTL-
downward synthesis flows. In less critical designs, one may 
simply put faith in the correctness of the synthesis tools; for 
critical designs, one must perform extensive functional design 
validation at the lowest practical intermediate representations 
and even on the final parts. 

 
Background Technologies. Taking advantage of the 

precise semantics of high-level design frameworks, one should 
utilize formal verification technologies to ensure functional 
equivalence between the initial high-level specification and 

the output of subsequent synthesis and translation. With recent 
advances in combining model checking and theorem proving 
to curtail state explosion, compositional model checking [12] 
has been applied successfully to verify the functional 
equivalence between non-trivial pipelines and their 
specifications [8][10]. Unfortunately, the required expertise 
and manual effort are reported to be very high [10]. 

In this paper, we present an effort to integrate formal 
verification with the T-piper high-level pipeline synthesis 
framework [13]. To reduce the error prone and tedious 
pipelining effort, T-piper automatically generates a pipelined 
implementation from an abstract transactional specification 
(T-spec) of a non-pipelined datapath. Many implementations 
can be derived from a T-spec, as long as the T-spec 
transactional semantics is correctly preserved. From a T-spec, 
T-piper creates a pipeline implementation that overlaps the 
executions of multiple transactions in different pipeline stages 
for better performance. A designer can direct T-piper to 
rapidly create many pipelines by specifying the pipeline stage 
boundaries and selecting from a complete set of hazard 
resolution options identified by T-piper. As such, T-spec/T-
piper is well suited for ASIP design explorations and 
development.  

 
Contributions. The pipelined implementation synthesized 

by T-piper, with its concurrent execution of transactions and 
the intricacies of hazard resolutions, nevertheless should result 
in the same execution as if the transactions were executed one-
at-a-time as prescribed by the T-spec transactional semantics. 
To formally prove this, we propose extending T-piper to 
automate the verification of the functional equivalence 
between the input T-spec and the output pipeline 
implementation. This automation eliminates the high manual 
effort and expertise required to generate the verification 
models and to apply abstraction and compositional reasoning 
techniques for compositional model checking. This fully 
automated approach enables users without expert-level formal 
verification knowledge to develop formally verified custom 
pipelined datapath. In our case studies, we were able to 
automatically verify a variety of custom processor pipelines, 9 
for the MIPS ISA and 9 for a hypothetical ISA with CISC-like 
memory-to-memory instructions. 

 
Outline. The rest of the paper is organized as follows. 

Section II provides a background in model checking. Section 
III gives an overview of the T-spec/T-piper design framework. 
Building on Section II and III, Section IV presents the formal 



verification integration with T-piper. Section V reports our 
case studies on automatic verification of processor pipelines. 
Section VI provides a survey of related work. Finally, Section 
VII offers concluding remarks. 

 
II.   MODEL CHECKING OVERVIEW 

 
This section uses a simple example from the Cadence 

SMV model checker tutorial [12] to explain the process of 
compositional model checking and to highlight the high level 
of sophistication and manual effort involved. The left-portion 
of Figure 1(a) (designated “Specification”) shows a simple 
non-pipelined 32-bit processor datapath that only supports 
ALU instructions. Each ALU instruction reads two operands 
from the register file (RF); performs an ALU operation; and 
writes the result back to the RF. The right-portion of Figure 
1(a) (designated “Implementation”) depicts a 3-stage pipelined 
datapath with maximal data forwarding support. 

 

 
Fig. 1. A simple verification example from the Cadence SMV model checker 

tutorial [12]. 
 
A.    Model Checking 

To verify that the Specification and the Implementation are 
functionally equivalent, we first create cycle-accurate and bit-
true RTL models for both the Specification datapath and the 
Implementation datapath. 

Next, we devise a pipeline correctness property to be 
checked.  To prove functional equivalence of the Specification 
and the Implementation, we can set a property stating that 
following all possible instruction execution sequences, the 
Specification and the Implementation make the same RF state 
updates. Since the RF state update value is produced by the 
ALU, which depends on the RF state as input, the correctness 
property (let us call this P1) can instead require the ALU 
outputs in Specification and Implementation to be the same. 

Because the timing of Specification and the 
Implementation are different, we need to create a refinement 
map that relates the ALU output in the Implementation to the 
ALU output in the Specification. In this case, we introduce an 
auxiliary pipeline register in the Specification model to 

provide a delayed ALU output value that corresponds in timing 
with the ALU output in the implementation model.   

We next declare certain control signals to be “free” 
variables, indicating to the model checker to consider all 
possible combinations of values of those variables.  In the 
current example, the read and write indices (srcA, srcB, dst) of 
the RF would be declared as free variables so that the model 
checker considers in all possible execution sequences all 
combinations of reading and writing the different RF entries. 
 
B.    Abstraction and Decomposition 

Given correctly formulated (1) Specification and 
Implementation models, (2) a refinement map, and (3) a 
correctness property, a capable model checker should either 
prove that the property is true or produce a counter example. 
In practice however, even the simple pipeline in the current 
example would cause today’s model checkers to run out of 
memory due to the large number of states that need to be 
explored (a.k.a., state explosion). 

The complex functionality of the ALU (supporting a large 
number of 2-to-1 functions, such as multiply-and-shift) is one 
cause of state explosions. A standard workaround in model 
checking is to assume that the corresponding ALU blocks in 
the Specification and the Implementation are identical.  Thus, 
they can be captured as uninterpreted functions [12] so that 
the model checker does not have to consider their internal 
details. We can further abstract other details such as the exact 
word-size of the datapath. For example, data type reduction 
[12] can be applied to the ALU operands and output to verify 
the correctness property generally for unbounded word-size 
(which is actually much cheaper to verify than an explicit 
word-size). 

A property that depends on many signals (i.e., has a large 
cone of influence) can also lead to state explosion. The 
correctness property P1 posed in Section II.A has a cone of 
influence that covers the entirety of the Specification and the 
Implementation. Compositional reasoning [12] allows a 
property to be decomposed, so multiple smaller (more 
manageable) properties can be checked instead. For example, 
we can introduce another property P2 that states that the ALUs 
in the Specification and Implementation receive the same 
operands. Instead of proving P1 as a standalone property, we 
prove separately P1 assuming P2, and then P2 assuming P1. 
When proving P1 assuming P2, the cone of influence is 
greatly reduced from before since it is no longer necessary to 
consider the RF fetch logic in the Implementation. (Figure 
1(b) illustrates the part of the pipeline that can be left out 
when proving P1 assuming P2; Figure 1(c) shows the same for 
when proving P2 assuming P1.) 

Another well-known decomposition is case analysis [12], 
which splits a proof into multiple proofs according to different 
assignments to a set of variables. For example, we can split P1 
into multiple (smaller) cases that consider separately different 
combinations of ALU output and input operands. Furthermore, 
symmetry can be used on the 32-bit ALU’s input operands to 
reduce the number of cases that need to be checked explicitly. 



As the example shows, the manual effort needed in 
compositional model checking is significant. Expert 
knowledge both in pipeline design and model checking is 
needed to determine the appropriate abstractions and 
decomposition strategies to apply. A similar sentiment was 
reported in a recent case study that verified RISC processor 
pipelines using compositional model checking [10]. 

 
III.   T-SPEC AND T-PIPER REVIEW 

 
A.    Transactional Datapath Specification (T-spec) 

A T-spec is a textual “netlist” that comprises of a set of 
architectural states and next-state logic blocks. An 
architectural state (register or array) has explicit state-read and 
state-write interfaces. Each next-state compute block is treated 
as a black-box for synthesis, except for multiplexers which are 
primitives understood by T-piper analysis. 

Figure 2(c) shows an example T-spec datapath with a 
single state element R and a network of next-stage logic 
blocks (op1, op2, op3, op4, op5, and m1); R is represented as 
its separate read and write interfaces. Note that we chose to 
use this simple example for the sake of brevity. Details on T-
spec can be found in [13]. 

A T-spec captures an abstract datapath, whose execution 
semantics is interpreted as a sequence of “transactions” where 
each transaction reads the state values left by the preceding 
transaction and computes a new set of state values for the next 
transaction to see (Figure 2(b)). Many valid implementations 
may be derived from a T-spec, as long as the aforementioned 
transactional semantics is preserved. The proposed formal 
verification approach aims to prove that the in-order pipeline 
implementation synthesized by T-piper executes and performs 
the same order of transactions and state updates as its T-spec 
specification. 
 
B.    Pipeline Synthesis (T-piper)  

To arrive at a pipelined implementation, T-piper analysis 
(Figure 2(a)), based on designer-specified pipeline-stage 
boundaries (S-cfg), informs the designer of the available 
opportunities for applying forwarding and speculation to 
resolve hazards. Next, based on the designer’s choice of 
forwarding/speculation optimizations to include (H-cfg), T-
piper generates an RTL-Verilog of the desired pipeline, which 
preserves the transactional execution semantics of the T-spec 

datapath. From a single T-spec, the designer can rapidly 
explore the pipeline design space by submitting different 
pipeline configurations to T-piper. 

Figure 3 shows three example pipelines that can be 
synthesized from the T-spec in Figure 2(c) by specifying a 4-
stage S-cfg where op1, R.rd, op2, and op3 are assigned to 
stage 1, op4 to stage 2, op5 and m1 to stage 3, and R.wr to 
stage 4. Figure 3(a) shows a simple synthesized pipeline with 
stalling, where T-piper generates hazard detection and stall 
logic for resolution (dashed lines). 

Figure 3(b) shows a synthesized pipeline with data 
forwarding. During analysis (Figure 2(a)), T-piper identifies 
all possible forwarding points (FwdPt) for R. A forwarding 
point represents an output port or a pipeline register where the 
write-data value for R is available from an in-flight transaction 
downstream in the pipeline, and therefore can be forwarded to 
a younger transaction reading R. Based on the available 
forwarding points, the designer can select which ones to 
implement. In Figure 3(b), only forwarding points 2 and 4 are 
enabled. The dashed lines illustrate the forward paths and 
logic generated by T-piper in the final pipelined 
implementation. 

Finally, Figure 3(c) adds a predictor logic pred to the 
datapath. T-piper identifies opportunities for forwarding such 
prediction (PredFwdPt), and lets the designer choose which 
ones to enable. A prediction can be resolved at any forwarding 
points in the pipeline, using the actual data that has become 
available. T-piper requires the designer to select sufficient set 
of prediction resolution points (PredResPt) to ensure a 
prediction is resolved fully before any transaction retires. In 
Figure 3(c), the prediction is forwarded using PredFwdPt 1, 
and resolved in the last stage. The dashed lines depict the 
prediction forwarding and resolution logic introduced by T-
piper. More details on T-piper synthesis are available at [13]. 
 

IV.   AUTOMATIC VERIFICATION 
 

Compositional model checking can be used to prove that a 
T-piper synthesized pipelined implementation is functionally 
equivalent to its non-pipelined T-spec specification. 
Specifically, given the inputs of T-spec, S-cfg and H-cfg files, 
T-piper generates a design file that can be submitted to 

 
Fig. 2. Pipeline development using T-spec and T-piper.  

 

 
Fig. 3. Examples of hazard resolution in T-piper pipelines. 

 



Cadence SMV [12]. Ideally, we would like to model check the 
RTL Verilog design directly. The current choice of the SMV 
language is simply because Cadence SMV is the only capable 
compositional model checker that we have access to. As is, the 
Verilog and SMV descriptions are generated from a common 
RTL internal representation at the final step of the synthesis 
process. 
 
A.    Verification Objective 

Since the implementation pipeline in our context is 
automatically generated from T-spec, any bug in the 
implementation would have to be caused by a bug in T-piper. 
As noted in the introduction, there are two classes of bugs that 
can occur in T-piper: (1) a fundamental bug in the pipeline 
synthesis algorithms itself, or (2) a programming bug 
introduced in coding the synthesis algorithms. Both types of 
bugs can be exposed by the formal verification approach 
described in this paper. 

Starting from a T-spec netlist, T-piper introduces pipeline 
stage registers and pipeline control logic such that the 
overlapped transaction executions on the synthesized pipeline 
produces the same result as the one-at-a-time, sequential next-
state update of the T-spec model under T-spec’s transactional 
execution semantics. The pipelined implementation uses the 
same next-state compute blocks (e.g., op1, op2, op3, op4, op5, 
and m1 in Figure 2(c)) as the original T-spec. Since these 
blocks are a part of the specification, we assume they are 
correct and have been verified independently. 

 

 
Fig. 4. Pipeline model. 

 
The focus of our verification effort is the correctness of the 

pipeline register insertion and the pipeline control logic 
generated by T-piper. Figure 4 depicts the pipeline structure of 
a single pipeline stage generated by T-piper, with the pipeline 
control logic in the shaded blocks. In the figure, PstageLogic 
(pipeline stage logic) refers to the user-provided next-state 
logic blocks specified in T-spec. The pipeline control logic 
blocks introduced by T-piper are: 
• Pipeline Stage Controller (PstageCtrl) interacts with the 

PstageLogic in a given stage and manages communication 
with the adjacent pipeline state registers. 

• Data Hazard Manager (HazardMgr) detects data hazards 
and activates the appropriate resolution logic. Since 
hazard is detected at a state-read interface, one HazardMgr 
is generated for each state-read interface in a stage.  

• Forward Unit (FwdUnit) manages the forwarding of both 
actual and predicted values. It includes a forwarding mux 
(e.g., fwd in Figure 3(b)) and acts as a proxy to a state 
read interface, providing either a forwarded or an actual 
state-read value. One FwdUnit is generated for each state-
read interface with forwarding support. 

• Prediction Resolution Unit (PredResUnit) compares a 
predicted value with the actual value eventually produced 
by the datapath. It triggers squash on a misprediction. One 
PredResUnit is generated for each PredResPt in the stage. 

 
B.    Verification Models 

Prior to abstraction, the specification and the 
implementation models are cycle-accurate and bit-true 
representations of the original non-pipelined T-spec and the 
synthesized pipelined implementation, respectively. The 
specification model is automatically augmented with the 
necessary auxiliary states and logic to establish the refinement 
mapping for formal verification. 

 
Uninterpreted Functions. To curtail state explosion, T-

piper generates the simplest possible models while exposing 
sufficient details to facilitate the verification of the pipeline 
control logic. In the verification models, the internal details of 
the next-state compute blocks (PstageLogic in Figure 4) are 
abstracted as uninterpreted functions. Recall that these are 
user-provided blocks that are assumed correct as given. 

On the other hand, the implementation model must expose 
faithfully the pipeline control logic (shaded units in Figure 4) 
introduced by T-piper. To do so, the abstraction retains the 
following details needed by the pipeline control logic for 
formal verification: 
• State elements and their read/write interfaces, which 

expose all possible hazards in the implementation model. 
• State write-data sources (e.g., outputs of op4 and op5 in 

Figure 2(c)) and write multiplexers (e.g., m1 in Figure 
2(c)), which expose all forwarding in the implementation. 

• Dataflow dependencies, which are required to maintain 
the correct original transactional semantics. 

 
Free Variables. T-piper automatically declares control 

signals as ‘free’ variables, so that the model checker will 
explore all possible control conditions. More specifically, the 
following signals are declared as free variables by T-piper:  
• The read and write enables of each state element (and 

index of an array state element). Freeing these signals 
allows model checking to cover for all possible data 
hazard scenarios. 

• The select signal of a write multiplexer. This allows the 
model checker to explore the state writes from all the 
possible write-data sources, thus uncovering all the 
possible data forwarding scenarios. 

There is no extra analysis required to identify these signals 
since they are already needed by T-piper for pipeline 
synthesis. 

 



Auxiliary States and Coordination Logic. To establish 
formal equivalence, T-piper inserts auxiliary states to buffer 
values produced by the specification model. These buffered 
values are used to set the refinement maps and correctness 
properties. Details on the correctness properties produced by 
T-piper are discussed in Section IV.C.  

In addition to the auxiliary states, T-piper also generates 
logic that coordinates the execution progress of the 
specification and the implementation models. Such 
coordination logic is needed to ensure proper alignment 
between the propagated reference values through auxiliary 
states and the values in the pipeline implementation. 

When the coordination logic detects a pipeline stall in the 
implementation model, the coordination logic needs to 
artificially throttle the progress of the specification model to 
keep the two models’ progress in synchronization. Since T-
piper is synthesizing the pipeline control logic, it knows which 
signals correspond to pipeline stalls and need to be monitored 
by the coordination logic. 

 
Modeling Speculation. When a transaction requires an 

architectural state value that is due to be updated by an older 
transaction and the value is not yet available through 
forwarding, automatic speculative mechanisms in a T-piper 
pipeline allow the younger dependent transaction to utilize a 
predicted value generated by a user-provided value predictor 
in place of the actual state update value of the updating older 
transaction. T-piper automatically generates the logic to 
eventually check the predicted value against the actual value 
and, in the case of a misprediction, to restart the pipeline after 
squashing any affected transactions.  (The transaction for 
which the prediction is made for never made use of the 
prediction itself and therefore is always correct.) 

In the case of a correct prediction, we need to verify that 
the predicted value is forwarded correctly. This is essentially 
the same as verifying the data forwarding logic, except with a 
different type of data source (i.e., value produced by the 
predictor logic instead of a logic block from a downstream 
stage). In the case of a misprediction, we need to verify both 
that the prediction resolution unit (PredResUnit) appropriately 
informs the pipeline control units (PstageCtrl) of the event and 
that the pipeline is correctly squashed and restarted.  

T-piper implements the approach in [8] to model 
speculative execution for verification. First, we utilize a free 
Boolean flag (e.g., isMispred) to indicate whether a 
misprediction happened at a given execution step. If isMispred 
is asserted, then the specification model stalls to wait for the 
implementation model to detect the misprediction and squash 
the affected transactions in the pipeline. If isMispred is not 
asserted, the specification model advances normally. 

Second, the transactions following a misprediction in the 
implementation model are marked as ‘shadow’. They will 
eventually be squashed when the misprediction is detected. 
Therefore, they do not have any correspondence to those 
transactions executed by the specification model. These 
shadow transactions are tracked with a shadow bit, which is an 
auxiliary state that is set when the isMispred flag is asserted 

and cleared when the implementation has handled the 
misprediction. The refinement maps are set to ignore these 
shadow transactions accordingly.  

Finally, to verify the correctness of the forwarding logic 
for a predicted value, T-piper uses the value generated by the 
specification model as the input to the implementation model. 
This value is carried along the pipeline using auxiliary states, 
and is used to model the forwarding of a correct prediction. 

 
User-Defined Constraints on State Accesses. By default, 

T-spec requires each state access to be predicated by an 
explicit enable signal (i.e., a read/write occurs only when its 
enable signal is asserted). However, in some cases, a state is 
constrained by design to always be read (or written) by every 
transaction. For example, the program counter (PC) in an 
instruction processor is read and written by every instruction. 
To simplify the verification models, we extended T-spec to 
allow the user to annotate such constraints. T-piper 
incorporates these constraints in the verification model. In the 
instruction processor example, the constraint that sets PC to 
always be read/written allows pruning the scenarios where PC 
is not read/written, which reduces the number of state 
transitions to be explored during model checking. 
 
C.    Proving Correctness  

Correctness Properties. T-piper automatically sets up 
refinement maps and the following correctness properties: 
• State write value (P-wr): any architectural state updates 

made in the implementation model should be consistent to 
those in the specification model.  

• State read value (P-rd): any architectural state reads made 
in the implementation model should be consistent to those 
in the specification model. Note that in an implementation 
model with data forwarding, state read value is obtained 
at the output of the FwdUnit. 

• Uninterpreted function output (P-uf-out): the output 
produced by each uninterpreted function in the 
implementation model should be consistent with the one 
in the specification model.  

The P-wr properties by themselves are necessary and 
sufficient to prove the functional equivalence between the 
specification and the implementation models. The P-rd and P-
uf-out properties are included to facilitate decomposition. 

 
Decomposition. T-piper automates similar decomposition 

heuristics as those applied manually in [12]. 
• A P-wr property is proven by assuming that all the write-

data sources are correct. Write-data sources are the 
earliest forwarding points (e.g., op4 and op5 in Figure 
2(c)), which are already identified by T-piper during 
pipeline synthesis. A write-data source is either an output 
of an uninterpreted function (assumed correct in P-uf-out) 
or a state read interface (assumed correct in P-rd). The 
write-data source correctness assumption removes from 
the P-wr‘s cone of influence the pipeline logic that 
computes the write-data. 



• A P-rd property is proven by assuming that all the 
possible forwarding sources to that read interface are 
correct. As mentioned earlier, T-piper already identified 
all forwarding sources. Therefore no additional analysis is 
needed to determine these sources. Each forwarding 
source should either be an uninterpreted function output 
(assumed correct in P-uf-out) or a state read interface 
(assumed correct in P-rd). T-piper will not create cyclic 
dependency in P-rd. The forwarding source correctness 
assumption removes from the P-rd’s cone of influence the 
pipeline implementation logic that computes the 
forwarded values.  

• A P-uf-out property is proven by assuming that all its 
inputs are correct. Each of the uninterpreted function 
inputs should either be a state read data (assumed correct 
in P-rd) or an uninterpreted function output (assumed 
correct in P-uf-out). T-piper will not create cyclic 
dependency in P-uf-out. The assumption removes from 
the P-uf-out’s cone of influence the pipeline 
implementation logic that produces the inputs to the 
uninterpreted function. 
 

  
Fig. 5. Examples of verifying pipelines with stalling, forwarding, and 

speculative execution. 
 

Case Splitting. T-piper automatically performs case 
splitting on the aforementioned properties, as follows: 
• A P-wr property is split into cases that consider all 

possible values of each of the write-data sources to the 
state write-data being proven. 

• A P-rd property is split into cases that consider all 
possible values of the state read-data. For an array state, 

the split also considers all possible values of the array 
read index.  

• A P-uf-out property is split into cases that consider all 
possible values of its output and its inputs. 

T-piper defines the variables involved in the case splitting 
as symmetric so that the model checker can perform data type 
reduction accordingly. 

 
D.    Examples 

Figure 5(a) depicts the verification model for the 
specification datapath from the T-spec in Figure 2(c). 3 
uninterpreted functions are used in these models, s1, s2, and 
s3. Notice that the next-state compute blocks op2 and op3 in 
Figure 2(c) are abstracted as a single uninterpreted function 
s1. Figure 5(b), 5(c), and 5(d) show the implementation 
models generated by T-piper to verify the pipelines in Figure 
3(a), 3(b), and 3(c), respectively. These figures also show the 
correctness properties automatically placed by T-piper, which 
are used to decompose the verification problem into smaller 
sub-problems. Note that without abstractions and 
decompositions, SMV would encounter state explosion on 
even these simple examples. 

In Figure 5(b), the pipeline has no optimization (hazards 
are resolved by stalling). Despite the simplicity, the pipeline 
still needs to implement a variety of control blocks (i.e., 
PstageCtrl, HazardMgr, PregsCtrl) for correctness (shown in 
white boxes in the figure). Also, the read and write enables of 
R are declared as free variables so that all possible transaction 
sequences in the pipeline are explored. 

For the pipeline in Figure 5(c), T-piper includes the 
forwarding paths and logic (FwdUnit) in the model. 
Additionally, the select signal for the multiplexer m1 is 
defined as a free variable, so that the model checker would 
explore all possible forwarding scenarios. Although not 
shown, the models in Figure 5(b) and 5(c) have coordination 
logic to stall the specification model when the implementation 
model stalls. 

Finally, in the case in Figure 5(d), a predictor logic block 
pred is added for speculative execution, with the predicted 
value forwarded from stage 2 to stage 1, and the prediction 
resolved in stage 4. T-piper exposes the prediction forwarding 
path as well as the prediction resolution unit (PredResUnit). It 
also augments the model with (1) the isMispred free variable 
to emulate speculative execution, (2) the reference RF state 
update value (refValue) from the specification that is used to 
model the correct prediction forwarding, (3) the coordination 
logic to stall the specification model when the implementation 
is emulating a misprediction, and (4) the flag bits to track 
‘shadow’ transactions in the pipeline (Section IV.B).  

 
E.    Applicability to Other Pipeline Synthesis Frameworks 

This section has described the proposed automatic 
verification approach in the context of T-spec/T-piper. 
However, it may be possible to apply the approach to other 
high-level pipeline synthesis frameworks, provided that these 
frameworks capture at the least the same amount of precise 
details of the input specification and the target pipelines as the 



T-spec/T-piper framework (e.g., state read/write interfaces, 
hazard resolution scheme to apply, etc). 

 
V.   CASE STUDIES 

 
We have applied the formal verification integration in 

Section IV so that T-piper generates both an RTL-Verilog and 
an SMV input file for Cadence SMV [12]. We conducted case 
studies based on the processor T-specs in Figure 6. Figure 6(a) 
shows a processor T-spec for the MIPS RISC ISA; Figure 6(b) 
shows T-spec for a hypothetical ISA with CISC-like memory-
memory instructions. The datapath style in Figure 6(b) is 
inspired by the Intel Atom® processor pipeline, which does 
not break x86 memory-memory instructions into multiple 
RISC-like micro-operands. True to CISC-style architectures, 
the pipeline also handles variable length instructions. From 
these two T-specs, we used T-piper to synthesize a total of 18 
pipelined processor implementations, varying in their pipeline 
depths (4, 5, and 6 stages) and hazard resolution schemes 
(with stalling only (N), with maximal data forwarding (F), and 
with both forwarding and speculative execution (S)).  
 
We collected verification metrics similar to those in [10]: 
• The number of correctness properties—this is an 

indication of the required level of verification effort and 
knowledge.  

• The number of state variables for the property with the 
largest cone of influence—this static number is an 
indication of the likelihood of encountering state 
explosion. 

• The number of BDD nodes allocated during model 
checking—this runtime measure of SMV data size is also 
an indication of the likelihood of encountering state 
explosion. 

• The execution time spent by the model checker to 
complete the verification. 
 

A.    Results 
Figure 7 summarizes the results from verification using 

Cadence SMV running on a 2 GHz PC with 4 GB of DRAM. 
The results indicate the following: 
• Not surprisingly, deeper pipelines are more expensive to 

verify (i.e., states, time, and BDD nodes increase), since 

each additional stage adds more pipeline registers and 
control logic. 

• More complicated hazard resolution schemes (forwarding, 
speculation) only require a few additional state variables, 
but introduce many more possible state transitions (e.g., 
various data forwarding scenarios) that result in 
significant increase in model checking time and BDDs. 

• Surprisingly (at least at first), MIPS and the CISC-like 
memory-memory processor pipelines incur a similar level 
of verification effort. One might expect that the CISC-like 
pipeline would require a higher verification effort since 
the datapath requires a complex memory address compute 
module to facilitate instructions reading from and writing 
to the memory in a single pipeline pass, as well as a more 
sophisticated next PC compute module to accommodate 
variable length instructions. However, T-piper abstracts 
these memory address and next PC compute modules as 
black-boxes using uninterpreted functions during formal 
verification. Thus, verification cost is more affected by 
the complexity of the pipeline control logic injected by T-
piper. 

 
 

Fig. 7. Verification of load-store and memory-memory processor pipelines. 
Note that the N, F, and S labels correspond to pipelines with no forwarding 

and speculation, with forwarding only, and with both, respectively. 
 

 
 

Fig. 6. T-specs for processor datapaths under study. 
 



B.    Catching Real Bugs 
Our case studies did uncover a number of real 

“programming” bugs in T-piper and fortunately no 
“algorithmic” bugs so far (Section IV.A). One example of a 
failed verification was caused by an error in the coding of the 
RTL-to-SMV printing function, resulting in an incorrect SMV 
model from what is a correct internal representation. Model 
checking successfully produced a counter example to help us 
pinpoint a T-piper programming bug. While in this case the 
internal representation and the Verilog output were both 
correct, one can also imagine an opposite scenario where the 
typo is in the Verilog instead of in the SMV model. This 
speaks strongly for formal verification technologies that apply 
directly to the implementation design file.  

 
C.    Sanity Check 

Lastly, the automatic verification quality of T-piper was 
validated against manual effort. We created a T-spec for a 
simple 3-stage pipeline example from Cadence SMV tutorial 
[12] and automatically verified it using T-piper. We found that 
the verification metrics collected from our automated 
approach are comparable to those gathered from the original 
example from the tutorial, which were done manually. 

 
VI.   RELATED WORK 

 
The most common functional verification approach in use 

today is still simulation-based validation, where an RTL 
description of the design is simulated with test inputs, and its 
output is checked for correctness. However, simulation-based 
validation can only ensure correctness of the behaviors 
exercised by the test inputs. In practice, simulation-based 
validation cannot achieve full coverage by brute force due to 
the prohibitively long simulation time required. Existing 
studies (e.g., [1][4]) proposed generating the test inputs 
formally to ensure adequate coverage. 

Existing high-level design frameworks (e.g., [11][13][15]) 
provides correct-by-construction property, but do not have 
integrated formal verification to ensure the correctness of the 
output implementation that it generates. Thus, they are prone 
to aforesaid “programming” and “algorithmic” bugs. [3] has 
integrated assertion-based verification with [15]. However, to 
the best of our knowledge, no existing high-level framework 
has an integrated automatic compositional model checking 
capability. 

In terms of formal verification approach that can be 
integrated with these high-level frameworks, besides SMV 
[12], theorem proving involves deriving a mathematical 
description of the whole system and creating proofs that 
certain properties hold. Burch and Dill [2] derive an 
abstraction function by “flushing” the implementation, and 
proves a commutative diagram. The proof in [9] leverages 
logic with equality, uninterpreted functions, etc. Such theorem 
proving techniques including [7][14] can automate the more 
menial steps in a proof but require user to figure out a strong 
invariant. In contrast, model checking computes the reachable 
states automatically, so requires less manual effort in deriving 
the formal model, and defining and guiding the proofs. Given 

just an implementation, [6] extracts its pipeline control logic 
for property verification with its abstracted datapath. This 
work leverages knowledge from T-spec and T-piper for more 
direct formal verification. 
 

VII.   CONCLUSION 
 
 This paper presents an integrated automatic synthesis and 

verification framework useful in ASIP development. The 
approach formally verify custom pipelined processors 
synthesized by T-piper from a given T-spec. T-piper 
automatically generates input file to Cadence SMV, which 
verifies that the pipeline synthesized by T-piper is functionally 
equivalent to its T-spec specification, under the T-spec 
transactional semantics. A case study on automatic 
verification of various custom RISC and CISC-like pipelined 
processors synthesized by T-piper demonstrated the 
effectiveness of the proposed approach. The usefulness of the 
approach in uncovering real-life implementation bugs in T-
piper was discussed. 
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