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Abstract
In this paper we focus on common data reorganization op-

erations such as shuffle, pack/unpack, swap, transpose, and
layout transformations. Although these operations simply
relocate the data in the memory, they are costly on conven-
tional systems mainly due to inefficient access patterns, limited
data reuse and roundtrip data traversal throughout the mem-
ory hierarchy. This paper presents a two pronged approach
for efficient data reorganization, which combines (i) a pro-
posed DRAM-aware reshape accelerator integrated within
3D-stacked DRAM, and (ii) a mathematical framework that is
used to represent and optimize the reorganization operations.

We evaluate our proposed system through two major use
cases. First, we demonstrate the reshape accelerator in per-
forming a physical address remapping via data layout trans-
form to utilize the internal parallelism/locality of the 3D-
stacked DRAM structure more efficiently for general purpose
workloads. Then, we focus on offloading and accelerating
commonly used data reorganization routines selected from the
Intel Math Kernel Library package. We evaluate the energy
and performance benefits of our approach by comparing it
against existing optimized implementations on state-of-the-art
GPUs and CPUs. For the various test cases, in-memory data
reorganization provides orders of magnitude performance and
energy efficiency improvements via low overhead hardware.

1. Introduction
Motivations. Data reorganization operations often appear as
a critical building block in several scientific computing appli-
cations such as signal processing, molecular dynamics simula-
tions and linear algebra computations (e.g. matrix transpose,
pack/unpack, shuffle, etc.) [6, 16, 27, 29]. High performance
libraries generally provide optimized implementations of these
reorganization operations [3, 27]. Furthermore, data reorga-
nizations are often employed as an optimization to improve
the application performance. There are several works demon-
strating reorganization of the data layout into a more efficient
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format to improve performance [29, 11, 44, 21, 55, 54]. Physi-
cal data reorganization in memory is free of data dependencies
and it preserves the program semantics—it provides a software
transparent performance improvement [35].

However, reorganization operations incur significant energy
and latency overheads in conventional systems due to limited
data reuse, inefficient access patterns and roundtrip data move-
ment between CPU and DRAM. It is shown that a substantial
portion of the total system energy is spent on data movement
[38, 37]. According to technology scaling trends, the ratio of
the data movement energy to the total system energy is further
increasing [37].

3D-stacking. Near data processing (NDP) can be an ef-
fective solution to reduce the data movement between the
processor and the memory. By integrating processing capabil-
ity into the memory, NDP allows localized computation where
the data reside, reducing the roundtrip data movement, energy
and latency overheads. NDP has been studied in the past under
various technology contexts [28, 43, 45, 36]. However, the per-
formance of these approaches is limited by the logic elements
that are manufactured in memory process technology.

Emerging 3D die stacking with through silicon via (TSV)
technology gives a rise to a new interpretation of the near data
processing (NDP) concepts that has been proposed decades
ago. 3D-stacked DRAM, such as Micron’s Hybrid Memory
Cube (HMC), exploits the TSV based stacking technology
and re-architects the DRAM banks to achieve much better
timing and energy efficiency at a much smaller area footprint
[22, 34]. It substantially increases the internal bandwidth
and reduces the internal access latency by eliminating pin
count limitations. More interestingly, by integrating different
process technologies of DRAM and custom logic, it allows
high performance compute capability near memory.

However, this compute capability is limited by the power
and thermal constraints within the stack. Complete processing
units integrated in the logic layer fall short in sustaining the
available internal bandwidth within the allowed power budget.
Simpler compute mechanisms with specialized hardware can
be an effective means to capture this opportunity. In this paper,
our goal is to enable highly concurrent, low overhead and
energy efficient data reorganization operations performed in
memory using 3D-stacked DRAM technology.

Accelerating Data Reorganization. We observe that com-
mon data reorganization operations can be represented as a
permutation. In this paper, we present a mathematical frame-
work that allows structured manipulation of permutations rep-



resented as matrices. This framework provides two important
capabilities that we exploit to enable efficient hardware-based
in-memory data reorganization. First, it enables restructuring
the data flow of permutations. This gives us the ability to
consider various alternative implementations to exploit the
locality and parallelism potentials in the 3D-stacked DRAM.
Second, for a given permutation, it allows deriving the index
transformation as a closed form expression. Note that the
index transformation corresponds to the address remapping
for a data reorganization. We show that, for the class of per-
mutations that we focus on, the index transformation is an
affine function. This implies that the address remapping of the
data reorganization for the entire dataset can be represented
with a single, affine remapping function. We develop a con-
figurable address remapping unit to implement the derived
affine index transformations, which allows us to handle the
address remapping completely in hardware for the physical
data reorganizations.

Driven by the implications of the mathematical framework,
we develop an efficient architecture for data reorganization in
memory. Integrated within 3D-stacked DRAM, interfaced to
the local vault controllers behind the conventional interface,
the data reorganization unit takes advantage of the internal
resources, which are inaccessible otherwise. It exploits the
fine-grain parallelism, high bandwidth and locality within the
stack via simple modifications to the logic layer keeping the
DRAM layers unchanged. Parallel architecture with multiple
SRAM blocks connected via switch networks can sustain the
internally available bandwidth at a very low power and area
cost. Attempting to do the same by external access (whether
using stacked or planar DRAM) would be much more costly
in terms of power, delay and bandwidth.

We focus on two main use cases for the in-memory data
reorganization. Firstly, we demonstrate a software transparent
physical address remapping via data layout transformation in
memory. The memory controller monitors the access patterns
and determines the bit flip rates in the DRAM address stream.
Depending on the DRAM address bit flip rates, it issues a
data reorganization and changes the physical address mapping
to utilize the memory locality and parallelism better. This
mechanism is performed transparent to the software and does
not require any changes to the user software or OS, since it
handles the remapping completely in hardware.

In the second use case, we focus on offloading and acceler-
ating commonly used data reorganization operations using the
3D-stacked accelerator. We select common reshape operations
from the Intel Math Kernel Library (MKL) and compare the
in-memory acceleration to the optimized implementations on
CPU and GPU platforms. Explicitly offloading the operations
to the accelerator requires communication between the user
software and the in-memory accelerator. For that purpose we
utilize a software stack similar to the one proposed in [31].

Contributions. In [13], we first introduced the basic con-
cepts of a 3D-stacked DRAM based accelerator supported
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Figure 1: Overview of a HMC-like 3D-stacked DRAM [46].

by the example of regular matrix reorganizations. This pa-
per develops the concept fully to generalized data reorganiza-
tion efficiently handled by a permutation based mathematical
framework for two fundamental use paradigms–explicit of-
floading and transparent layout transform. The most salient
specific contributions are highlighted below.
• We propose an efficient data reorganization architecture that

exploits the internal operation and organization of the 3D-
stacked DRAM. It keeps the DRAM layers unchanged and
requires simple modifications in the logic layer, which yield
only a 0.6% increase in power consumption.

• We present a mathematical framework to represent data reor-
ganizations as permutations and systematically manipulate
them for efficient hardware based operation.

• We demonstrate a methodology to derive the required ad-
dress remapping for a given permutation based data reorga-
nization.

• We evaluate the software transparent physical address
remapping via data reorganization for various general pur-
pose benchmarks [17, 32] and demonstrate up to 2x/1.2x
performance/energy improvements.

• We analyze common data reorganization routines selected
from MKL which are performed in memory and demon-
strate substantial performance and energy improvements
over optimized CPU (MKL) and GPU (CUDA) based solu-
tions.

• For various memory configurations, we compare the in-
memory acceleration to the on-chip DMA based operation
and show up to 2.2x/7x performance/energy improvements.

2. Background

2.1. 3D-stacked DRAM Overview

3D-stacked DRAM is an emerging technology where multi-
ple DRAM dies and logic layer are stacked on top of each
other and connected by through silicon vias (TSV) [46]. By
sidestepping the I/O pin count limitations, dense TSV connec-
tions allow high bandwidth and low latency communication
within the stack. There are examples of 3D-stacking tech-
nology both from industry such as Micron’s Hybrid Memory
Cube (HMC) [46], AMD/Hynix’s High Bandwidth Memory
(HBM) [9], and from academia [25, 39].

Figure 1 shows the overview of a 3D-stacked DRAM ar-
chitecture. It consists of multiple layers of DRAM where
each layer also has multiple banks. A vertical slice of stacked
banks forms a structure called vault. Each vault has its own



independent TSV bus and vault controller [34]. This enables
each vault to operate in parallel similar to independent channel
operation in conventional DRAM based memory systems. We
will refer to this operation as inter vault parallelism.

Moreover, the TSV bus has very low latency that is much
smaller than the typical tCCD (column to column delay) values
[22, 57]. This allows time sharing the TSV bus among the
layers via careful scheduling of the requests which enables
parallel operation within the vault (e.g. [63]). We will refer to
this operation as intra vault parallelism.

Similar to the conventional DRAM, each bank has a row
buffer that holds the most recently accessed DRAM row. If
the accessed row is already active, i.e. already in the row
buffer, then a row buffer hit occurs, reducing the access latency
considerably. On the other hand, when a different row in the
active bank is accessed, a row buffer miss occurs. In this case,
the DRAM array is precharged and the newly referenced row
is activated in the row buffer, increasing the access latency
and energy consumption.

3D-stacked DRAM provides high bandwidth and energy
efficiency potentials. However these promised potentials are
only achievable via efficient utilization of the fine-grain paral-
lelism (intra/inter vault) and locality within the stack.

As shown in Figure 1, the logic layer also includes a mem-
ory controller, a crossbar switch, vault and link controllers.
Typically, these native control units do not fully occupy the
logic layer and leave a real estate that could be taken up by
custom logic blocks [34]. However, the thermal and power
constraints limit the complexity of the custom logic that could
be introduced.

2.2. 3D Stacking Based Near Data Computing

3D-DRAM offers substantial improvements but bandwidth,
latency and energy concerns still exist when connecting the
processor and the 3D-stacked DRAM via an off-chip bus. For
example HMC spends almost half of its power consumption in
the SerDes units transferring data off the stack [48, 34]. Hence
it is an attractive option to integrate the processing elements
in the base logic layer [48, 63, 13, 60, 33, 40, 12, 26].

However, complete processing elements integrated in the
logic layer are limited in taking advantage of the internal band-
width while staying within an acceptable power envelope. For
example, in [48], although simple low EPI (energy per instruc-
tion) cores are used in the logic layer, some of the SerDes units
are deactivated to meet the power and area budgets, sacrificing
the off-chip bandwidth. In [33], it is reported that, to sustain
the available bandwidth, more than 200 PIM (processing in
memory) cores are required, which exceeds the power limit for
the logic layer. Specialized hardware units are more efficient
in providing higher throughput (hence memory intensity) per
power consumption that is far beyond what general purpose
processors can provide.
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Figure 2: (a) Normalized bit flip rate in the physical address
stream, (b) address remapping scheme and (c) row buffer miss
rate reduction via the address remapping and (d) the resulting
performance improvements for 8-wide and infinite compute
power systems for facesim from PARSEC.

2.3. Data Reorganization

We refer to an operation that relocates the data in the memory
as data reorganization. These operations have several use
cases.

In Figure 2 we demonstrate a motivational example for
address remapping via data reorganization. For this example,
we ran the memory trace for the PARSEC [17] benchmark
facesim available from [8] on the USIMM DRAM simulator
[20] modeling a single channel DDR3-1600 DRAM [2] with
open page policy and FR-FCFS (first-ready, first-come first-
serve) scheduling. Figure 2(a) demonstrates the normalized
average address bit flip rate in the memory access stream. The
basic idea is that the highly flipping bits correspond to frequent
changes in short time which are better suited to be mapped
onto bank or rank address bits to exploit the parallelism. On
the other hand, less frequently flipping bits are better suited
to be mapped onto row address bits to reduce the misses in
the row buffer. Figure 2(b) shows an example remapping that
changes the address mapping such that highly flipping bits {26,
25, 19} are swapped with {15, 14, 13}. Figure 2(c) presents
the achieved reduction in the row buffer miss rate via address
remapping. Finally, Figure 2(d) shows the achieved speed-up
via the new mapping on an 8-wide 3.2 GHz processor. It also
shows the upper bound for performance improvement where
the overall runtime is purely memory bound such that the
non-memory instructions are executed in a single cycle.

The results in Figure 2 show that a global address map-
ping may be suboptimal for some applications. There exists
efficient address mapping schemes such as [61]. Moreover,
application-specific address mapping schemes that will lead to
higher parallelism and locality can be determined via profiling.



However, simply changing the address mapping at the run-
time will result in incorrect program execution–the data need
to be reorganized accordingly to retain the original program
semantics.

Secondly, data reorganizations also appear as an explicit
operation in several scientific computing applications such as
signal processing, molecular dynamics simulations and linear
algebra computations (e.g. matrix transpose, pack/unpack,
shuffle, data format change etc.) [6, 16, 27, 11, 29, 14]. Con-
sidering the high precision and large data sizes, a significant
fraction of the dataset reside in main memory. Therefore, ide-
ally, most of the data reorganization operations are memory
to memory. However, on conventional systems the data needs
to traverse the memory hierarchy and the processor, incurring
large energy and latency overheads.

This paper proposes an efficient hardware substrate to re-
organize the data in memory. A mathematical formulation is
presented for generalization and optimized implementations
of these operations.

3. Mathematical Framework

3.1. Motivation

We make the observation that every data reorganization corre-
sponds to a permutation. A permutation takes an input vector
din and rearranges the elements to produce dout . For example
the stride permutation operation, denoted as Lnm,n, takes the
elements from din at stride n in a modulus nm fashion and puts
them into consecutive locations in the nm-element dout vector:

din[in+ j]→ dout[ jm+ i], for 0 ≤ i <m, 0 ≤ j < n.

Permutations can be represented via matrix-vector multiplica-
tion such that dout = Lnm,n .din where Lnm,n is the permutation
matrix.

Each permutation has a corresponding index transformation
that represents the address remapping for a data reorganization.
For example, Figure 3(a) shows the reorganization of an 8-
element dataset according to the stride permutation L8,2. After
the permutation reorganizes the data, the original addresses
will hold stale data. For example an access to the location 001
will return the data c which originally stored data b.

As presented in Figure 3(b) an address remapping mecha-
nism that forwards the input addresses (x) to their new loca-
tions (y) can solve this problem. Figure 3(b) shows the index
transformation of the permutation L8,2, given as y = Bx. Fol-
lowing the previous example, this unit will forward the access
x = 001 to the location y = 100 via y =Bx such that the returned
data will be b as expected.

The simple example in Figure 3 demonstrates that the index
transformation can be used to remap the addresses after a
reorganization. Our goals are (i) to develop a systematic way
to determine the index transformation for general permutation
based reorganization operations and (ii) to design an efficient
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Figure 3: An example data reorganization (L8,2) on 8 elements
and the corresponding address remapping scheme.

substrate to implement the index transformation for address
remapping.

3.2. Address Remapping

Before going forward, we define a few special matrices and
matrix operators. First we define n×n identity matrix In, n-
element column vector of 0’s µn, n-element column vector of
1’s νn, and finally a cyclic shift matrix Cnm,n which applies a
circular shift of n elements in the nm element input vector:

In =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋱

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, µn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, νn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
⋮

1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, Cnm,n = [
In

Im
] .

Then, we introduce two matrix operators, tensor (Kronecker)
product (⊗) and direct sum (⊕). These operators are useful
in structured combinations of the matrices. Tensor product is
defined as A⊗B = [ai, jB], where A = [ai, j]. The two examples
below demonstrate their operation:

In⊗A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A
⋱

A

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, and A⊕B = [
A

B
] .

After these definitions, our goal is to define a mapping function
fπ that determines the corresponding index transformation for
a given permutation. Specifically, it will determine the ad-
dress remapping from the original location x to the remapped
location y such that:

y = Bx+c (1)

Here, assuming n bit addresses, x and y are n-element vectors
that represent the input and remapped addresses respectively.
B is an n×n matrix and c is an n-element vector. In this form,
the index transformation is an affine transformation on the
addresses.

First, we focus on the class of permutations that are con-
structed by combinations of the stride permutations (L) with
identity matrices (I) via tensor product (⊗) and matrix multi-
plication (.). This class of permutations can represent a variety
of important data reorganization operations such as shuffle,
pack/unpack, matrix transpose, multi-dimensional data array



rotation, blocked data layout, etc. For this class of permuta-
tions, the fundamental properties of fπ are given as follows:

fπ(L2nm,2n)→ B =Cnm,n, c = µn (2)
fπ(I2n)→ B = In, c = µn (3)

fπ(P ⋅Q)→ B = BP ⋅BQ, c = cP+cQ (4)

fπ(P⊗Q)→ B = BP⊕BQ, c = [
cP
cQ

] (5)

For this class of permutations, the B matrix is constructed
out of cyclic shifts, multiplication and composition (direct
sum) operators. Here we emphasize that the combinations of
these operators can represent all possible permutations on the
address bits. We will later focus on the practical implications
of these properties.
Swap Permutation. We extend the reorganization operations
to include different classes of permutations. First, we define
the swap permutation Jn as follows:

din[i]→ dout[n− i−1], for 0 ≤ i < n.

Jn is simply the In matrix with the rows in the reversed or-
der. Swap permutations are especially useful to represent
out-of-place transformations and swap type of operations. For
example, J2⊗In can be interpreted as swapping the two con-
secutive n-element regions in the memory. Address remapping
for the swap permutation is given as follows:

fπ(J2n)→ B = In, c = νn (6)

Morton Layout. Morton data layouts, or in general space
filling curves, are based on recursive blocking [42]. Large
data sets are divided into blocks recursively until the small
leaf blocks reach the desired size. There are various forms of
Morton layouts depending on the order of blocking while the
most commonly used one is the Z-Morton (Z2n,2m ). Z-Morton
layout is useful for various scientific, high-performance and
database applications [44, 18]. Z-morton layout can be repre-
sented only by stride permutations, so the properties (2)-(5)
are sufficient to represent it. However, we present this as a
specific case since its address remapping corresponds to a
stride permutation on the address bits:

fπ(Z2n,2m)→ B = Ln,2⊗Im, c = µn (7)

Conditional Permutations. For some applications, different
permutations on separate regions of the dataset are required.
Also, for some cases, data reorganization is applied only on
a portion of the dataset keeping the rest unchanged. Direct
sum operator (⊕) is useful to express these cases. Direct sum
operator calls for a conditional, address dependent remapping
function:

fπ(Pk⊕Ql) = {
fπ(Pk) for 0 ≤ i < k
fπ(Ql) for k ≤ i < k+ l (8)
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3.3. Practical Implications

In summary, the properties of the fπ function given in (2)-(8)
demonstrate a structured way of deriving the index transfor-
mation, or address remapping, for a given permutation. Next,
we provide the practical implications of these properties.
Concise Address Remapping. The index transformation cap-
tures the address remapping information for the entire dataset
in a closed form expression (i.e. y = Bx+c). This allows calcu-
lating the remapped addresses on the fly, instead of keeping a
large lookup table or updating the corresponding page table
entries via OS calls.
Address Remapping in Hardware. Analysis of the proper-
ties (2)-(8) reveals that the B matrix is a permutation matrix
and the c vector is a binary vector. Hence, given an input
address x, B shuffles the bits and c inverts them if necessary
to produce y. Bit shuffle and inversion can be implemented in
hardware at a very low cost.
Inverse Problem. There exists an inverse fπ function that
takes the index transform and derives the corresponding data
reorganization as a permutation. Hence, to achieve a partic-
ular address remapping, it can derive the corresponding data
permutation which can be optimized and performed efficiently.
Generalization. The set of properties (5), (6) and (8) demon-
strate a systematic way of handling the combinations of vari-
ous permutations for generalization. Although the developed
techniques are limited to permutations only, we demonstrate
that they can cover a wide range of reorganization operations
(see Section 7).

3.4. A Rewriting System for Permutations

The mathematical formalism used to represent the permu-
tations is well understood and utilized in various domains
[49, 56, 59, 50]. It enables us to use the SPL domain specific
language to express the data reorganizations as permutations
[59]. Furthermore, it enables inclusion of the developed frame-
work into an existing rewriting system for permutations [50].
In [50] there are various well-known permutation identities,
referred to as rewrite rules, that restructure the permutation’s
data flow to optimize for parallelism, SIMD vectorization or
hardware implementations [50, 56, 49]. For our purposes, we
use this framework to optimize (rewrite) the reorganization
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operations to exploit memory parallelism and locality.
An overall view of the mathematical framework based

toolchain is given in Figure 4. Here, block 1 parses the
high level function calls to the native format (SPL). Given the
native representation of the permutations in SPL, block 2
derives the address remapping function (i.e. B and c). Finally,
block 3 rewrites the permutations to optimize for memory
locality and parallelism. Outputs of blocks 2 and 3 will be
offloaded to configure the reshape accelerator.

4. Architectural Design

4.1. Address Remapping Unit (ARU)

The address remapping operation (i.e. y = Bx+c) consists of
two main parts. First, the B matrix shuffles the input address
bits x, then the c vector inverts the shuffled bits. To support that
functionality we propose the bit shuffle unit (BSU), a single bit
crossbar switch connected to an array of XOR gates, as shown
in Figure 5. In Section 3 we saw that B is a permutation matrix,
therefore there is only a single non-zero element per row. The
location of the non-zero element in each row of the matrix
determines the closed switch location in the corresponding
row of the crossbar. The crossbar configuration, i.e. the set of
closed switch locations, is stored in a configuration register
which can be reconfigured to change the bit mapping. After
input address x is shuffled via the crossbar, XOR array inverts
the bits according to the c vector to generate the remapped
address y. This unit can implement any bit permutation, i.e.
all combinations of (2)-(7).

Moreover, to support multiple address remapping schemes
simultaneously (i.e. conditional permutation (8)) we propose
the address remapping unit (ARU) that extends the BSU as
shown in Figure 6. The configuration store keeps various con-
figurations for the BSU. The configuration includes the full
state of the BSU (i.e. B and c). When an access is enqueued
in the scheduling FIFOs of the memory controller, the region
bits from the address are used to index the configuration store.
Then the corresponding entry is put in the configuration reg-
ister that configures the ARU for that particular access. An
application can occupy multiple regions if needed.

The ARU can support all the remapping schemes presented
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Figure 6: Address Remapping Unit (ARU).

in Section 3 via a very simple hardware. The configuration
store indexing and the read latency depends on the number
of simultaneous different mappings supported. As we will
see later, for a typical implementation, the overall latency
and energy consumption of the combined configuration store
indexing, bit shuffle and XOR circuit is very low. Furthermore,
the timing of the ARU is not on the critical path of the memory
access since typically an access spends several clock cycles in
the memory controller FIFOs waiting to be scheduled.

4.2. Data Reshape Unit (DRU)

The data reshape unit (DRU) shown in Figure 7 executes the
final decomposed permutation output from block 3 (see Fig-
ure 4). The final decomposed permutation has two main parts,
namely global read/write permutations and a local permuta-
tion. Read/write permutations are mapped onto read/write
controllers in DRU. These are dedicated DMA units for gen-
erating DRAM requests based on the read and write permuta-
tions. They ensure correct flow of the data between the DRAM
layers and the local permutation unit.

The datapath for the local permutation unit within the DRU
consists of SRAM banks and two switch networks. The
main goal of the DRU is to permute the streaming data at
the throughput that matches the maximum internal bandwidth
of the 3D-stacked DRAM. Permuting streaming data that ar-
rives in multiple elements per cycle is a non trivial task. The
local permutation unit in DRU adopts the solution from [49].
Exploiting both parallelism and locality within the memory re-
quires permutations both in time and space. The DRU locally
buffers and permutes data in chunks. It features w parallel
SRAM banks and w×w switch networks where w is the num-
ber of vaults. It can stream w words of p bits every cycle in
parallel where p is the data width of the TSV bus. Independent
SRAM banks per vault utilize the inter-vault parallelism. It
also exploits the intra-vault parallelism via pipelined schedul-
ing of the commands to the layers in the vault. In addition
to the parallel data transfer, it also exploits the DRAM row
buffer locality. Each SRAM bank can buffer multiple DRAM
rows. In a reorganization operation, elements within a DRAM
row can be scattered to multiple rows, worst case being full
scattering. Assuming that the DRAM row buffer holds k ele-
ments, each SRAM is sized to hold k2 elements. This allows
transferring k consecutive elements in both read and write
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Figure 7: Data Reshape Unit (DRU).

permutations exploiting the row buffer locality. We also em-
ploy double buffering to maximize the throughput. Hence the
SRAM buffer size is given as d = k2 where the total storage is
2wd.

This datapath is controlled by the connection control and
SRAM address generator units. These units generate the
required connection configuration and addresses every cycle
that will route the data elements to and from the SRAM banks.
The local permutation, which is the output of the block 3 in
the toolchain (see Figure 4), directly configures these units.

5. Applications

5.1. Software Transparent Data Layout Transformation

First we evaluate the hardware based address remapping via
data layout transformation. In this case, the memory con-
troller issues a reorganization by monitoring the memory ac-
cess stream. Memory access monitoring determines the bit
flip rates in the address every epoch. The monitoring hardware
XORs the current address with the previous address values and
accumulates the number of flips per bit location. At the end of
every epoch, it normalizes the number of flips with the number
of total accesses. If it observes that the bit flip rate ratio be-
tween vault/layer region and row region of the DRAM address
is higher than a set threshold consistently over several epochs,
it issues an address remapping to swap such bits. The goal
is to map the least frequently flipping bits to the row region
and most frequently flipping bits to the vault/layer region to
increase (intra/inter vault) parallelism and row buffer locality.
The physical address remapping requires data reorganization
in the memory to retain the original program semantics, which
is performed in-memory via DRU. For simplicity, we block
the accesses to the memory regions that are being reorganized
but independent processes can access other regions. DRU
handles the reorganization efficiently (typically under a few
milliseconds as we will see in Section 7.3), hence the overhead
of the data reorganization is amortized during the course of
the long application runtime.

5.2. Accelerating Reorganization Routines

Next we evaluate the acceleration of common data reorgani-
zation routines by explicitly offloading the operation to the

data reorganization unit (DRU). We focus on commonly used
reorganization routines selected from the Intel Math Kernel
Library (MKL) [3]. These operations are expressed in the do-
main specific language (SPL) of our mathematical framework
and a custom software stack is used to offload the operation to
the DRU integrated in the 3D-stacked DRAM.

6. System Integration

To make the proposed reshape accelerator compatible with
an existing system, we need to make a few changes at the
software and hardware level. These modifications are based
on the use case of the accelerator.

6.1. Hardware Based Approach

For the physical data reorganization driven by the memory
controller (see Section 5.1), user software and OS are kept
unchanged. In this use case, the memory controller monitors
the memory accesses in the physical domain and issues a
physical data reorganization. Hence, the data reorganization
only requires a physical to physical address remapping which
is completely handled by the ARU proposed in Section 4.

Physical data migration has been studied in previous work
[54, 24, 51]. These approaches use a lookup table imple-
mented in the memory controller to store the address remap-
pings for the data movements. The address remapping lookup
table is not scalable to support large scale and fine grain data
reorganizations. Hence, these approaches only focus on move-
ment of OS page size data chunks. Our technique can support
data granularity of a single access (e.g. 32 bytes) at much
lower hardware cost since it captures the entire remapping
information in a single closed form expression which is imple-
mented by the generic ARU.

6.2. Custom Software Stack Approach

We provide a custom software stack to give the user a flexible
control over the accelerator in issuing an explicit offload (Sec-
tion 5.2). We follow the same methodology proposed in [31].
In [31] authors provide a memory model similar to NUMA
(Non-Uniform Memory Access) where the accelerator can
access both local and remote memory stacks. In this work, we
further restrict our system such that the accelerator can only
access the local memory stack that it is integrated into. Cus-
tomized memory management functions (malloc/free) only
allocate the memory region within the corresponding memory
stack. The host offloads the configuration to the allocated re-
gion to be read by the accelerator and also uses it to check the
status of the accelerator. A device driver maps the allocated
physically contiguous region into the virtual memory space via
mmap. During the mmap call, allocated pages are locked into
memory so that when the operation is offloaded they will not
be swapped out. Directly mapping contiguous virtual memory
regions into contiguous physical memory regions for specific
data structures also have been studied in different contexts



Table 1: 3D-stacked DRAM low level energy breakdown.

Parameter Value (pj/bit) Reference

DRAM access (CAS) 2 - 6 [22, 34, 57]
TSV transfer 0.02 - 0.11 [22, 60, 7]
Control units 1.6 - 2.2 [4, 34]
SERDES + link 0.54 - 5.3 [34, 47, 41, 23, 37]

Table 2: 3D-stacked DRAM configurations.

Parameter HI MH ML LO

Vault (#) 16 8 4 2
Layer (#) 8 4 4 2
Link (#) 8 8 7 1
Link BW (GB/s) 60 40 40 40
Total TSV (#) 2048 2048 1024 512
Intern BW (GB/s) 860 710 360 90
Extern BW (GB/s) 480 320 280 40
Power (Watt) 45 30 25 12

[15]. Finally a cache flush is issued, before the acceleration
starts, to ensure that the accelerator accesses the most recent
copy in the memory stack to avoid coherency problems.

7. Evaluation

7.1. 3D-stacked DRAM

We use a custom trace based, cycle accurate, command level
simulator for the 3D-stacked DRAM. It features a CPU front-
end similar to the USIMM DRAM simulator [20]. Unless
noted otherwise, it models per-vault request queues and FR-
FCFS scheduling. Low level timing and energy parameters for
DRAM and TSV are faithfully modeled using CACTI-3DD
[22] and published numbers from literature [34, 7]. Logic
layer memory controller performance and power are estimated
using McPAT [4]. Finally, the SerDes units and off-chip I/O
links are modeled assuming a high speed short link connection
[47, 41, 23]. We assume 4 pj/bit for the total energy consump-
tion of combined SerDes units and off-chip links at 32nm
technology node. To demonstrate the relative cost of each
operation in the 3D-stacked DRAM, we summarize a typical
energy breakdown of various operations in Table 1. However,
these values change depending on the particular configuration
of the memory.

Table 2 provides four memory configurations, namely high
(HI), medium-high (MH), medium-low (ML) and low (LO),
that will be used in our later simulations. DRAM page size is
1 KB for all the configurations. The unusual DRAM page size
of 1 KB is a typical value for 3D-DRAM (from 256 byte [34]
to 2 KB [58] are reported). Medium to high end configurations
can reach overall energy efficiency of 11-12 pj/bit that is very
close to the 10.48 pj/bit energy efficiency of the HMC system
[34].

Table 3: Processor configuration.

Parameter Value

Cores 4 cores @ 4 GHz
ROB size 160
Issue width 4-32
Pipeline depth 10
Baseline address map row:col:layer:vault:byte
Memory bus frequency 1.0 GHz
Memory Scheduling FR-FCFS, 96-entry queue
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Figure 8: Row buffer miss rate reduction via physical address
remapping with data reorganization.

7.2. Software Transparent Data Layout Transform

First, we focus on hardware based data layout transform for
address remapping (described in Section 5.1). We evaluate
several memory traces from PARSEC [17] and SPEC CPU
2006 [32] suites available from [8]. We use the MH config-
uration for the 3D-stacked DRAM. Processor configuration
is given in Table 3. First, Figure 8 demonstrates the effect
of address remapping on the DRAM row buffer miss rate.
Remapping frequently flipping bits from row address bits to
the vault and layer address bits significantly reduces the miss
rates. It also improves the parallelism by scattering the ac-
cesses to vaults and layers more efficiently. This translates
into improved performance and energy efficiency as shown
in Figure 9. We observe that more memory intensive appli-
cations (e.g. leslie, libquantum) gain higher improvements
since their performance are more sensitive to the memory uti-
lization. To analyze the performance improvement sensitivity
to the memory intensity, we also evaluate wider issue width
configurations (4-32) in Figure 9.

Efficient transparent data reorganization requires design
choices regarding the DRU parameters such as bit flip ratio
threshold, epoch length and number of memory regions. In
Figure 10 we observe that with a small bit flip ratio threshold
DRU can select bits too early which may not be beneficial in
the long run. Whereas, with a very large threshold it can miss
some useful remappings but the issued remappings will most
likely improve performance. We pick a threshold of 2 to mini-
mize the chance of useless remappings. Similarly, the epoch
length needs to be long enough to capture enough statistics
and to avoid frequent calculation of histograms. However, if it
is extremely long then the reorganization may not be issued in
a timely manner. We chose 50K cycle epochs empirically and
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keep the bit flip rate values in a moving window of 4 epochs.
Further, large number of memory regions allow us to capture
spatial differences in the access patterns. We chose 16 memory
regions in our experiments.

7.3. Accelerating Reorganization Routines

Next, we analyze the use case described in Section 5.2. The
list of the reorganization benchmarks are given in Table 4.
These are commonly used reorganization routines selected
from the Intel Math Kernel Library (MKL) [3]. Dataset sizes
for these benchmarks range from 4 MB to 1 GB. As a refer-
ence, we also report the high performance implementations on
CPU and GPU systems. Multi-threaded implementations of
MKL routines are compiled using Intel ICC version 14.0.3 and
run on an Intel i7-4770K (Haswell) machine using all of the
cores/threads. As a GPU reference we use a modified version
of the implementation from Nvidia [52] using CUDA 5.5 on
a GTX 780 (Kepler) platform. However, due to the limited
memory size we could not run a few of the benchmarks with
large dataset sizes (≥ 1 GB) on the GPU.

Energy and runtime of the operations implemented on the
DRU is simulated using the 3D-stacked DRAM simulator.
Reported numbers also include the energy overhead of the
DRU implementation in the logic layer which will be later
analyzed in detail. For the CPU, we use PAPI to measure
the performance and power consumption of the processor as
well as the DRAM via Running Average Power Limit interface
[5, 10]. Finally the GPU power consumption is measured from
the actual board using a PCI riser card and inductive current
probes. The results are given in Figure 11 and Figure 12. Note
that the results do not include the host offload overhead neither
for GPU nor for DRU—here we report the results only for the
individual platforms. We evaluate the host offload overhead
for the DRU later in detail.

It is observed that the DRU integrated in the 3D-stacked

Table 4: Benchmark summary.

Number MKL function Description

101-108 simatcopy In-place matrix transpose
201-210 somatcopy Out-of-place matrix transpose
301-308 vs(un)packi Vector (un)pack via increment
309-316 vs(un)packv Vector (un)pack via gather
401-404 cblas_sswap Vector swap via stride

DRAM can provide orders of magnitude performance and en-
ergy efficiency improvements when compared to the optimized
implementations on the state-of-the-art CPUs and GPUs. In
these experiments the medium-high (MH) 3D-stacked DRAM
configuration is used. The MH configuration provides 320
GB/s of bandwidth that is much higher than what is available
to the CPU and GPU. Next, we also provide individual com-
parisons where the bandwidth of the 3D-stacked DRAM is
very close to each individual platform’s bandwidth. Figure 13
demonstrates the case where the DRU integrated in the LO con-
figuration (single link, 40 GB/s) is compared against the CPU
(two channels, 25.6 GB/s). Also Figure 14 compares the DRU
integrated in the ML configuration (7 links, 280 GB/s) with the
GPU (288 GB/s). These comparisons demonstrate that given
the same levels of memory bandwidth, DRU integrated in the
3D-stacked DRAM can provide much higher performance and
energy efficiency, compared to the CPU and GPU platforms.
Here we emphasize that the 3D-stacked DRAM based DRU is
not an alternative to CPU and GPU, instead it can be integrated
into their memory subsystem to achieve higher performance
and energy efficiency.

7.4. Offload Overhead For DRU

As discussed in Section 6, a custom software stack handles
offloading the computation to the DRU. Offload operation
includes transferring the DRU configuration and a cache flush
operation to ensure coherency. To give a better insight, av-
erage time and energy spent on the host during the offload
operation for different dataset sizes are given in Figure 15. We
observe that for small datasets (< 64MB) the offload operation
takes much longer than the accelerated operation itself. For
these dataset sizes, a significant fraction of the dataset actu-
ally resides in the cache, which makes them more suitable
for host-side operation. However, more efficient offloading
mechanisms can decrease the time and energy spend on the
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Figure 11: Performance of the 3D-stacked DRAM based DRU is compared to optimized implementations on CPU and GPU.
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Figure 12: Energy efficiency of the 3D-stacked DRAM based is DRU compared to optimized implementations on CPU and GPU.
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Figure 13: DRU in LO configuration is compared to the CPU.

host, making the accelerator more accessible to various ap-
plications. Nevertheless, especially for large datasets, DRU
offload (under a millisecond) is much faster compared to the
GPU offload which requires the transfer of the actual dataset
over slow PCIe (tens of milliseconds).

7.5. In-memory vs. On-chip DMA Accelerator

Integration within the stack, behind the conventional interface,
opens up the internal resources such as abundant bandwidth
and parallelism. Here, we evaluate the effect of moving the
accelerator within the stack to exploit these resources. For
this purpose, we take a host system with a CPU-side DMA
unit connected to regular 3D-DRAM, and compare it against
a system that has the same 3D-DRAM where the logic layer
integrates the DRU. Figure 16 shows up to 2.2x performance
and 7x energy improvements for the in-memory accelerator
compared to on-chip DMA. This comparison provides the
lower bound on the improvement due only to DRU since both
systems feature the same 3D-DRAM.
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Figure 14: DRU in ML configuration is compared to the GPU.

7.6. Hardware Cost Analysis

We also present hardware cost analysis for the DRU unit in
32nm technology node. We synthesize the HDL implementa-
tion targeting a commercial 32nm standard cell library (typical
corner, 0.9V) using Synopsys Design Compiler following a
standard ASIC synthesis flow. We use CACTI [1], to model the
SRAM blocks. ARU and DRU synthesis results demonstrate
that they can reach 238 ps and 206 ps critical path delay (i.e. >
4 GHz operation). However we chose 2 GHz clock frequency
to reduce the power consumption. MH has 8 vaults each with
256 bit TSVs. DRAM banks have 1 KB row buffers. Hence
we have 16 banks (2×8 due to double buffering) of 32 KB
SRAMs where w = 8, p = 256, k = 32, d = 1024 as discussed
in Section 4. The details of the synthesis results for the full
reorganization accelerator integrated into MH configuration
are given in Table 5.

Overall, the power consumption overhead of 178 mW, in-
cluding leakage and dynamic power, corresponds to only a



0

1

2

3

4

4 MB 16 MB 64 MB 256 MB 1 GB

Offload latency overhead [ms]

Host offload latency

DRU runtime

0

30

60

90

120

4 MB 16 MB 64 MB 256 MB 1 GB

Offload energy overhead [mJ]

Host offload energy

DRU energy

Figure 15: Time and energy spent on the host for offloading
the operation to DRU (MH).

0

1

2

3

HI MH ML LO

Performance improvement 
(in-memory vs. on-chip DMA) 

0

2

4

6

8

HI MH ML LO

Energy improvement 
(in-memory vs. on-chip DMA)

Figure 16: Comparison between the accelerator in-memory
and on-chip as a memory controller based DMA.

small fraction (0.6%) of the 30 W power envelope of the 3D-
stacked DRAM.

8. Related Work

Near Data Processing. Integrating processing elements near
memory has been studied in the past under various technol-
ogy contexts. PIM [28], active-pages [43], IRAM [45] and
FlexRAM [36] are some notable examples for planar NDP.
Main limitation of these approaches is the logic and memory
elements manufactured in the same process technology.
3D Stacking Based NDP. Recent 3D stacking technology
integrates different process technologies of DRAM and custom
logic [34]. It is an attractive option to integrate the processing
elements in the logic layer [48, 60, 33, 40, 58, 26]. However,
complete processing elements integrated in the logic layer
are limited in utilizing the internal bandwidth while staying
within an acceptable power envelope. There are also several
work demonstrating specialized hardware units integrated near
DRAM using 3D stacking [63, 13, 12].
Hardware Assisted Data Reorganization. There are vari-
ous proposals for hardware assisted data migration for better
data placement [24, 51, 54]. These approaches simply keep
an address translation table in hardware to keep track of the
migrated data and update the OS page table periodically. The

Table 5: HDL synthesis results at 32nm.

Unit Power consumption (mW)

Configuration store (ARU) 0.69
Bit shuffle unit (ARU) 2.9
SRAM banks (DRU) 159
Switch + control (DRU) 16.6
TOTAL 178.6

address translation look-up table is not scalable to support
large scale and fine grain data reorganizations.

Direct copy between DRAM rows proposed in [53] changes
the DRAM structure for efficient bulk data movement. This
technique can be incorporated into the DRAM layers of our
system as well, but general data reorganization routines require
local buffering and permutation that cannot be addressed only
via [53].

Address remapping without physical relocation can consol-
idate accesses via indirection but it does not solve the fun-
damental data placement problem [19, 55]. There are also
techniques such as specialized copy engines [62], using GPU’s
high memory bandwidth to overlap the layout transforms with
slow PCI data transfer [21], or keeping multiple copies of
different layouts [30]. Moreover, in [13] authors demonstrate
a 3D-stacked accelerator for regular matrix reorganizations.
However, our approach demonstrates generalized data reorga-
nization efficiently handled by a permutation based mathemat-
ical framework for two fundamental use paradigms, explicit
offloading and transparent layout transform.

9. Conclusion

In this paper we present a series of mechanisms that enable effi-
cient data reorganization in memory using 3D-stacked DRAM.
In-memory operation, behind the conventional interface, not
only minimizes the roundtrip data movement but also opens
up resources including high internal bandwidth and abundant
fine-grain parallelism, which are inaccessible otherwise.

We make the key observation that the common data reorga-
nization operations can be represented as permutations. We
utilize a mathematical framework to manipulate the permuta-
tions for efficient operation within the stack. Driven by the
implications from the mathematical framework, we develop
a low overhead and high performance architecture for data
reorganization operations. We also provide hardware/software
solutions for system integration.

We evaluate this hardware substrate through two main use
cases, (i) physical address remapping via data layout transfor-
mation, and (ii) acceleration of the common reorganization
operations via explicit offloading. Our results demonstrate
that in-memory data reorganization provides orders of magni-
tude performance and energy efficiency improvements via low
overhead hardware.
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