Power Aware Microarchitecture Resource Scaling

Anoop lyer Diana Marculescu

Department of Electrical and Computer Engineering
Center for Electronic Design Automation
Carnegie Mellon University
Pittsburgh PA 15213 USA

Abstract s —T—T—T—T—T—T— T
In this paper we present a strategy for run-time profiling to op-) v

timize the configuration of a microprocessor dynamically so as to 1 N
save power with minimum performance penalty. The configuration M 7]
of the processor changes according to the parallelism in the run- o 25 -
ning program. Experiments on some benchmark programs show = LL -
good savings in total energy consumption; we have observed a de- 15 —
crease of up to 23% in energy/cycle and up to 8% in energy per

instruction. Our proposed approach can be used for energy-aware B]

computing in either portable applications or in desktop environ- o5 =]

ments where power density is becoming a concern. This approach L '06 . '06 - '06 - '06 - '07 12' Om' 0716' p——
. . . e+ e+ e+ e+ e+ .2e+ de+ .6e+ .8e+

can also be incorporated in larger power management strategies Cydes

like ACPI.

Figure 1. Execution profile of the epic benchmark
1. Introduction

Power dissipation of microprocessors is becoming an impor- mal “envelope” for energy-delay product; but their approach is not
tant concern for designers because of two factors: (1) the marketadaptive. The work presented in [10] uses IPC values obtained
for mobile and embedded systems is expanding at a rapid rate androm profiling to characterize different portions of the code, and
in such systems, battery life is important and power is at a pre- uses a fixed window of instructions whose execution is monitored
mium; (2) complex designs and large on-chip caches present inin order to reduce the power consumption.
moder_n chips requwe_thgrm_al_management strategl_es to prevenELZ- Motivation
the chip from overheating; this is true not only for mobile comput-
ing, but for conventional processor design as well. In this paperwe Most solutions to the power problem are static in nature since
present microarchitectural level control and scaling of resources tothey do not allow for adaption to the application. It has been ob-
address the issue of power consumption. served [8, 11] that there is wide variation in processor resource us-
1.1. Prior Work age among various applications. In addition, the execution profile

of most applications (for example the profile of tapic bench-

Although low-power design has been an active area of researchmark shown in Figure 1) indicate that there is also wide variation
for the last decade or so, the problem of power modeling and opti- in resource usage from one section of an application’s code to an-
mization at the microarchitectural level has only recently been ad- other.
dressed. An overview of various approaches to system level power The quantity and configuration of the processor’s resources
management, power optimization and efficient processor design iswill also affect the overall execution profile and the energy con-
given in [1]. The various approaches that have been proposed arsumption. Figure 2 shows the variation of the total energy con-
based on memory hierarchy [2, 3], dynamic power managementsumption of thdisp benchmark with variation in the register up-
[4], dynamic supply voltage variation [5, 6], etc. date unit (RUU) size and the effective pipeline width. Low-end

So far only a few microarchitectural level solutions to the configurations consume higher energy per instruction due to their
power problem have been proposed; for example [7] proposes ainherently high CPI; high-end configurations also tend to have
technique that uses confidence estimation to gate the execution ofhigh energies in part due to resource usage and in part due to power
branches that are most likely to be mispredicted, and [8] presents aconsumption of unused modules. The ideal operating point is
new paradigm for adapting the execution of application programs somewhere in between. Identifying the right configuration which
for low power using profiling. [9] presents an analysis of differ- optimizes the energy consumed per instruction for each region of
ent configurations of superscalar processors and derives the opti€ode is the goal of our work.

Branch Behavior Hotspot Detection
Buffer Counter

Branch Exec

Tag Ctr CF

20

1 Saturating adder
]
0

Branch Addr

1

L~ L*]
64
8 32
Fetch Rate 16 Figure 3. Hotspot detection hardware
8 RUU Size
Figure 2. Energy variation of lisp We use a cache-like structure called tianch behavior buffer

(BBB) to keep track of branches. Each branch has an entry in the

» . o BBB, consisting of an execution counter and a one-bit candidate
We use a hardware profiling scheme to identify tightly coupled g, “The execution counter (9 bits wide as suggested in [11]) is

reg'ons of code, and a .hardware-based power estimation _methoqncremented each time the branch is taken, and once the counter
to judge the power requirements and tradeoffs for each region andg, ey a fixed value, the branch in question is marked as a candi-

allqcate resources at runtime depending on these estimates. Alloy,e pranch by setting the candidate flag bit for that branch. A sat-
cating ar_chltectural resources dy_namlcally pased upon the needs OLrating counter called theotspot detection count¢HDC) keeps
the running program, coupled with aggressive clock-gating styles, 4 of candidate branches. Initially all bits of the counter are set;

can lead to significant power savings. each time a candidate branch is taken the counter is decremented
1.3. organization of this Paper by D, and each time a non-candidate branch is taken, it is incre-
]))) mented by |. When the HDC decrements down to zero, we are in a
The rest of this paper is organized as follows. Section 2 potspot. The BBB and HDC are left running even when execution
presents the framework needed for hotspot detection. We presenfs inside the hotspot. When the code strays away from the hotspot,
in section 3 the methodology for finding the optimal configura- non-candidate branches start to execute more frequently; the HDC

tion. In section 4 we discuss some practical considerations. SeCtnen increments to its upper limit eventually, and we say that we
tion 5 contains details of our implementation and results on a set e out of the hotspot.

of benchmarks. In section 6 we conclude with some final remarks. The refreshing and flushing of the BBB, the replacement pol-

2 Detecti Hot t icy for BBB entries, etc. were all implemented as described in
- betecting Rotspots [11]. The replacement policy is that if there is a conflict, the old

Let us use the terrbasic blockto describe a straight execu- €Nty is retained and the new one discarded. Entriesiaree-
tion path of code ending at any branch or jump instruction. A placed_; this |s_n(_aeded so that the BBB figures reflt_ect the_correct
typical mix of instructions contains one branch every five or six €xecution statistics. Every 4096 cycles, BBB entries which are
instructions, so the average size of the basic block is also of theNon-candidate entries are flushed. Every 64K cycles, the entire
order of five or six. In the ideal case, each basic block could be BBB is reset. These two mechanisms ensure that the replacement
characterized in terms of its parallelism and resource usage, andCli¢y we have adopted does not cause stagnation of entries in the
the configuration of the processor could be changed dynamicallyt@ble. One possible implementation of the BBB entry is shown in
for each basic block. However in modern processors that would Figure 4. _) _ _
require changing the configuration of the processor almost every ~ "€ changes in our scheme from previous versions of this
cycle, which is not feasible to implement. Hence we need to look hotspot detection scheme are twofold. In the BBB, we use the
at collections of basic blocks executing together, calletspots target address of the pranch instruction (or the starting address
It has been shown that most of the execution time of a program of the b_aS|c bI(_)ck)_ to index _the table, and not the aeress of the
is spent in several small critical regions of code. These regions Pranch instruction itself. While the scheme proposed in [11] used
or hotspots consist of a number of basic blocks exhibiting strong & separate structure called a monitor table to detect that execution
temporal locality. has strayed away from a hotqut, we use the same BBB and HDC

Since a hotspot is a collection of frequently executing basic structures t‘o achleve this end since our scheme does not peed the
blocks, identifying hotspots involves keeping a count of all branch €xtra functionality offered by the monitor table. As mentioned
instructions committed, and finding the most frequent branches. @00ve, straying of code away from hotspots is detected by keeping

We have implemented a modified version of the scheme proposed€ Profiling hardware running at all times and by waiting for the
by Merten et al [11]. HDC to increment to its maximum value.

Reset Instruction Count Register
——

(Refresh Retired
Instructions

Counter

Reset

’:l\\\\\\\\lCF 9
Al e
FP ALU
Increment usage
%;:%%%
Integer ALU
usage

Figure 4. Implementation of one BBB entry ‘ 1
Register file Héﬁl:I_‘iD—é)i
Unit Power usage
Floating point ALU 9 \ :
Integer ALU 3 Insn window
Register File 1 usage
Instruction Window 2

Table 1. Relative power consumption of the four hottest

. Power Register
parts of the Simplescalar processor

Figure 5. Power profiling hardware

3. The Energy-Optimal Configuration

Once a hotspot has been detected, we need to determine an = be diff h h
optimum configuration for that hotspot. By the term configura- estimating power may be different. However the same scheme can

tion, we mean a unique combination of the parameters under con-be implemented irrespective of the actual processor.

trol, which for our experiments were the RUU size and the ef- 3 2. Optimizing the Configuration

fective pipeline width. To have a consistent flow of instructions

through the pipeline, the decode width, issue width and commit ~ The instruction count register (ICR) is used to keep a count of
width were all made equal in order to control the effective pipeline the number of the number of instructions retired by the proces-
width. Since less than half the instructions are memory access in-sor. When a hotspot is detected, the ICR is initialized with the
structions, we set the size of the load-store queue (LSQ) to be halfnumber of instructions to count (1024 in our experiments) and a
the size of the RUU. We define the optimum as that configuration finite state machine (FSM) is activated, tracking the processor’s
which leads to théeast energy dissipated per committed instruc- configuration. During each cycle, it is decremented by the number
tion. of instructions retired in that cycle. When the ICR reaches zero,
the power register is sampled to obtain a figure proportional to the
energy dissipated per instruction.

To determine the optimum configuration, we need a way to After every 1024 instructions, the FSM reads the power regis-

determine approximate energy dissipation statistics in hardware.[" fOr an estimate of the power consumed and switches to a new

For this purpose, when a hotspot is detected, two counter registersproceSsor conflguratlon_. Ifthere arepa_lrame_ters of the processor
are set in motion: th@ower registerand theinstruction count to vary, exhaustive testing of all configurations would mean test-
register(ICR) ing all points in then-dimensional lattice for a fixed number of

instructions. In our experiments we varied the RUU size and the
four most power-hungry units of the processor. Using the orga- fetch rate and ran 1024 instructions to test power usage. Since we

nization and modeling of Wattch [12], in our processor model we were testing configurations with RUU sizes of 16, 32, 48 and 64

have identified these four units to be (1) floating point ALU (2) and _With f_etch rates_c_;f 4,6 and 8, we had atotal ot 8 = 12)
configurations, requiring an FSM of only 12 states. A schematic

integer ALU (3) register file (4) instruction window. The relative) 9

per-access energy dissipation of each unit is shown in Table 1.0f the FSMis showniin Figure 6. o .

These figures are not exact but are rounded off for simple integer After the optimum conflguratlon_ is found, it is stored inside

arithmetic. Multiplying these power figures with the access counts the_ hotspot table. The Fable contains one er_1try for each hotspot
which stores the RUU size and fetch rate which have been found

of the respective units provides a rough estimate of the ener ! i .
P P g gyto be optimal for that hotspot. The next time the same hotspot is

consumed in each cycle. These multiplications could be imple- ; :
mented as integer shift and add operations, pipelined if necessary_encountered, the optimal values can be taken from the table. This

A schematic view of this process is shown in Figure 5. We point clioes . Ie?d to much _ovirhead since theh3|ze of th%taﬁle IS ort:ly
out that depending on the implementation, the four hottest units 6 entries. In practice, in the programs we have tested, the number

may be different from the units shown here or the weights used for of distinct hotspots was less than 16.

3.1. Power Profiling in Hardware

The power register is used to maintain power statistics for the

d = 1 after every 1024 instructions

a typical run ofgccon Wattch [12] the BBB power is found to be
0.05W out of a total power of 20.9W.

4.3. Subbanking in the I-Cache

When the fetch width is scaled down, the required line size of
the instruction cache also changes. In this case and (also in gen-
eral) the instruction fetch stage may not be able to utilize all the
words available in one block. Accesses to the instruction cache
can be optimized using subbanking methods described in [3]. By
using an array of bit flags to indicate whether a particular word in
a line should be fetched or not, the array access stage can be pro-
grammed to selectively read out words from the cache. This leads
to a significant saving in the instruction cache power. This fine-
grained scaling of line size is in agreement with the methodology
of run-time resource scaling.

Hotspot
found

4.4, Maintaining Performance Levels

While resource scaling helps to operate the processor in an
energy-optimal mode, scaling down the effective pipeline width

Program
Start during execution does lead to a fall in performance. A perfor-
mance monitoring counter along with the profiling hardware can
Figure 6. FSM Example restrict this performance hit to acceptable levels. After hotspot

detection, while we evaluate the energy usage of each configura-
ical id . tion, the performance counter keeps track of the number of cycles
4. Practical Considerations needed for the execution of 1024 instructions in each configura-
4.1. Performance Overhead of Switching Configu- tion, thus_, providir_wg a rough CPI es_timate. The acce_ptable perfor-
rations mance hit we defined for our experiments was one-eighth (12.5%).
(In particular this figure was chosen because dividing by 8 can be
Many parts of the processor are implemented as circular queuesjone by simple 3-bit shift operation.) If a particular configuration
usingheadandtail pointers; eg. instruction issue queue, load-store takes more than 12.5% cycles above the baseline configuration, it
queue, etc. Each configurable unit has a maximum size (physicalis rejected. This ensures that for each hotspot detected, the perfor-
capacity) and an active size (fraction of units which are enabled, mance hit is not more than 12.5%; hence the overall performance
determined at runtime). The processor is said to switch configura- it for the application will be less than 12.5%.
tions when the active size of any unit changes. Measuring CPI by counting the clock cycles needed for a fixed
Whenever a decision is made to change the configuration of nymber of instructions has its caveats. We have found that in the
the processor (say to reduce the instruction window size from 64 event of an instruction cache miss, the number of cycles counted
to 32 or to reduce the fetch rate from 6 to 4) a flag is set and the goes up inordinately, and this distorts the CP! figures so that con-
dispatch unit stops pumping instructions into the execution queue.figurations which are feasible in the long run are sometimes left
The instructions already in the queue are allowed to run to comple- oyt of consideration. To minimize the chances of this, we discount
tion; after they are committed, the active sizes of the reconfiguredthe cycles spent waiting on a cache miss. This technique gives
units are changed. The exact loss of CPU cycles incurred by thisys a more realistic (though not completely accurate) estimate of
pipeline flush done on every reconfiguration depends on the statehe CPI which we could have obtained if the cache miss had not
of the processor at the instant of the switch. Our experiments havenappened. It should be noted that cache misses do not distort the
shown penalties as low as zero cycles (when the queue is nearlhower estimates since these estimates are determined only by us-
empty) and as high as 30 cycles (for example when the queue isage of individual units of the processor.
nearly full, when long-latency instructions are already in pipeline,)) .
or when we have a cache-miss on a load). However we do not4.5. Selective Dynamic Voltage Scaling

reconfigure the processor too often; in practice we find that the . . .
: . Buffered lines in array structures can be used to selectively en-
number of cycles lost is less than 0.5% in the worst case and less - .
L able some parts of the structure and disable others. Thus, scaling
than this in most cases.

down the resources of a processor can reduce the critical path de-
4.2. Performance and Power Overhead of lay since the rename and window access stages which determine
Profiling Hardware the critical path to a large extent have latencies highly dependent

on the instruction issue rate and the RUU size [13]. We can exploit

The accesses to the BBB are done after the branch mstructlons[his to dynamically scale the operating voltage while keeping the

are retired; hence the hotspot detection scheme is not in the crltlcalCIOCk frequency constant. Delays in some structures scale better

path of the processor and does not bring about any delay overheadman others, and some delays do not scale at all. The structures

The profiling hardware is actlvate_d only once every branch |nstruc_- which scale well could be powered by dynamic supply voltages.
tion; hence the power overhead is also quite small. For example in

This would necessitate the use of level-shifters to pass data be-
tween different stages which operate at different voltages.
The dependence of path delay on supply voltage is given by the
following equation [14]:
Vdd
(Vad —Wt)? @
If Dg is the delay of a structure in the default configuratin,
is the delay after scaling, arig, is the delay introduced by the
level shifter logic, then the relationship between supply voltage
and delays is given by the following equation:

D (Vagnew —M)? Vug
Do-Dy (Vad—Vt)? Vdd(new

In practice, since supply voltages cannot be varied on a continuous
scale, the implementation should consist of a few supply voltage
rails with logic for switching between them as and when delays
reduce to appropriate values.

The delays of various structures inside a typical superscalar
processor have been studied by Palacharla et al [13]. They have
shown that to a good approximation, the delay of the rename logic
is linear in the issue width of the processor and the delay of the is-
sue logic is quadratic in issue width as well as in RUU size. When
the processor goes from its highest configuration we tested (RUU
size of 64 and issue width of 8) to the lowest (RUU size of 16 and
issue width of 4), the delay in issue logic reduces from 3369 ps to
1995 ps on a 0y8n technology. If the supply voltage was 5V to
start with, scaling to the lowest configuration now allows the issue
logic to run at 3.6V. Assuming that energy dissipation is propor-
tional toCVdZd, the savings in energy dissipated in the issue logic
amount to about 48%.

DO

@)

5. Implementation and Results
5.1. Implementation on SimpleScalar

The above ideas were implemented on the Simplescalar archi-
tecture [15]. Simplescalar is a popular industrial-strength simu-
lator which implements a derivative of the MIPS-IV instruction
set, and has various configuration options including a superscalar
out-of-order simulator which we used for our experiments. The
power modeling we used to report power figures was based on
Wattch [12], which is an extension to the Simplescalar simula-
tor. Wattch has various choices for power modeling; the one we
chose for our application assumes support for aggressive clock gat-
ing styles and parameterized power calculation. This implies that
power consumption is scaled according to the number of units (in
case of multiple functional units) or ports used (in case of register
files and caches). Unused units are modeled as consuming 10% of
their active power in the idle state; this is a good model for low
feature sizes of modern technologies. Wattch also uses the scheme
implemented in Cacti [16] for optimizing caches and cache-like
structures based on delay analysis.

In keeping with the existing implementation of Simplescalar,
the additional structures and options we introduced in the simula-
tor are set through command line options and their power overhead
is included in the total power estimates. The baseline configura-
tion of the processor we used for our tests is given in Table 2. The
schematic of the processor with the profiling hardware included is
shown in Figure 7.

Processor Core

RUU size 64 instructions
LSQ size 32 instructions
Fetch queue size | 8 instructions
Fetch width 8 instructions/cycle
Decode width 8 instructions/cycle
Issue width 8 instructions/cycle
Commit width 8 instructions/cycle

Functional units 4 integer ALUs

2 integer multiply/divide units

2 FP ALUs

2 FP multiply/divide units
Branch Prediction

Predictor Bimodal, 2K table

BTB 2048 entry, 4-way

Return addr stack | 8 entry

Mispredict penalty| 3 cycles
Memory Hierarchy

L1 D-cache 64 KB 4-way LRU

64B blocks, 1 cycle latency
L1 I-cache 64 KB 2-way LRU

64B blocks, 1 cycle latency
L2 cache 256 KB 4-way LRU

64B blocks, 6 cycles latency
Memory latency 18 cycles

Table 2. Baseline configuration used for our experiments

Scaling Control

|]
| |
P | e
Lo 5 ! g
I
b 22 ¥
Lo gt -
L L
Issue — J .
1\ Window °
) j2]
5l |8 4 H
o) S T = = S
i3 T
* o 2 % . 0 fay
c?® = L
Wakeup
+ Select -
Reg write
Reg Read| Wakeup | Execute Commit
Fetch Decode | Rename D-cache
Rob Read| Select Bypass BBB-
update

Figure 7. The processor model with profiling hardware
included

5.2. Experimental Results

We performed experiments with programs from the Spec95
CPU benchmark suite as well as the MediaBench suite [17]. The
power savings we obtained are summarized in Figures 8 and 9.
There are three values indicated for each application: ctive
strainedfigure represents the power consumption of the processor
with the constraint on performance not exceeding specified lim-
its; theunconstraineccase represents the case in which the FSM
optimizes the processor for lowest energy regardless of the perfor-
mance hit involved; the last case shown,fikedcase, is the power
consumption for the baseline processor without any resource scal-
ing. The performance for each application under each mode of
execution is given in Figure 10.

For the Spec benchmarks, standard workloads were simulated,
and the figures given are for complete execution of the application.
For the MediaBench applications, we chose and ran appropriate
input vectors; for example we used the populenaimage for
testingepicimage compression, and used a short 320x200 movie
clip 68 frames long for testinghpeg2decoding. We tested the
pegwitencryption program using a few paragraphs from the text
of this paper. Most applications show significant savings in the
average energy per cycle (average power) ranging from 2.6% to
26.3%. The savings in energy per instruction (total energy dis-
sipated) ranges from very low values to 8%. In the case of the
tomcatvbenchmark, the energy is higher with dynamic resource
scaling. This could be because the window of instructions profiled
after the initial hotspot detection did not match the general execu-
tion profile, leading to a sub-optimal configuration being used.

The characteristics of each application have to be taken into
account while interpreting these results. For example, most of the
execution time of thenpeg2decoder is inside a single hotspot, and
the optimal configuration derived for this hotspot by our scheme
is an RUU size of 16 and a fetch rate of 8 instructions. The par-
allelism of this application however appears to need a configura-
tion close to the default configuration we tested, since changing
the configuration drastically away from the default produces lit-
tle change in the energy consumption but significant decrease in
the IPC and power figures. Thusimpeg2the ALUs and execu-
tion units dominate the execution profile; changing the dynamic
scheduling in the processor does not save much energy. The same
is the case with other benchmarks liigeg andepicwhich show
only marginal savings in energy. However in the casenpeg2
since the entire 68-frame movie clip was decoded in about 72 mil-
lion cycles, we can safely conclude that run-time resource scaling
implemented in a real-world system running at say 500 MHz will
not bring about a noticeable performance hit during movie play-
back.

5.3. Dynamic Voltage Scaling

To test the dynamic voltage scaling scheme, we implemented
selective voltage scaling for the issue logic stage alone and ran the
gccandgo benchmarks. The saving in energy rose from 7% to
13.5% forgcc and from 7.5% to 16.5% fogo with correspond-
ing reductions in average power. If other structures in the proces-
sor were also to incorporate dynamic voltage scaling, the savings
would increase.

40

35

30

25

POWER
8

1!

@

1

o o

o

ENERGY PER INSTRUCTION
- °) 5 IS = 5 &

N

=)

35

25

IPC

15

-

0.5

Hl Constrained
1 Unconstrained

B Fixed
compress epic tomeatv pegwit
perl lisp iipeg mpeg2
Figure 8. Variation in power
- Constrained
l:l Unconstrained|
B Fixed

compress epic tomcaty pegwit
lisp ijpeg

Figure 9. Variation in energy

mpeg2

Il Constrained
[Unconstrained
B Fixed

compress epic tomcatv pegwit
perl lisp iipeg

Figure 10. Variation in performance

mpeg2

Resource
Scaling

Performance
State Px

Figure 11. Resource scaling in the context of ACPI

6. Conclusion

(4

(5]

(6]

(7]

(8]

El

[20]

[11]

The techniques outlined in this paper for run-time profiling of [12]
code and optimization of the processor configuration show good
promise for energy savings. Further extensions could be made to

our scheme. For instance, in our experiments we have coupled th
fetch width, decode width and issue width to the same value; ther

may be more optimal ways of configuring the processor with dif-

ferent values for these parameters. Other resources which we hav
not considered in our experiments may also lend themselves t

run-time scaling; for example, branch prediction tables, data and

instruction caches and TLBs. Selective traversal of possible con-

figurations could be done instead of exhaustive testing of all con-
figurations; in fact this will become a necessity when the parame-
ters under control increase in number. The performance monitor-

ing hardware could be used for more advanced power managemen

strategies as well; for example lack of usage of the floating point
units by integer applications could be detected and the power to[l7]
the FPU could be shut off entirely, providing more power savings.
Microarchitecture level scaling could be incorporated as a sepa-
rate state in ACPI-based power management, as shown in Figure
11. Overall, we believe that microarchitecture level resource scal-
ing and allocation can lead to a significant saving in power while
retaining reasonable performance levels.

References

(1]

(2]

(3]

L. Benini and G. de Micheli, “System-Level Power Optimization:
Techniques and Tools,” iRroceedings of the International Sympo-
sium on Low Power Electronics and Desjdi999.

N. Bellas, I. Hajj, and C. Polychronopoulos, “Using Dynamic Cache
Management Techniques to Reduce Energy in a High-Performance
Processor,” irProceedings of the International Symposium on Low
Power Electronics and Desigi999.

K. Ghose and M. B. Kamble, “Reducing Power in Superscalar Pro-
cessor Caches using Subbanking, Multiple Line Buffers and Bit-line
Segmentation,” irProceedings of the International Symposium on

Low Power Electronics and Desigh999.

3]

e

fia)

(0]

[15]

[161

Compag, Intel, Microsoft, Phoenix and ToshiBalvanced Configu-
ration and Power Interface SpecificatioR000.

T. Pering and R. Brodersen, “The Simulation and Evaluation of Dy-
namic Voltage Scaling Algorithms,” iProceedings of the Interna-
tional Symposium on Low Power Electronics and Desic®8.

A. Klaiber, The Technology Behind Crusoe Processofsansmeta
Corp, January 2000.

S. Manne, A. Klauser, and D. Grunwald, “Pipeline Gating: Specu-
lation Control for Energy Reduction,” iRroceedings of the Interna-
tional Symposium on Computer Architecture (ISCI&P8.

D. Marculescu, “Profile driven Code Execution for Low Power Dis-
sipation,” in Proceedings of the International Symposium on Low
Power Electronics and Desig2000.

V. Zyuban and P. Kogge, “Optimization of High-Performance Super-
scalar Architectures for Energy-Delay Product,”Rmoceedings of
the International Symposium on Low Power Electronics and Design
2000.

S. Ghiasi, J. Casmira, and D. Grunwald, “Using IPC Variation in
Workloads with Externally Specified Rates to Reduce Power Con-
sumption,” inWorkshop on Complexity Effective Desigo00.

M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal, and W. W.
Hwu, “A Hardware-driven Profiling Scheme for Identifying Program
Hotspots to Support Runtime Optimization,” Hroceedings of the
International Symposium on Computer Architecture (ISQAD9.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a Framework
for Architectural-level Power Analysis and Optimizations,” Rmo-
ceedings of the International Symposium on Computer Architecture
(ISCA) 2000.

S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the Com-
plexity of Superscalar Processors,” Tech. Rep. 1328, University of
Wisconsin-Madison, CS Department, November 1996.

K. Usami and M. Horowitz, “Clustered Voltage Scaling Technique
for Low-Power Design,” inProceedings of the Workshop on Low
Power Design1995.

D. Burger and T. M. Austin, “The SimpleScalar Tool Set, version
2.0,” Tech. Rep. 1342, University of Wisconsin-Madison, CS De-
partment, June 1997.

S. J. E. Wilton and N. P. Jouppi, “An Enhanced Access and Cycle
Time Model for On-Chip Caches,” Tech. Rep. 93/5, Western Re-
search Laboratory, DEC, July 1994.

C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench:
a Tool for Evaluating and Synthesizing Multimedia and Communi-
cations Systems,” ilnternational Symposium on Microarchitecture
(Micro), 1997.

