Message Authentication Codes (MACs) and Hashes

David Brumley

dbrumley@cmu.edu Carnegie Mellon University

Credits: <u>Many</u> slides from Dan Boneh's June 2012 Coursera crypto class, which is awesome!

Recap so far

- Information theoretically secure encryption: ciphertext reveals nothing about the plaintext
- Secure PRNG: Given first *k* output bits, adversary should do not better than guessing bit *k*+1
 - Principle: next bit is secure, not just "random looking" output
- Secure PRF: Adversary can't tell the difference between real random function and PRF
 - Principle: computationally indistinguishable functions
- Semantic security (computationally secure encryption): Adversary picks m₀,m₁, receives encryption of one of them, can't do better than guessing on which messages was encrypted.
 - Principle: ciphertext reveals no information about plaintext
 - Security is not just about keeping key private

Message Integrity

Goal: *integrity* (not secrecy)

Examples:

- Protecting binaries on disk.
- Protecting banner ads on web pages

Security Principles:

Integrity means no one can forge a signature

CRC

Is this Secure?

- No! Attacker can easily modify message m and re-compute CRC.
- CRC designed to detect <u>random errors</u>, not malicious attacks.

Message Authentication Codes (MAC)

Defn: A <u>Message Authentication Code (MAC</u>) MAC = (S,V) defined over (K,M,T) is a pair of algorithms:

- S(k,m) outputs t in T
- V(k,m,t) outputs `yes' or `no'
- V(k, S(k,m), t) = 'yes' (consistency req.)

Example

Example: Tripwire

At install time, generate a MAC on all files:

Later a virus infects system and modifies system files
User reboots into clean OS and supplies his password
– Then: secure MAC ⇒ all modified files will be detected

Secure MAC Game

Security goal: **A** cannot produce a valid tag on a message

– Even if the message is gibberish

Secure MAC Game

Def: I=(S,V) is a <u>secure MAC</u> if for all "efficient" A: Adv_{MAC}[A,I] = Pr[Chal. outputs 1] < ϵ Let I = (S,V) be a MAC.

Suppose an attacker is able to find $m_0 \neq m_1$ such that $S(k, m_0) = S(k, m_1)$ for $\frac{1}{2}$ of the keys k in K

Can this MAC be secure?

- 1. Yes, the attacker cannot generate a valid tag for m_0 or m_1
- No, this MAC can be broken using a chosen msg attack
 - 3. It depends on the details of the MAC

 - A sends m₀, receives (m₀, t₀)
 A wins with (m₁, t₀)
 Adv[A,I] = ½ since prob. of key is ½.

MACs from PRFs

Secure PRF implies secure MAC

For a PRF F: $K \times X \longrightarrow Y$, define a MAC $I_F = (S,V)$ as:

$$-S(k,m) = F(k,m)$$

-V(k,m,t): if t = F(k,m), output 'yes' else 'no'

Attacker who knows F(k,m₁), F(k,m₂), ..., F(k, m_q) has no better than 1/|Y| chance of finding valid tag for new m

Security

<u>Thm</u>: If F: $K \times X \longrightarrow Y$ is a secure PRF and 1/|Y| is negligible (i.e., |Y| is large), then I_F is a secure MAC.

In particular, for every eff. MAC adversary **A** attacking $I_{F'}$ there exists an eff. PRF adversary **B** attacking F s.t.: $Adv_{MAC}[\mathbf{A}, I_F] \square Adv_{PRF}[\mathbf{B}, F] + 1/|Y|$

A can't do better than brute forcing

Proof Sketch

A wins iff t=f(k,m) and m not in $m_1,...,m_q$ PR[A wins] = Pr[A guesses value of rand. function on new pt] = 1/|Y|

Question

Suppose F: $K \times X \longrightarrow Y$ is a secure PRF with $Y = \{0,1\}^{10}$

Is the derived MAC I_F a <u>practically</u> secure MAC system?

1. Yes, the MAC is secure because the PRF is secure

2. No tags are too short: guessing tags isn't hard

3. It depends on the function F

Adv[A,F] = 1/1024(we need |Y| to be large)

Secure PRF *implies* secure MAC

S(k,m) = F(k,m) Assuming output domain Y is large

So AES is already a secure MAC.... ... but AES is only defined on 16-byte messages

Building Secure MACs

<u>Given:</u> a PRF for shorter messages (e.g., 16 bytes)

<u>Goal:</u> build a MAC for longer messages (e.g., gigabytes)

Construction examples:

- CBC-MAC: Turn small PRF into big PRF
- HMAC: Build from collision resistance

Construction 1: Encrypted CBC-MAC (ECBC-MAC)

<u>raw CBC</u>

Attack

Suppose we define a MAC $I_{RAW} = (S,V)$ where

S(k,m) = rawCBC(k,m)

Then I_{RAW} is easily broken using a 1-chosen msg attack.

Adversary works as follows:

- 1. Choose an arbitrary one-block message $m \in X$
- 2. Request tag for m. Get t = F(k,m)
- 3. Output t as MAC forgery for the 2-block message $m|| t \oplus m$

Attack

Break in 1-chosen message attack

ECBC-MAC analysis

<u>Recall</u>: We built ECBC-MAC from a PRP (e.g., block cipher) F: K x X -> X

Theorem:For any L>0,For every eff. q-query PRF adv. A attacking F_{ECBC} or F_{NMAC} there exists an eff. adversary B s.t.:

 $\operatorname{Adv}_{\operatorname{PRF}}[A, \operatorname{F}_{\operatorname{ECBC}}] \leq \operatorname{Adv}_{\operatorname{PRP}}[B, \operatorname{F}] + 2 \operatorname{q}^2 / |X|$

CBC-MAC is secure as long as $q \ll |X|^{1/2}$

After signing |X|^{1/2} messages, rekey

Extension Attack

Suppose the underlying PRF F is a PRP (e.g., AES). Let F_{BIG} be ECBC. Then F_{BIG} has the following <u>extension property</u>:

∀x,y,w:

 $F_{BIG}(k, x) = F_{BIG}(k, y) \implies F_{BIG}(k, \mathbf{X} || \mathbf{W}) = F_{BIG}(k, \mathbf{Y} || \mathbf{W})$

Collisions and the Birthday Paradox

Birthday Paradox

Put n people in a room. What is the probability that 2 of them have the same birthday?

Birthday Paradox Rule of Thumb

Given N possibilities, and random samples x_1 , ..., x_j , PR[$x_i = x_j$] $\approx 50\%$ when j = N^{1/2}

Generic attack on hash functions

Let $H: M \rightarrow \{0,1\}^n$ be a hash function ($|M| >> 2^n$)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: m₁, ..., m_{2^{n/2}} (distinct w.h.p)
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_j)$. If not found, got back to step 1.

How well will this work?

The birthday paradox

Let $r_1, ..., r_i \in \{1, ..., n\}$ be indep. identically distributed integers.

<u>Thm</u>:

when $i = 1.2 \times n^{1/2}$ then $Pr[\exists i \neq j: r_i = r_j] \ge \frac{1}{2}$

If H: M-> $\{0,1\}^n$, then Pr[collision] ~ $\frac{1}{2}$ with n^{1/2} hashes

$$\begin{array}{l} \textbf{Recall} \\ \# \text{ msgs MAC'ed} \\ \text{with key} \end{array} \\ \hline \textbf{Adv}_{PRF}[\textbf{A}, \textbf{F}_{ECBC}] \leq \textbf{Adv}_{PRP}[\textbf{B}, \textbf{F}] \ + \ \textbf{2} \ \textbf{q}^2 \ / \ |\textbf{X}| \end{array}$$

Suppose we want $AdvPRF[A, F_{ECBC}] \le 1/2^{32}$

- then
$$(2q^2 / |X|) < 1/2^{32}$$

- AES: $|X| = 2^{128} \Rightarrow q < 2^{47}$
- 3DES: $|X| = 2^{64} \Rightarrow q < 2^{15}$
Must change key
after 2^{47} , 2^{15} msgs

Reason: the Birthday Paradox.

Generic attack

Let F_{BIG} : K x M \rightarrow Y be a MAC with the extension property (e.g., CBC-MAC):

 $F_{BIG}(k, x) = F_{BIG}(k, y) \implies F_{BIG}(k, x||w) = F_{BIG}(k, y||w)$

- 1. For $i = 1, ..., 2^{n/2}$ get $t_i = F(k, m_{i,j})$
- 2. Look for a collision $(t_i = t_j)$. (birthday paradox) If not found, got back to step 1.
- 3. Choose some w and for query $t = F_{BIG}(m_i || w)$
- 4. Output forgery $(m_i || w, t)$

Implications

 $\operatorname{Adv}_{\operatorname{PRF}}[A, \operatorname{F}_{\operatorname{ECBC}}] \le \operatorname{Adv}_{\operatorname{PRP}}[B, \operatorname{F}] + 2 q^2 / |X|$

Suppose we want $AdvPRF[A, F_{ECBC}] \le 1/2^{32}$

- then $(2q^2 / |X|) < 1/2^{32}$
- AES: $|X| = 2^{128} \implies q < 2^{47}$
- 3DES: $|X| = 2^{64} \implies q < 2^{15}$

Need PRF that can quickly change keys.

Padding

What is msg not a multiple of block size?

Recall CBC-MAC

CBC MAC padding

Idea: pad m with 0's

Is the resulting MAC secure?

No

Yes, the MAC is secure

It depends on the underlying MAC

Problem: given tag on msg m attacker obtains tag on m||0|because pad(m) = pad(m'||0)

CBC MAC padding

For security, padding must be one-to-one (i.e., invertible)!

$$m_0 \neq m_1 \implies pad(m_0) \neq pad(m_1) \longrightarrow paddings$$

<u>ISO</u>: pad with "1000...00". Add new dummy block if needed.

two distinct

messages

map to two

distinct
CMAC (NIST standard)

Variant of CBC-MAC where $key = (k, k_1, k_2)$

- No final encryption step (extension attack thwarted by last keyed xor)
- No dummy block (ambiguity resolved by use of k_1 or k_2)

HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.

Hash Functions

Collision Resistance

Let $H: X \rightarrow Y$ be a hash function (|X| >> |Y|)

A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: H(m₀) = H(m₁) and $m_0 \neq m_1$

A function H is **collision resistant** if for all (explicit) "eff" algs. A:

Adv_{CR}[A,H] = Pr[A outputs collision for H] is "negligible".

Example: SHA-256 (outputs 256 bits)

General Idea

Hash then PRF construction

MACs from Collision Resistance

Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES)

Let $H: X \to Y$ and $S: K \times Y \to T$ (|X| >> |Y|)

Def: $I^{\text{big}} = (S^{\text{big}}, V^{\text{big}})$ over (K, X^{big}, Y) as:

 $S^{\text{big}}(k,m) = S(k,H(m))$; $V^{\text{big}}(k,m,t) = V(k,H(m),t)$

<u>**Thm</u>**: If I is a secure MAC and H is collision resistant, then I^{big} is a secure MAC.</u>

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is secure.

MACs from Collision Resistance

 $S^{big}(k, m) = S(k, H(m))$; $V^{big}(k, m, t) = V(k, H(m), t)$

Collision resistance is necessary for security:

Suppose: adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

Then: **S**^{big} is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$ step 2: output (m_1, t) as forgery

Sample Speeds Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

	<u>function</u>	digest <u>size (bits)</u>	generic Speed (MB/sec	<u>) attack time</u>
TSIN	SHA-1	160	153	2 ⁸⁰
stan	SHA-256	256	111	2^{128}
dard	SHA-512	512	99	2 ²⁵⁶
Ś	Whirlpool	512	57	2 ²⁵⁶

* best known collision finder for SHA-1 requires 2⁵¹ hash evaluations

Collision Resistance and Passwords

Passwords

How do we save passwords on a system?

- Idea 1: Store in cleartext
- Idea 2: Hash

Enrollment: store *h*(password), where *h* is collision resistant

<u>Verification</u>: Check *h*(input) = stored passwd

Is this enough to be secure

Brute Force

```
Online Brute Force Attack:

input: hp = hash(password) to crack

for each i in dictionary file

if(h(i) == hp)

output success;
```

```
Time Space Tradeoff Attack:

precompute: h(i) for each i in dict file in hash tbl

input: hp = hash(password)

check if hp is in hash tbl

"rainbow tables"
```

Salts

Enrollment:

- compute hp=h(password + salt)
- 2. store salt || hp

Verification:

- 1. Look up salt in password file
- 2. Check h(input||salt) == hp

What is this good for security, given that the salt is public?

Salt doesn't increase security against online attack, but does make tables much bigger.

Merkle-Damgard

How to construct collision resistant hash functions http://www.merkle.com/

The Merkle-Damgard iterated construction

Given $h: T \times X \rightarrow T$ (compression function)

we obtain $H: X^{\leq L} \rightarrow T$. H_i - chaining variables

PB: padding block 1000...

1000...0 ll msg len 64 bits

If no space for PB add another block

Security of Merkle-Damgard

<u>Thm</u>: if *h* is collision resistant then so is *H*. *Proof Idea:*

via contrapositive. Collisions on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

Compr. func. from a block cipher

E: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a block cipher.

The **Davies-Meyer** compression function **h(H, m) = E(m, H)⊕H**

Thm:Suppose E is an ideal cipher
(collection of |K| random perms.).Best possible !!Finding a collision h(H,m)=h(H',m') takes $O(2^{n/2})$ evaluations
of (E,D).

Hash MAC (HMAC)

Most widely used approach on the internet, e.g., SSL, SSH, TLS, etc.

Recall Merkel-Damgard

<u>Thm</u>: h collision resistant implies H collision resistant

Can we build a MAC out of H?

Attempt 1

Let $H: X^{\leq L} \rightarrow T$ be a Merkle-Damgard hash, and: S(k,m) = H(k||m)

is this secure? no! why?

Hash Mac (HMAC)

Build MAC out of a hash

HMAC: $S(k, m) = H(k \oplus opad, H(k \oplus ipad || m))$

• Example: H = SHA-256

HMAC

PB: Padding Block

Recap

- MAC's from PRF
 - NMAC
 - CBC-MAC
 - PMAC
- MAC's from collision resistant hash functions
 - Make CRF with merkle-damgard from PRF
- Attackers goal: existential forgery

Further reading

- J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The Three-Key Constructions. J. Cryptology 18(2): 111-131 (2005)
- K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179
- J. Black, P. Rogaway: A Block-Cipher Mode of Operation for Parallelizable Message Authentication. EUROCRYPT 2002: 384-397
- M. Bellare: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. CRYPTO 2006: 602-619
- Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219

Questions?

Protecting file integrity using C.R. hash

When user downloads package, can verify that contents are valid

H collision resistant ⇒ attacker cannot modify package without detection

no key needed (public verifiability), but requires readonly space

Construction 2: Nested MAC (NMAC)

<u>cascade</u>

Cascade is insecure

<u>cascade</u>

1-query attack: given cascade(m,k₀) = t, can derive cascade(m||w, t)= t' • ECBC and NMAC are sequential.

• Can we build a parallel MAC from a small PRF ??

Construction 3: PMAC – Parallel MAC

P(k, i): an easy to compute function

Cool Feature: Incremental Updates

Cool Feature: Incremental Updates

tag' =

HMAC (Hash-MAC)

Most widely used MAC on the Internet.

... but, we first we need to discuss hash function.

Proof: collision on $H \rightarrow$ collision on h

Let |M| = |M'|, $M \neq M'$, and $H(M) = h_i(m_i, H_{i-1})$ with $m_0 = IV$ Suppose H(M) = H(M'). We build a collision on h.

<u>Case 1</u>: $m_i \neq m'_i \text{ or } H_{i-1} \neq H'_{i-1}$. But since $f(m_i, H_{i-1}) = f(m'_i, H'_{i-1})$ there is a collision in h and we are done. Else recurse

Proof: collision on $H \rightarrow$ collision on h

Let |M| = |M'|, $M \neq M'$, and $H(M) = h_i(m_i, H_{i-1})$ with $m_0 = IV$ Suppose H(M) = H(M'). We build a collision on h.

<u>**Case 2</u>**: $m_i = m'_i and H_{i-1} \neq H'_{i-1}$ for all i. But then M = M', violating our assumption.</u>

Question

Suppose we define **h(H, m) = E(m, H)** Then the resulting h(.,.) is not collision resistant.

To build a collision (H,m) and (H',m'), i.e., E(m,H) = E(m', H') choose random (H,m,m') and construct H' as follows:

1. H'=D(m', E(m,H))

2. H'=E(m', D(m,H))

3. H'=E(m', E(m,H))

4. H'=D(m', D(m,H))

E(m', H') = E(<u>m'</u>, D(<u>m'</u>, E(m,H)) = E(m,H)
HMAC

PB: Padding Block