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Recap so far
• Information theoretically secure encryption: ciphertext reveals nothing 

about the plaintext

• Secure PRNG: Given first k output bits, adversary should do not better 
than guessing bit k+1
– Principle: next bit is secure, not just “random looking” output

• Secure PRF: Adversary can’t tell the difference between real random 
function and PRF
– Principle: computationally indistinguishable functions

• Semantic security (computationally secure encryption): Adversary 
picks m0,m1, receives encryption of one of them, can’t do better than 
guessing on which messages was encrypted.
– Principle: ciphertext reveals no information about plaintext
– Security is not just about keeping key private
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Message Integrity

Goal: integrity (not secrecy)

Examples:

– Protecting binaries on disk.   

– Protecting banner ads on web pages

Security Principles: 

– Integrity means no one can forge a signature
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CRC

Is this Secure?
• No! Attacker can easily modify message m and 

re-compute CRC.

• CRC designed to detect random errors, not 
malicious attacks.

Generate tag:
tag  CRC(m)

Verify tag:
CRC(m, tag)  ?= ‘yes’
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Message Authentication Codes (MAC)

Defn: A Message Authentication Code (MAC) MAC = 
(S,V)  defined over  (K,M,T) is a pair of algorithms:

– S(k,m) outputs t in T

– V(k,m,t) outputs `yes’ or `no’

– V(k, S(k,m), t)  = ‘yes’ (consistency req.)
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Example
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Authorized Stock Ticker
Publisher

1. k = KeyGen(l)
2. For each price update:

t = S(stock||price,k)

Publish to the world

Adversary

t = A(stock||price up)

e.g., to cause a 
buying frenzy

A secure MAC should 
prevent this



Example: Tripwire

At install time, generate a MAC on all files:

F1

t1 = S(k,F1)

F2

t2 = S(k,F2)

Fn

tn = S(k,Fn)

⋯
filename filename filename

Later a virus infects system and modifies system files

User reboots into clean OS and supplies his password
– Then:   secure MAC   ⇒ all modified files will be detected



Secure MAC Game

Security goal: A cannot produce a valid tag on a 
message

– Even if the message is gibberish
8

Challenger
1. k = KeyGen(l)

3. Compute i in 0...q:
ti = S(mi, k)

5. b = V(m,t,k) 

Adversary A

2. Picks m1, ..., mq

4. picks m not in m1,...,mq

Generates t

m1,...,mq

t1,...,tq

m,t

b = {yes,no} existential forgery 
if b=“yes”



Secure MAC Game

Def: I=(S,V) is a secure MAC if for all “efficient” A:
AdvMAC[A,I] = Pr[Chal. outputs 1]  < ε
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Challenger
1. k = KeyGen(l)

3. Compute i in 0...q:
ti = S(mi, k)

5. b = V(m,t,k) 

Adversary A

2. Picks m1, ..., mq

4. picks m not in m1,...,mq

Generates t

m1,...,mq

t1,...,tq

m,t

b = {yes,no}



Let  I = (S,V) be a MAC.

Suppose an attacker is able to find  m0 ≠ m1 such that

S(k, m0) = S(k, m1)     for  ½ of the keys k in K

Can this MAC be secure?

1. Yes, the attacker cannot generate a valid tag for m0 or m1

2. No, this MAC can be broken using a chosen msg attack

3. It depends on the details of the MAC

1. A sends m0, receives (m0, t0)

2. A wins with (m1, t0)

3. Adv[A,I] = ½ since prob. of key is ½.



MACs from PRFs
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Secure PRF implies secure MAC

For a PRF  F: K × X  ⟶ Y, define a MAC IF = (S,V)    as:

– S(k,m) = F(k,m)

– V(k,m,t): if  t = F(k,m), output ‘yes’ else ‘no’

tag  F(k,m) accept msg if

tag = F(k,m)

Attacker who knows 
F(k,m1), F(k,m2), ..., F(k, mq) 

has no better than 1/|Y| chance of 
finding valid tag for new m
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Alice BobS V
m, tag



Security

Thm: If  F: K×X⟶Y is a secure PRF and 1/|Y| is negligible 
(i.e., |Y| is large), then IF is a secure MAC.

In particular,  for every eff. MAC adversary A attacking IF, 
there exists an eff. PRF adversary B attacking F s.t.:

AdvMAC[A, IF]  AdvPRF[B, F]   +  1/|Y|
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A can’t do 
better than 

brute forcing



Proof Sketch

A wins iff t=f(k,m) and m not in m1,...,mq

PR[A wins] = Pr[A guesses value of rand. function on new pt]

= 1/|Y|
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b

Let f be a truly random function

m1,...,mq

Adversary A

1. Picks  m1, ..., mq

4. picks m not in 
m1,...,mq. Generates t

t1,...,tx

m,t

Challenger

2. f from FUNS[X,Y]
3. Calculates
ti = f(k, mi)



Question

Suppose  F: K × X  ⟶ Y is a secure PRF with
Y = {0,1}10

Is the derived MAC IF a practically secure MAC 
system?

1. Yes, the MAC is secure because the PRF is secure 

2. No tags are too short:  guessing tags isn’t hard

3. It depends on the function   F

Adv[A,F] = 1/1024 
(we need |Y| to be large)
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Secure PRF implies secure MAC

S(k,m) = F(k,m)
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Assuming output 
domain Y is large

So AES is already a secure MAC....
... but AES is only defined on 16-byte messages



Given: a PRF for shorter messages (e.g., 16 
bytes)

Goal: build a MAC for longer messages 
(e.g., gigabytes)

Construction examples:

– CBC-MAC: Turn small PRF into big PRF

– HMAC: Build from collision resistance
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Building Secure MACs



raw CBC

Construction 1:   Encrypted CBC-MAC
(ECBC-MAC)

F(k,) F(k,) F(k,)

m[0] m[1] m[3] m[4]



F(k,)



F(k1,)
tagLet F: K × X ⟶ X be a PRP 

Define new PRF FECBC : K
2 × X≤L⟶ X 

Why?

<= L means 
any length

IV

assume 0
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Attack

Suppose we define a MAC    IRAW =  (S,V)     where

S(k,m) = rawCBC(k,m)

Then   IRAW is easily broken using a 1-chosen msg
attack.

Adversary works as follows:

1. Choose an arbitrary one-block message   mX

2. Request tag for m.    Get   t = F(k,m)

3. Output  t  as MAC forgery for the 2-block message  
m|| tm
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Attack

t

F(k,)

m

Break in 1-chosen message attack

Problem:    rawCBC(k, m|| tm ) 
= F(k, F(k,m)(tm) ) = F(k, t(tm) ) = F(k,m) =  t

IV

F(k,)

m tm



F(k,)

m

t

IV
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ECBC-MAC analysis

Recall: We built ECBC-MAC from a  PRP (e.g., block cipher) 

F: K x X -> X

Theorem:     For any L>0,

For every eff. q-query PRF adv. A attacking FECBC or FNMAC

there exists an eff. adversary B  s.t.:

AdvPRF[A, FECBC]  AdvPRP[B, F]  +  2 q2 / |X|

CBC-MAC is secure as long as q  <<  |X|1/2
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After signing |X|1/2

messages, rekey



Implications

AdvPRF[A, FECBC]  AdvPRP[B, F]  +  2 q2 / |X|

# msgs MAC’ed
with key

Suppose we want   AdvPRF[A, FECBC] ≤  1/232

– then (2q2 /|X|) < 1/232

– AES:     |X| = 2128 ⇒ q < 248

– 3DES:    |X| = 264 ⇒ q < 216

Must change key 
after 248, 216 msgs
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128-32 = 96
q2 = 248*2 = 296. 



Extension Attack

Suppose the underlying PRF F is a PRP (e.g., AES). 
Let FBIG be ECBC.  Then FBIG has the following 
extension property:
∀x,y,w:   

FBIG(k, x) = FBIG(k, y)     ⇒ FBIG(k,  x||w) = FBIG(k, y||w)
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F F F

m[0] ... w

k0

F(k,x) = F(k,y)
here

F(k,x||w) = F(k,y||w)
here

Attacker just needs to find such an x and y



Collisions and the Birthday Paradox
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Birthday Paradox

Put n people in  a room. What is the 
probability that 2 of them have the same 
birthday?
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P1

P2

P3

P4

Pn

PR[Pi = Pj] > .5 with 23 people.
(Think: n2 different pairs) 



Birthday Paradox Rule of Thumb

Given N possibilities, and random samples x1, 
..., xj, PR[xi = xj] ≈ 50% when j = N1/2
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Generic attack on hash functions

Let  H: M  {0,1}n be a hash function ( |M| >> 2n  )

Generic alg. to find a collision in time   O(2n/2)   hashes

Algorithm:

1. Choose 2n/2 random messages in M:     
m1, …, m2n/2      (distinct w.h.p )

2. For i = 1, …,  2n/2  compute    ti = H(mi)    ∈{0,1}n

3. Look for a collision  (ti = tj).    If not found, got back 
to step 1.

How well will this work?
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The birthday paradox

Let   r1, …, ri ∈ {1,…,n}   be indep. identically 
distributed integers. 

Thm: 
when  i= 1.2 × n1/2 then  Pr[ ∃i≠j:   ri = rj ] ≥  ½ 

28

If H: M-> {0,1}n, then 
Pr[collision] ~ ½ 
with n1/2 hashes 



B=106

# samples  n

50% prob of 
collision with 
~1200 hashes
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Recall

AdvPRF[A, FECBC]  AdvPRP[B, F]  +  2 q2 / |X|

# msgs MAC’ed
with key

Suppose we want   AdvPRF[A, FECBC] ≤  1/232

– then (2q2 /|X|) < 1/232

– AES:     |X| = 2128 ⇒ q < 247

– 3DES:    |X| = 264 ⇒ q < 215

Must change key 
after 247, 215 msgs

Reason: the Birthday Paradox.
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Generic attack

Let FBIG: K x M  Y be a MAC with the extension 
property (e.g., CBC-MAC):

FBIG(k, x) = FBIG(k, y)     ⇒ FBIG(k, x||w) = FBIG(k, y||w)

1. For i = 1, …,  2n/2  get  ti = F(k, mi,) 

2. Look for a collision  (ti = tj).  (birthday paradox)  
If not found, got back to step 1.

3. Choose some w and for query t = FBIG(mi || w)

4. Output forgery (mj||w, t) 
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Implications

AdvPRF[A, FECBC]  AdvPRP[B, F]  +  2 q2 / |X|

Suppose we want   AdvPRF[A, FECBC] ≤  1/232

– then (2q2 /|X|) < 1/232

– AES:     |X| = 2128 ⇒ q < 247

– 3DES:    |X| = 264 ⇒ q < 215

Need PRF that can quickly change keys.
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Padding
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F(k,) F(k,) F(k,)

m[0] m[1] m[3] m[4]



F(k,)



F(k1,)
tag

What is msg not a 
multiple of block size?

Recall CBC-MAC

???

34



CBC MAC padding

Yes, the MAC is secure

No

It depends on the underlying MAC

m[0] m[1] m[0] 0000m[1]

Idea: pad m with 0’s

Is the resulting MAC secure?

Problem:   given tag on msg m attacker obtains tag on m||0
because pad(m) = pad(m’||0) 

Same Tag

$100 00

$10 000
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CBC MAC padding

For security, padding must be one-to-one 
(i.e., invertible)!    

m0 ≠ m1 ⇒ pad(m0) ≠ pad(m1)

ISO:   pad with   “100000”.    Add new dummy 
block if needed.

– The “1” indicates beginning of pad.

m[0] m[1] m[0] m[1] 1000

m[0] m[1] m[0] m[1] 1000000000

If m is same as 
block size, add 
1 block pad for 

security

two distinct 
messages 

map to two 
distinct 

paddings
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CMAC   (NIST standard)

Variant of CBC-MAC where      key = (k, k1, k2)

• No final encryption step 
(extension attack thwarted by last keyed xor)

• No dummy block (ambiguity resolved by use of k1 or k2)

F(k,) F(k,)

m[0]



m[1] m[w]

F(k,)



⋯

tag

100

k1

F(k,) F(k,)

m[0]



m[1] m[w]

F(k,)



⋯

tag

k2

k1 != multiple B.S,
k2  = multiple BA.
k1 != multiple B.S,
k2  = multiple B.S. 37



HMAC   (Hash-MAC)

Most widely used MAC on the Internet.

…  but,  we first we need to discuss hash 
function.
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Hash Functions
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Collision Resistance

Let  H: X  Y  be a hash function (  |X| >> |Y|  )

A collision for H is a pair  m0 , m1 M  such that:

H(m0)  =  H(m1)    and    m0  m1

A function H is collision resistant if for all 
(explicit) “eff” algs. A:

AdvCR[A,H]  =  Pr[ A outputs collision for H]

is “negligible”.

Example:   SHA-256  (outputs 256 bits)
40



General Idea

41

m

hk1
PRF

k2

tag

Hash then PRF construction



MACs from Collision Resistance

Let I = (S,V)  be a MAC for short messages over (K,M,T) 
(e.g. AES)

Let  H: X  Y and S: K x Y  T                    (|X| >> |Y|)

Def:    Ibig = (Sbig , Vbig )    over   (K, Xbig, Y)   as:

Sbig(k,m) = S(k,H(m))    ;     Vbig(k,m,t) = V(k,H(m),t)

Thm: If I is a secure MAC and H is collision resistant, then Ibig

is a secure MAC.

Example: S(k,m) = AES2-block-cbc(k, SHA-256(m)) is secure.
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MACs from Collision Resistance

Collision resistance is necessary for security:

Suppose: adversary can find  m0 m1 s.t. H(m0) = H(m1).

Then: Sbig is insecure under a 1-chosen msg attack

step 1:  adversary asks for  t ⟵S(k, m0)

step 2:   output   (m1 , t)   as forgery

Sbig(k, m) = S(k, H(m))    ;     Vbig(k, m, t) = V(k, H(m), t)
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AMD Opteron,   2.2 GHz     ( Linux)

digest generic

function size (bits) Speed  (MB/sec) attack time

SHA-1 160 153 280

SHA-256 256 111 2128

SHA-512 512 99 2256

Whirlpool 512 57 2256

Sample Speeds Crypto++  5.6.0  [ Wei Dai ]

N
IST

 stan
d

ard
s

* best known collision finder for SHA-1 requires 251 hash evaluations  
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Collision Resistance and Passwords
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Passwords

How do we save passwords on a system?

– Idea 1: Store in cleartext

– Idea 2: Hash

Enrollment: store h(password), where h is collision 
resistant

Verification: Check h(input) = stored passwd

46

Is this enough to be secure



Brute Force

Online Brute Force Attack:
input: hp = hash(password) to crack

for each i in dictionary file

if(h(i) == hp)

output success;

Time Space Tradeoff Attack:
precompute: h(i) for each i in dict file in hash tbl

input: hp = hash(password)

check if hp is in hash tbl

47

“rainbow tables”



Salts

Enrollment: 
1. compute hp=h(password + salt)

2. store salt || hp

Verification:
1. Look up salt in password file

2. Check h(input||salt) == hp

What is this good for security, given that the salt is public?

48

Salt doesn’t increase security against online 
attack, but does make tables much bigger.



Merkle-Damgard

How to construct collision resistant hash functions

http://www.merkle.com/
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The Merkle-Damgard iterated construction

Given   h: T × X ⟶ T        (compression function)

we obtain H: X≤L⟶ T .   Hi - chaining variables

PB:    padding block

m[0] m[1] m[2] m[3]  ll PB

IV
(fixed) H(m)

H0 H1 H2 H3 H4

1000…0  ll msg len

64 bits

If no space for PB 
add another block

h h h h

50



Security of Merkle-Damgard

51

Thm: if h is collision resistant then so is H.

Proof Idea:
via contrapositive. Collisions on H⇒ collision on h

Suppose  H(M) = H(M’).    We build collision for  h.



Compr. func. from a block cipher

E: K× {0,1}n⟶ {0,1}n a block cipher.

The Davies-Meyer compression function
h(H, m) = E(m, H)⨁H

Thm:   Suppose E is an ideal cipher 
(collection of |K| random perms.).

Finding a collision h(H,m)=h(H’,m’) takes O(2n/2) evaluations 
of (E,D).

E

mi

Hi

⨁

Best possible !!
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Hash MAC (HMAC)

Most widely used approach on the internet, 
e.g., SSL, SSH, TLS, etc.
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Recall Merkel-Damgard

Thm: 
h collision resistant implies H collision resistant

m[0] m[1] m[2] m[3]  ll PB

IV
(fixed) H(m)

H0 H1 H2 H3 H4

h h h h

Can we build a MAC out of H?
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Attempt 1

55

Let H: X≤L⟶ T be a Merkle-Damgard hash, and:
S(k,m) = H(k||m)

is this secure? no!  why?

m[0] m[1] m[2] m[3]  ll PB

IV
(fixed) H(m)

H0 H1 H2 H3 H4

h h h h

Existential forgery: 
H(k||m) = H(k||m||PB||w) 

(just one more h)



Build MAC out of a hash

• Example: H = SHA-256

HMAC:   S( k, m ) =  H(  kopad ,  H( kipad || m )  )

Hash Mac (HMAC)
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HMAC

PB: Padding Block

m[0] m[1] m[2] || PB

h0 h1 h2 h3 h4

h h

h

h

IV

k⨁ipad

IV
(fixed)

h

h
k⨁opad

tag
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Recap

• MAC’s from PRF

– NMAC

– CBC-MAC

– PMAC

• MAC’s from collision resistant hash 
functions

– Make CRF with merkle-damgard from PRF

• Attackers goal: existential forgery
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Further reading

• J. Black, P. Rogaway: CBC MACs for Arbitrary-Length Messages: The 
Three-Key Constructions. J. Cryptology 18(2): 111-131 (2005)

• K. Pietrzak: A Tight Bound for EMAC. ICALP (2) 2006: 168-179

• J. Black, P. Rogaway: A Block-Cipher Mode of Operation for 
Parallelizable Message Authentication. EUROCRYPT 2002: 384-397

• M. Bellare: New Proofs for NMAC and HMAC: Security Without 
Collision-Resistance. CRYPTO 2006: 602-619

• Y. Dodis, K. Pietrzak, P. Puniya: A New Mode of Operation for Block 
Ciphers and Length-Preserving MACs. EUROCRYPT 2008: 198-219
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Questions?



END



Protecting file integrity using C.R. hash

When user downloads package, can verify that contents 
are valid

H collision resistant   ⇒
attacker cannot modify package without detection

no key needed (public verifiability),   but requires read-
only space

F1 F2 Fn
⋯

package name

read-only
public 
space

H(F1)
H(F2)

H(Fn)

Software packages:

package name package name
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cascade

Construction 2: Nested MAC (NMAC)

F F F

m[0] m[1] m[3] m[4]

F

F

tag (in k)

Let  F: K × X ⟶K be a PRF 

Define new PRF   FNMAC : K
2 × X≤L⟶K

k0
t || fpad

k1

t in K

in X
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Cascade is insecure

1-query attack: given cascade(m,k0) = t, 
can derive cascade(m||w, t)= t’

64

cascade

F F F

m[0] m[1] m[3] m[4]

F
k0

t

w

F

t’



• ECBC and NMAC are sequential.

• Can we build a parallel MAC from a small 
PRF ??
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Construction 3:  PMAC – Parallel MAC

P(k, i): an easy to compute function

m[0] m[1] m[2] m[3]

  

F(k1,) F(k1,) F(k1,)

F(k1,) tag



P(k,0) P(k,1) P(k,2) P(k,3)

Let  F: K × X ⟶ X   be a PRF 

Define new PRF FPMAC : K2 × X≤L⟶ X 

key = (k, k1)

P(k,#) prevents 
block swapping 

attack
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Cool Feature: Incremental Updates

Suppose F is a PRP, and 
suppose we change a m[i] 
to m’[i]. Then recomputing
the tag is easy.

m[0] m[1] m[2] m[3]

  

F(k1,) F(k1,) F(k1,)

F(k1,) tag



P(k,0) P(k,1) P(k,2) P(k,3)

m’[1]
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Cool Feature: Incremental Updates

tag’ = 
F-1(k1, tag) ; reverse tag
 F(k1, m[1]  P(k,1))  ; xor out m[1]
 F(k1, m[1]’  P(k,1)) ; recompute pmac

m[0] m[1] m[2] m[3]

  

F(k1,) F(k1,) F(k1,)

F(k1,) tag



P(k,0) P(k,1) P(k,2) P(k,3)

m[1]’
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HMAC   (Hash-MAC)

Most widely used MAC on the Internet.

…  but,  we first we need to discuss hash 
function.
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Proof: collision on H  collision on h

Let |M| = |M’|, M≠M’, and H(M) = hi(mi, Hi-1) with m0 = IV

Suppose H(M) = H(M’) . We build a collision on h.

Case 1: mi ≠ m’i or Hi-1 ≠ H’i-1.  But since f(mi, Hi-1) = f(m’i, H’i-1) 
there is a collision in h and we are done.  Else recurse

70

IV
(fixed)

H(M)

H0 H1 H2 H3 H4

h h h h

m1 m2 m3 m4

IV
(fixed)

H(M’)

H0 H1 H2 H3 H4

h h h h

m’1 m’2 m’3 m’4



Proof: collision on H  collision on h

Let |M| = |M’|, M≠M’, and H(M) = hi(mi, Hi-1) with m0 = IV

Suppose H(M) = H(M’) . We build a collision on h.

Case 2: mi = m’i and Hi-1 ≠ H’i-1 for all i.  But then M = M’, 
violating our assumption.
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IV
(fixed)

H(m)

H0 H1 H2 H3 H4

h h h h

m1 m2 m3 m4

IV
(fixed)

H(m)

H0 H1 H2 H3 H4

h h h h

m’1 m’2 m’3 m’4



Suppose we define     h(H, m) = E(m, H)
Then the resulting h(.,.) is not collision resistant.

To build a collision (H,m) and (H’,m’), i.e.,
E(m,H) = E(m’, H’)

choose random (H,m,m’) and construct H’ as follows:

1. H’=D(m’, E(m,H)) 

2. H’=E(m’, D(m,H)) 

3. H’=E(m’, E(m,H)) 

4. H’=D(m’, D(m,H)) 

Question

E(m’, H’) 
= E(m’, D(m’, E(m,H))
= E(m,H)

72



HMAC

PB: Padding Block

m[0] m[1] m[2] || PB

h0 h1 h2 h3 h4

h h

h

h

IV

k⨁ipad

IV
(fixed)

h

h
k⨁opad

tagthink of h1

as k1

think of h4

as k2

NMAC!
(similar bounds for q)

Assume h is 
a PRF
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