
Compilers:
From Programming to Execution

David Brumley
Carnegie Mellon University

You will find

at least one error

on each set of slides. :)

2

3

To answer the question

“Is this program safe?”

We need to know

“What will executing
this program do?”

#include <stdio.h>

void answer(char *name, int x){

printf(“%s, the answer is: %d\n”,
name, x);

}

void main(int argc, char *argv[]){

int x;

x = 40 + 2;

answer(argv[1], x);
}

4

What will executing this program do?

42.c

5

void answer(char *name, int x){

printf(“%s, the answer is: %d\n”,
name, x);

}

void main(int argc, char *argv[]){

int x;

x = 40 + 2;

answer(argv[1], x);
}

David, the answer is 42

David

Compilation

0011010
1101010
1000101

The compiler and
machine determines

the semantics

The compiler and
machine determines

the semantics

6

CompilationSource
Language

Target
Language

Input

Output

“Compiled Code”

7

Interpretation

Source
Language

Input

Output

“Interpreted Code”

Today: Overview of Compilation

1. How is C code translated to executable code?

2. What is the machine model for executing code?

8

Key Concepts

• Compilation workflow

• x86 execution model

• Endian

• Registers

• Stack

• Heap

• Stack frames

9

Compilation Workflow

10

11

Compilation
Source

Language
Target
Language

42.c in C 42 in x86

42.c

Pre-
processor

(cpp)

Linker
(ld)

42

Compiler
(cc1)

Assembler
(as)

12

Pre-
processor

(cpp)

Linker
(ld)

Compiler
(cc1)

Assembler
(as)

#include <stdio.h>

void answer(char *name, int x){

printf(“%s, the answer is: %d\n”,
name, x);

}

...

#include expansion
#define substitution

$ cpp

13

Pre-
processor

(cpp)

Linker
(ld)

Compiler
(cc1)

Assembler
(as)

#include <stdio.h>

void answer(char *name, int x){

printf(“%s, the answer is: %d\n”,
name, x);

}

...

Creates Assembly

$ gcc -S

_answer:
Leh_func_begin1:

pushq %rbp
Ltmp0:

movq %rsp, %rbp
Ltmp1:

subq $16, %rsp
Ltmp2:

movl %esi, %eax
movq %rdi, -8(%rbp)
movl %eax, -12(%rbp)
movq -8(%rbp), %rax
....

14

gcc –S 42.c outputs 42.s

15

Pre-
processor

(cpp)

Linker
(ld)

Compiler
(cc1)

Assembler
(as)

Creates object code

$ as <options>

_answer:
Leh_func_begin1:

pushq %rbp
Ltmp0:

movq %rsp, %rbp
Ltmp1:

subq $16, %rsp
Ltmp2:

movl %esi, %eax
movq %rdi, -8(%rbp)
movl %eax, -12(%rbp)
movq -8(%rbp), %rax
....

42.s

16

Pre-
processor

(cpp)

Linker
(ld)

Compiler
(cc1)

Assembler
(as)

Links with other files
and libraries to
produce an exe

$ ld <options>
0101100101010101101010101
1010101010101010111111100
0011010101101010100101011
0101111010100101100001010
10111101

42.o

Disassembling

• Today: using objdump (part of binutils)

– objdump –D <exe>

• If you compile with “-g”, you will see more
information

– objdump –D –S

• Later: Disassembly

17

Binary

Final executable consists
of several segments

• Text for code written

• Read-only data for
constants such as
“hello world” and
globals

• ...

18

The program binary
(aka executable)

Code Segment
(.text)

Data Segment
(.data)

...

$ readelf –S <file>

Basic Execution Model

19

Process
MemoryFile system

Basic Execution

20

Binary

Code

Data

...
Stack

Heap

Processor

Fetch, decode, execute

read and write

21

x86 Processor

EAX

EDX

ECX

EBX

ESP

EBP

EDI

ESI

EIP

EFLAGS

Address of
next

instruction

Condition
codes

General
Purpose

Registers have up to
4 addressing modes

1. Lower 8 bits

2. Mid 8 bits

3. Lower 16 bits

4. Full register

22

EAX

EDX

ECX

EBX

ESP

EBP

EDI

ESI

EAX, EDX, ECX, and EBX

23

EAX

EDX

ECX

EBX

ALAH

Bit 32 16 15 8 7
0

DH DL

CLCH

BH BL

• 32 bit registers
(three letters)

• Lower bits (bits 0-7)
(two letters with L suffix)

• Mid-bits (bits 8-15)
(two letters with H suffix)

EAX

EDX

ECX

EBX

AX

Bit 32 16 15 0

DX

CX

BX

• Lower 16 bits (bits 0-15)
(2 letters with X suffix)

ESP, EBP, ESI, and EDI

24

EAX

EDX

ECX

EBX

ALAH

DH DL

CLCH

BH BL

ESP

EBP

ESI

EDI

SP

Bit 32 16 15 0

BP

SI

DI

• Lower 16 bits (bits 0-15)
(2 letters)

Basic Ops and AT&T vs Intel Syntax

Meaning AT&T Intel

ebx = eax movl %eax, %ebx mov ebx, eax

eax = eax + ebx addl %ebx, %eax add eax, ebx

ecx = ecx << 2 shl $2, %ecx shl ecx, 2

25

• AT&T is at odds with assignment order. It is the default for
objdump, and traditionally used for UNIX.

• Intel order mirrors assignment. Windows traditionally uses Intel,
as is available via the objdump ‘-M intel’ command line option

source first

destination
first

Memory Operations

26

x86: Byte Addressable

27

...

Address 0 holds 1 byte

Address 1 holds 1 byte

Address 2 holds 1 byte

Address 3 holds 1 byte

Alternative: Word addressable
Example: For 32-bit word size, it’s valid to fetch 4 bytes from
Mem[0], but not Mem[6] since 6 is not a multiple of 4.

I can fetch bytes at
any address

Memory is just
like using an

array!

It’s convention: lower
address at the bottom

x86: Addressing bytes

28

Addresses are indicated
by operands that have a
bracket “[]” or paren “()”,
for Intel vs. AT&T, resp.

Register Value

eax 0x3

edx 0x0

ebx 0x5

What does
mov dl, [al]

do?

Moves 0xcc
into dl

00x00

Addr

6

0xaa

0xbb

0xcc

0xdd

0xee

0xff

x86: Addressing bytes

29

Addresses are indicated
by operands that have a
bracket “[]” or paren “()”,
for Intel vs. AT&T, resp.

Register Value

eax 0x3

edx 0xcc

ebx 0x5

What does
mov edx , [eax]

do?

Which 4 bytes get
moved, and which
is the LSB in edx?

00x00

Addr

6

0xaa

0xbb

0xcc

0xdd

0xee

0xff

Endianess

• Endianess: Order of individually
addressable units

• Little Endian: Least significant byte first

so address a goes in littlest byte (e.g., AL),
a+1 in the next (e.g., AH), etc.

30

Register Value

eax 0x3

edx 0xcc

ebx 0x5
00x00

Addr

6

0xaa

0xbb

0xcc

0xdd

0xee

0xff

00x00

Addr

6

0xaa

0xbb

0xcc

0xdd

0xee

0xff

EDX

31

Register Value

eax 0x3

edx 0xcc

ebx 0x5

mov edx, [eax]

0xcc

0xdd

0xff
Bit 0

0xee

Endianess: Ordering of individually
addressable units
Little Endian: Least significant byte first
... so ...
address a goes in the least significant byte
(the littlest bit) a+1 goes into the next byte,
and so on.

EDX = 0xffeeddcc!

00x00

Addr

6

0xaa

0xbb

0xcc

0xdd

0xee

0xff

EBX

mov [eax], ebx

00 00 0500 05000000

32

Register Value

eax 0x3

edx 0xcc

ebx 0x5

Bit 0

Endianess: Ordering of individually
addressable units
Little Endian: Least significant byte first
... so ...
address a goes in the least significant byte
(the littlest bit) a+1 goes into the next byte,
and so on.

33

There are other ways to address memory
than just [register].

These are called Addressing Modes.

An Addressing Mode specifies how to calculate
the effective memory address of an operand by
using information from registers and constants

contained with the instruction or elsewhere.

34

Motivation: Addressing Buffers

Type buf[s];
buf[index] = *(<buf addr>+sizeof(Type)*index)

Motivation: Addressing Buffers

typedef uint32_t addr_t;

uint32_t w, x, y, z;

uint32_t buf[3] = {1,2,3};

addr_t ptr = (addr_t) buf;

w = buf[2];

x = *(buf + 2);

35

0

0

0

3

0

0

0

2

0

0

0

1

M
em

o
ry

What is x? what memory
cell does it ref?

buf[2]

buf

Motivation: Addressing Buffers

typedef uint32_t addr_t;

uint32_t w, x, y, z;

uint32_t buf[3] = {1,2,3};

addr_t ptr = (addr_t) buf;

w = buf[2];

x = *(buf + 2);

y = *((uint32_t *) (ptr+8));

36

0

0

0

3

0

0

0

2

0

0

0

1

M
em

o
ry

buf[2]

buf

Equivalent

(addr_t) (ptr + 8) = (uint32_t *) buf+2

37

Motivation: Addressing Buffers

Type buf[s];
buf[index] = *(<buf addr>+sizeof(Type)*index)

Say at imm +r1 Say in Register
r2

Constant
scaling factor

s, typically
1, 2, 4, or 8

imm + r1 + s*r2

AT&T: imm (r1, r2, s)
Intel: r1 + r2*s + imm

AT&T Addressing Modes for
Common Codes

38

Form Meaning on memory M

imm (r) M[r + imm]

imm (r1, r2) M[r1 + r2 + imm]

imm (r1, r2, s) M[r1 + r2*s + imm]

imm M[imm]

Referencing Memory

39

<eax> = *buf;
mov -0x38(%ebp),%eax (I)
mov eax, [ebp-0x38] (A)

<eax> = buf;
lea -0x38(%ebp),%eax (I)
lea eax, [ebp-0x38] (A)

Loading a value from memory: mov

Loading an address: lea

Suppose I want to access address
0xdeadbeef directly

40

lea eax, 0xdeadbeef (I)Loads the address

mov eax, 0xdeadbeef (I)Deref the address

Note missing $. This
distinguishes the

address from the value

Control Flow

41

Assembly is “Spaghetti Code”

Nice C Abstractions

• if-then-else

• while

• for loops

• do-while

Assembly

• Jump

– Direct: jmp addr

– Indirect: jmp reg

• Branch

– Test EFLAG

– if(EFLAG SET) goto line

42

x86 ProcessorJumps

• jmp 0x45, called a
direct jump

• jmp *eax , called an
indirect jump

Branches
• if (EFLAG) jmp x

Use one of the 32 EFLAG
bits to determine if jump
taken

43

EAX

EDX

ECX

EBX

ESP

EBP

EDI

ESI

EIP

EFLAGS

Note:
No direct

way to get or
set EIP

Implementing “if”

C

1. if(x <= y)
2. z = x;

3. else
4. z = y;

Psuedo-Assembly

1. Computing x – y. Set eflags:
1. CF =1 if x < y

2. ZF =1 if x==y

2. Test EFLAGS. If both CF
and ZF not set, branch to E

3. mov x, z

4. Jump to F

5. mov y, z

6. <end of if-then-else>

44

Assembly is 2 instrs
1. Set eflag to

conditional
2. Test eflag and branch

If (x > y)

%eax holds x and 0xc(%ebp) holds y

cmp 0xc(%ebp), %eax
ja addr

45

Same as “sub” instruction
r = %eax - M[%ebp+0xc], i.e., x – y

Jump if CF=0 and ZF=0

(x >= y) (x != y)⋀ x > y⇒

Setting EFLAGS

• Instructions may set an eflag, e.g.,

• “cmp” and arithmetic instructions most
common

– Was there a carry (CF Flag set)

– Was the result zero (ZF Flag set)

– What was the parity of the result (PF flag)

– Did overflow occur (OF Flag)

– Is the result signed (SF Flag)

46

47

From the Intel x86 manual

Aside: Although the x86 processor
knows every time integer overflow
occurs, C does not make this result
visible.

See the x86 manuals available on
Intel’s website for more information

Instr. Description Condition

JO Jump if overflow OF == 1

JNO Jump if not overflow OF == 0

JS Jump if sign SF == 1

JZ Jump if zero ZF == 1

JE Jump if equal ZF == 1

JL Jump if less than SF <> OF

JLE Jump if less than or equal ZF ==1 or SF <> OF

JB Jump if below CF == 1

JP Jump if parity PF == 1

48

Memory Organization

49

run time heap

shared libraries

user stack

0x00000000

0xC0000000
(3GB)

%esp

brk

Memory
Program text
Shared libs
Data
...

•Stack grows down
•Heap grows up

The Stack grows down towards lower addresses.

50

Variables

• On the stack
– Local variables

– Lifetime: stack
frame

• On the heap
– Dynamically

allocated via
new/malloc/etc.

– Lifetime: until
freed

51

run time heap

shared libraries

user stack

0x00000000

0xC000000
0 (3GB)

Procedures

• Procedures are not native to assembly

• Compilers implement procedures

– On the stack

– Following the call/return stack discipline

52

Procedures/Functions

• We need to address several issues:
1. How to allocate space for local variables

2. How to pass parameters

3. How to pass return values

4. How to share 8 registers with an infinite number
of local variables

• A stack frame provides space for these values
– Each procedure invocation has its own stack frame

– Stack discipline is LIFO
• If procedure A calls B, B’s frame must exit before A’s

53

54

orange

red

green

Function Call Chain

green

...

green

orange(…)

{

...
red()
...

}

red(…)

{

...

green()

...

green()

}

green(…)

{

...

green()

...

}

55

orange

red

green

Function Call Chain

green

...

green

Frame for
• locals
• pushing parameters
• temporary space

Call to red
“pushes”
new frame

When green
returns it
“pops”
its frame

On the stack

int orange(int a, int b)

{

char buf[16];

int c, d;

if(a > b)
c = a;

else
c = b;

d = red(c, buf);

return d;

}

Need to access
arguments

Need space to store
local vars (buf, c, and d)

Need space to put
arguments for callee

Need a way for callee to
return values

Calling convention determines the above features
56

cdecl – the default for Linux & gcc

57

int orange(int a, int b)

{

char buf[16];

int c, d;

if(a > b)
c = a;

else
c = b;

d = red(c, buf);

return d;

}

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…

%ebp
frame

%esp
stack

parameter
area (caller)

orange’s
initial
stack

frame

to be created
before

calling red

after red has
been called

gr
o

w

Don’t worry!
We will walk

through these
one by one.

When orange attains control,

1. return address has already been
pushed onto stack by caller

58

…

b

a

return addr

%ebp
(caller)

%esp

When orange attains control,

1. return address has already been
pushed onto stack by caller

2. own the frame pointer

- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8

59

…

b

a

return addr

caller’s ebp %ebp
and

%esp

When orange attains control,

1. return address has already been
pushed onto stack by caller

2. own the frame pointer

- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8

3. save values of other callee-save
registers if used

- edi, esi, ebx: via push or mov

- esp: can restore by arithmetic

60

…

b

a

return addr

caller’s ebp

callee-save
%ebp

%esp

When orange attains control,

1. return address has already been
pushed onto stack by caller

2. own the frame pointer

- push caller’s ebp

- copy current esp into ebp

- first argument is at ebp+8

3. save values of other callee-save
registers if used

- edi, esi, ebx: via push or mov

- esp: can restore by arithmetic

4. allocate space for locals

- subtracting from esp

- “live” variables in registers, which
on contention, can be “spilled” to
stack space

61

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

%ebp

%esp

orange’s
initial
stack

frame

For caller orange to call callee red,

62

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

%ebp

%esp

For caller orange to call callee red,

1. push any caller-save registers if
their values are needed after
red returns

- eax, edx, ecx

63

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

%ebp

%esp

For caller orange to call callee red,

1. push any caller-save registers if
their values are needed after
red returns

- eax, edx, ecx

2. push arguments to red from
right to left (reversed)

- from callee’s perspective,
argument 1 is nearest in stack

64

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

%ebp

%esp

For caller orange to call callee red,

1. push any caller-save registers if
their values are needed after
red returns

- eax, edx, ecx

2. push arguments to red from
right to left (reversed)

- from callee’s perspective,
argument 1 is nearest in stack

3. push return address, i.e., the
next instruction to execute in
orange after red returns

65

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

%ebp

%esp

orange’s
stack

frame

For caller orange to call callee red,

1. push any caller-save registers if
their values are needed after
red returns

- eax, edx, ecx

2. push arguments to red from
right to left (reversed)

- from callee’s perspective,
argument 1 is nearest in stack

3. push return address, i.e., the
next instruction to execute in
orange after red returns

4. transfer control to red

- usually happens together with
step 3 using call

66

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

%ebp

orange’s
stack

frame

%esp

When red attains control,

1. return address has already been
pushed onto stack by orange

67

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

%ebp

%esp

When red attains control,

1. return address has already been
pushed onto stack by orange

2. own the frame pointer

68

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp %ebp
and

%esp

When red attains control,

1. return address has already been
pushed onto stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …

69

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp

…
%ebp

%esp

When red attains control,

1. return address has already been
pushed onto stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …

4. store return value, if any, in eax

5. deallocate locals

- adding to esp

6. restore any callee-save registers

70

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

orange’s ebp %ebp
and

%esp

When red attains control,

1. return address has already been
pushed onto stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …

4. store return value, if any, in eax

5. deallocate locals

- adding to esp

6. restore any callee-save registers

7. restore orange’s frame pointer

- pop %ebp

71

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

return addr

%ebp

%esp

When red attains control,

1. return address has already been
pushed onto stack by orange

2. own the frame pointer

3. … (red is doing its stuff) …

4. store return value, if any, in eax

5. deallocate locals

- adding to esp

6. restore any callee-save registers

7. restore orange’s frame pointer

- pop %ebp

8. return control to orange

- ret

- pops return address from stack
and jumps there

72

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

%ebp

%esp

When orange regains control,

73

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

caller-save

buf

c

%ebp

%esp

When orange regains control,

1. clean up arguments to red

- adding to esp

2. restore any caller-save registers

- pops

3. …

74

…

b

a

return addr

caller’s ebp

callee-save

locals
(buf, c, d ≥ 24
bytes if stored

on stack)

%ebp

%esp

Terminology

• Function Prologue – instructions to set up stack
space and save callee saved registers

– Typical sequence:
push ebp
ebp = esp
esp = esp - <frame space>

• Function Epilogue- instructions to clean up
stack space and restore callee saved registers

– Typical Sequence:
leave // esp = ebp, pop ebp
ret // pop and jump to ret addr

75

cdecl – One Convention

76

Action Notes

caller saves: eax, edx, ecx push (old), or mov if esp
already adjustedarguments pushed right-to-left

linkage data starts new frame call pushes return addr

callee saves: ebx, esi, edi, ebp, esp ebp often used to deref
args and local vars

return value pass back using eax

argument cleanup caller’s responsibility

• Why do we need calling conventions?

• Does the callee always have to save callee-
saved registers?

• How do you think varargs works (va_start,
va_arg, etc)?

void myprintf(const char *fmt, ...){}

Q&A

77

Today’s Key Concepts

• Compiler workflow

• Register to register moves

– Register mnemonics

• Register/memory

– mov and addressing modes for common codes

• Control flow

– EFLAGS

• Program Memory Organization

– Stack grows down

• Functions

– Pass arguments, callee and caller saved, stack frame
78

For more information

• Overall machine model:
Computer Systems, a Programmer’s Perspective
by Bryant and O’Hallaron

• Calling Conventions:

– http://en.wikipedia.org/wiki/X86_calling_conventions

79

80

Questions?

END

Backup slides here.

• Titled cherries because they are for the
pickin. (credit due to maverick for wit)

82

83

CompilationSource
Language

Target
Language

Input

Output

“Compiled Code”

VS

Interpretation

Source
Language

Input

Output

“Interpreted Code”

Stencils

84

ABC ABC

ABC ABC

ABC ABC

ABC

ABC

ABC

ABCABC

ABC

ABC

Other Colors from Adobe Kuler

ABC ABC

ABC ABC ABC ABC ABC

ABC ABC ABC ABC ABC

Mac application for Adobe Kuler:
http://www.lithoglyph.com/mondrianum/
http://kuler.adobe.com/

85

Don’t use these unless absolutely necessary.
We are not making skittles, so there is no rainbow of colors
necessary.

http://www.lithoglyph.com/mondrianum/
http://kuler.adobe.com/

86

To answer the question

“Is this program safe?”

We need to know

“What will executing
this program do?”

Understanding the compiler and machine
semantics are key.

