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ABSTRACT
In this paper, we present a platform designed for low-power
real-time sensing of the number of occupants in indoor spaces.
The system transmits a wide-band ultrasonic signal into a
room and then processes the superposition of the reflections
recorded by a microphone. The system has two modes of
operation, one for presence detection and one for estimating
the number of occupants in a region. The presence detection
uses the difference between multiple transmissions in succes-
sion with a set of general classifiers that make a binary de-
cision about if the room contains occupants. We then use a
semi-supervised learning approach based on Weighted Prin-
cipal Component Analysis (WPCA) that requires minimal
training data to estimate the number of occupants. We also
present the design of an energy harvesting embedded plat-
form and demonstrate that our algorithm can continuously
execute using energy harvested from indoor solar panels.
The platform has a dual Bluetooth Low-Energy and 802.15.4
interface to communicate with a gateway or nearby mobile
phone that runs an interface that aids in collecting training
data. We evaluate our algorithm on a wide-variety of in-
door spaces as well as benchmark the hardware in terms of
sampling rate given an energy budget. On more than three
weeks of data, we see that we can detect motions with an
average of 85% recall rate and perform occupancy counting
with an average error of 10% in terms of maximum occu-
pancy.

CCS Concepts
•Computer systems organization → Sensors and ac-
tuators; Sensor networks; Embedded hardware; •Hardware
→ PCB design and layout; •Computing methodologies
→ Classification and regression trees;
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1. INTRODUCTION
Heating, cooling, and ventilation of buildings represents

about 17% of all energy used domestically, equivalent to
about 16.7 QBtu (”quads”) of energy annually. It has been
shown that HVAC controls that are adaptive to fluctuations
in occupancy density and distribution should allow opti-
mization of air distribution and provide substantial energy
savings of more then 1 QBtu annually [1]. In order to sup-
port applications like optimizing Variable Air Volume (VAV)
control or perform real-time crowd detection for restaurant
crowd and lines, we need to be able to sense not only motions
in a space, but also the number of people. There are cur-
rently many approaches for measuring occupancy in spaces
including: passive infra-red (PIR) sensors, ultrasonic rang-
ing sensors, microwave sensors, smart cameras, break beam
sensors and laser range-finders. These devices span a wide
spectrum of cost and performance. Lower-cost solutions,
like PIR and narrow-band ultrasonic ranging sensors, are
typically error-prone and usually only detect binary occu-
pancy values rather then estimating the number of people
in a space. More expensive sensors like smart camera sys-
tems tend to require sophisticated site-specific installation
and calibration. They also require wall power, pose privacy
risks and are often hindered by obstructions.

We propose an active ultrasonic sensing technique that
uses changes in a room’s acoustic properties when occu-
pied to estimate the number of people. Frequency depen-
dent models of reverberation and room capacity are often
used when designing auditoriums and concert halls. In our
previous work [2], we leverage this property by using mea-
sured changes in the ultrasonic spectrum reflected back from
a wide-band transmitter to estimate occupancy. A cen-
trally located beacon transmits an ultrasonic chirp and then
records how the signal dissipates over time. By analyz-
ing the frequency response over a wide-band 1kHz chirp’s
bandwidth at a few known occupancy levels, we are able
to extrapolate the response as the number of people in the
room changes. We showed that it is possible to train a sys-
tem to capture the nuances of a particular space with lit-
tle training data (two points). One of the key techniques
for maintaining performance even when features of the en-
vironment change, like when furniture moves, is to let the
system periodically recalibrate on a known occupancy level.
In this paper, we show an approach for accurately classi-
fying when the room is empty and show how this can be
used to periodically adjust the model of occupancy as room
features change. We also both improve our previous oc-
cupancy estimation algorithm and design a supporting em-



bedded platform called the Adaptive Ultrasonic Response
Estimation Sensor(AURES), that is a stand-alone energy-
harvesting transducer with wireless communication. AU-
RES consists of an ARM Cortex M3 microcontroller with
indoor solar energy harvesting, a wide-band ultrasonic trans-
mitter, an ultrasonic MEMs microphone, 802.15.4 radio, and
Bluetooth Low-Energy (BLE) wireless interface for commu-
nicating with nearby smartphones and gateway nodes. The
installer can simply attach the sensor to the ceiling in a
room and then label a handful of calibration points on a
smartphone application to configure the system. We use a
semi-supervised approach where we cluster data unsuper-
vised over an extended period and then ask users to label a
subset of the clusters.

The system has two main phases of operation: presence
detection and occupancy counting. In the first phase we de-
tect the presence of people using three different classifiers
and in the second phase we estimate the number of occu-
pants using a trained regression model. We use multiple
transmissions of a single frequency tone in order to measure
Doppler shift, changes in signal amplitude and changes in
signal energy. To estimate the number of people, we utilize
a wide-band chirp and a spectral approach that improves
upon our previous approach to capture more sophisticated
room features. If the room is classified as empty in the
first phase, then the received signal in the second phase is
used to re-calibrate the trained model for occupancy estima-
tion in order to adapt to changes in the environment. The
presence detector combines our three classifiers to identify
both sudden movements and static changes in the presence
of occupants. These presence features are general enough
to be used in different indoor environments without train-
ing on known data or assuming prior knowledge. To esti-
mate the number of occupants, we apply a semi-supervised
machine learning approach that models the characteristics
of the room under multiple loads as previously described
in [2]. We improve the estimation accuracy of our original
approach by using features that better capture room absorp-
tion over time by dividing the received signal into segments
before transforming it into the frequency domain. This al-
lows us to train multiple amplitudes across each segment
rather than averaging them into a single window. Since the
consistency of the background environment among sparsely
labeled data points often determines the performance of the
trained model, we also adopt a new technique to help the
training process cope with noise in the training dataset.

One of the main challenges when installing occupancy sen-
sors is the cost of running power and data cables. Many mo-
tion detectors can wirelessly transmit data to gateway nodes
within a building. Some of these sensors can even operate
for extended periods (years) off of batteries. Unfortunately
these systems only detect motion and cannot count the num-
ber of people in space. More sophisticated occupancy esti-
mation sensors like PIR arrays or smart cameras currently
consume too much power to make prolonged battery op-
eration feasible. Unlike PIR motion detectors, occupancy
estimation sensors are significantly more difficult to aggres-
sively duty-cycle since they often resort to tracking, frame
differencing or have long warm-up and configuration times.
The AURES platform is designed with an energy-harvesting
sub-system that can power the system and charge on-board
batteries using indoor lighting sources. A typical use-case is
to place a solar panel inside a recessed lighting or florescent

fixture and then run the low-voltage wire (which does not
require a commercially certified electrician) to the main AU-
RES module mounted nearby on the ceiling. In drop-down
ceiling tile installations, the majority of the transducers can
sit on the top of the tile with just the ultrasonic transducer
protruding through the tile. In combination with our im-
proved algorithm that can run on a microcontroller, this
makes for an extremely effective, low-cost and easy to in-
stall sensing package.

In summary, we have three main contributions in this pa-
per:

1. We improved upon our previous occupancy counting
algorithm and designed a version that can run on em-
bedded targets.

2. We designed and evaluated a presence detection al-
gorithm that can recalibrate our occupancy counting
algorithm to account for changes in the background
environment over time.

3. We design and evaluate a self-contained energy-harvesting
platform with wireless communication that can exe-
cute our algorithm in real-time and leverage a smart-
phone for training.

2. RELATED WORK
In this section, we discuss the background related to acous-

tics followed by similar approaches that have been used to
measure both presence and occupancy. Common commer-
cially available occupancy sensors like PIR motion detectors;
ultrasonic motion detectors and microwave sensors usually
only detect the presence of one or more people in a room.
Cameras and more advanced infrared systems attempt to es-
timate the actual number of people in a space, but are typ-
ically expensive, difficult to train and suffer from occlusion.
Our proposed approach is comparatively low-cost, relatively
easy to train, can perpetually operate from harvested energy
and has the advantage of filling an entire space with sound,
therefore making it more immune to obstacles.

2.1 Acoustics
A large body of work in acoustics has shown that human

bodies in a space significantly impact reverberation and that
reverberation is frequency [3] as well as room geometry de-
pendent [4]. Over the last 120 years there have been count-
less efforts proposed to model these acoustic properties in
order to improve concert hall performance. Recent work in
this space relies on computer simulations [5–8]. Creating
simple, generalized models of reverberation has remained
quite challenging. For this reason, we propose using ma-
chine learning techniques to learn and classify the frequency
response on a per-installation basis. In various recent pro-
files of reverberation [9], it is clear that given a particular
room geometry, audience absorption follows relatively dis-
tinct curves that make it a powerful feature for occupancy
detection.

Active acoustic approaches have shown great potential in
multiple forms of sensing. In [10], the authors use a single
speaker with multiple microphones to determine the shape
of a room based on echoes. In [11], the authors show how
reflected Doppler signals can be used to classify anything
from speech, to walking motion and even gestures. To the
best of our knowledge, this is one of the first end-to-end



systems where ultrasound has been used to directly estimate
occupancy.

2.2 Occupancy
Most of the related work on occupancy has used cam-

eras or multiple sensors to measure the number of people
in a space. All of these approaches generally fall into two
categories based on slightly different goals. One group fo-
cuses on only detecting the presence of people [12–15], which
often comes with analysis of more detailed user behavior
and actions. The other categories focuses on people count-
ing [16–19], usually involving more sophisticated algorithms
for learning.

Presence Detection
In the category of presence detection, many approaches fuse
data readings from different sensor types. For example in
[20], the authors combine multiple available sensors feeds of
data to estimate occupancy. In [12], the authors propose a
sonar system using four microphones and a single frequency
sinusoid of 20kHz in order to detect the user’s attention
state and several pre-defined activities. The classifier is built
by characterizing the delta in echoes, namely the variance
in intensity, of the reflections from the user’s body. Their
experimental results show supportive evidence that a user’s
presence impacts the intensity of the echoes, which is a fun-
damental characteristic we assume in our approach. Never-
theless, this technique requires copious amount of training
data to predict the pre-defined activity, and assumes the
environment to be free from interference. In [21] the au-
thors focus primarily on WiFi signals. In both cases, the
approaches do not perform as well in large spaces like audito-
riums, unless each occupant is carrying a mobile device that
cooperates with the system. Two of the recent works use
similar approaches by utilizing ultrasonic signals [12] [13].

[13] proposed an ultrasonic array sensor and tracking al-
gorithm to detect presence and capture the movement of
targets. This is achieved by taking the difference in the
received echo signal to estimate direction-of-arrival (DoA)
with the array of sensors, and utilizing the received signal
to noise ratio (SNR) as an indicator of occupancy. A simple
tracking algorithm is also proposed to increase performance
of presence detection. While this method shows better per-
formance than PIR sensors, the detection zone is limited to
a certain area and confined by DoA angle. Other approaches
proposed in [14] and [15] take advantage of using multiple
co-located sensors. In [14], device nodes are deployed with
pressure sensors, PIR sensors, and audio sensors. The sys-
tem is able to predict pre-defined activities by correlating
the binary readings from multiple sensors. The overall clas-
sification accuracy is more than 90%, but it requires careful
deployment of multiple sensors at different locations in the
room. Similar in the choice of sensors, the author in [15]
adopts additional light and CO2 sensors. Classification is
done using a decision tree in order to determine which sen-
sors are most important. The results indicate that the mo-
tion sensor is dominant, and accounts for 97% of accuracy,
even when used alone.

Although most of the presence detection techniques have
the advantage of low-cost and low-complexity, their appli-
cations are limited due to the coarse resolution. Based on
the proposed methods, they also suffer from scalability and
deployment difficulties due to the confined detection area of

the sensors.

People Counting
The most common solutions for people counting tend to use
cameras [16–19]. Once configured well, camera systems tend
to perform with a high degree of accuracy. These systems
do however pose privacy concerns, consume large amounts of
power making them difficult to run off of batteries and suf-
fer from obstructions, shadows and a limited field-of-view.
Early work for fine-grained indoor people counting is pre-
sented in [16], where the locations of the objects are first
measured by their silhouettes from image sensors deployed
around the room. The system shows accurate results up
to 12 people moving in a room, but requires careful place-
ment of multiple image sensors. Also, the computational
complexity grows proportionally to the number of sensors.
For counting larger groups of people, a crowd counting al-
gorithm proposed in [17] shows accurate results for tens of
pedestrians with an error of less than 2 people. The algo-
rithm also claims to be privacy preserving by segmenting the
crowd into groups using low-level features, and then using
a regression model to count people within each segment. A
pedestrian database is required for providing a large number
of training images, which is often costly and thus makes it
less feasible in more constrained use cases like on an embed-
ded sensor. Recently in [18], the authors proposed a crowd
estimation algorithm using IR-UWB radar sensors. The al-
gorithm performs analysis tracking people going in and out
of the sensing area by detecting impulse signals. The exper-
iment result shows an accurate counting of up to 9 people
in a classroom environment. In [19], the authors evaluated
three different learning methods - Support Vector Machine
(SVM), Neural Network (NN), and Hidden Markov Model
(HMM) over dozens of different sensor inputs, and are able
to estimate 0− 3 occupants in an open office area with 75%
accuracy. Another different approach is proposed by Hnat
et al. [22]. The author introduced the Doorjamb tracking
system that uses ultrasonic range finders mounted on door
frames to monitor room access. By using probability infer-
ence and associating people’s identity with their heights, the
system performs well on people tracking in special environ-
ments, such as labs or residential homes with a 90% room
tracking accuracy. However, the system is not designed for
counting crowds of people and not suitable for environments
with wide open entrances.

To summarize, although most presence detection tech-
niques have the advantage of low-cost and low-complexity,
they only provide a coarse resolution of people within a
space. In contrast, most people counting techniques are ei-
ther more expensive in terms of cost and complexity, suffer
from privacy issues, or require a large labeled databases. To
the best of our knowledge there is no existing framework
that can perform wide area people counting with a single
cost-effective and versatile sensor.

3. OCCUPANCY ESTIMATION
In our previous work [2], we proposed an occupancy esti-

mation algorithm based on the acoustic response of the en-
vironment over a range of ultrasonic frequencies. To quickly
measure the acoustic response, we utilize chirps that capture
reverberation and multipath characteristics across a large
frequency bandwidth. When a room is occupied, sound im-
pulses dissipate faster over time and results in a shorter re-



verberation time. By analyzing the frequency response over
the chirp’s bandwidth at a few known occupancy levels, we
are able to extrapolate the response as the number of people
in the room changes.

Our original occupancy estimation algorithm is composed
of two parts. In the first part, a classical principal compo-
nent analysis (PCA) is performed on the training dataset
that contains data points collected from different occupancy
levels. It allows us to reduce the dimensionality of the re-
ceived data by projecting them into a lower-dimensional
space and learning which of the principal components best
characterize the absorption pattern of human bodies. In
the second part, a regression model is built based on the
projected data in order to interpolate/extrapolate the occu-
pancy beyond the training data. This eliminates the need for
copious amounts of labeled training data and improves scal-
ability. At run time, the estimation of the occupancy level
is determined based on the trained model with an auto-
recalibrate to help the system adjusts itself over time to
accommodate for background changes. The model is con-
stantly re-zeroed using new empty room data points.

3.1 Training Features
The training features extracted from the data capture the

frequency response of the chirp’s bandwidth. This is com-
puted by performing a Fast Fourier Transform (FFT) on
the full received signal. In our previous work, we showed
that the chirp’s frequency and duration have a direct im-
pact on the performance of the system, where increasing
the chirp’s frequency band and length improve the system
performance. However, when building the platform, we saw
that if the transmitter and receiver are physically close, then
the system suffers from crosstalk. Recording after playback
in turn defines an upper bound of the chirp length which
must now be much shorter (originally 300ms, now 30ms).
To compensate for the performance loss of using a shorter
chirp, we segment the training features instead of comput-
ing the FFT over the whole received signal. This provides us
with additional amplitude data across each segment. First,
we separate the signal into segments with the same length
as the chirp. Each segment is then transformed into the fre-
quency domain individually, and later combined together to
form the new training features. The difference can be es-
sentially interpreted as reducing the FFT window size from
the recording length to the chirp length. Since the chirp is
much shorter than the recording, it not only generates fea-
tures that better capture how the sound dissipates over time
in amplitude, but also greatly reduce the memory required
to perform the FFT. To prevent bias between features when
performing PCA, all features are later normalized and sub-
tracted by their means.

3.2 Weighted Principal Component Analysis
One constraint of our original algorithm is that it assumed

the whole training dataset is collected in background envi-
ronments with similar reverberation characteristics. If the
acoustic response of the environment changes dramatically
during data collection, which is likely to happen in prac-
tice, then PCA can perform poorly. The resulting PCA can
erroneously produce principal components that explain the
changes in the environment, rather than the desired ones
that differentiate occupancy levels. To solve this problem,
a weighted variation of PCA (WPCA) is adopted to target

components that separate occupancy levels. Classical PCA
is known to be sensitive to outliers and missing data, while
WPCA increases the robustness of the system to outliers by
assigning different weights to data points based on their es-
timated relevancy. For our application, we utilize the same
idea to minimize the influence of the changing environments
when performing PCA.

Assuming the training dataset is given by matrix X where
each of the i rows represents a feature variable and each
of the j columns represents an observation. The goal of a
classical PCA is to find a decomposition of the matrix

X = PC (1)

where P is the orthogonal matrix of principal component
and C is the principal coefficient matrix, such that the ma-
trix D given by

D = PTXXTP = PTσ2P (2)

is diagonal and has its variance maximized. The diagonals
of D are often re-arranged in order such that Dii >= Djj ,
∀i < j so that the first column of P represents the first prin-
ciple component that accounts for the most variance. Equiv-
alently to maximize the variance, the principal components
allows us to minimize the reconstruction error ‖X − PC‖22
when the data is projected into a lower-dimensional space.
Similarly, the goal of WPCA is to minimize the weighted
reconstruction error given by

‖W (X − PC)‖22 =
∑
ij

W 2
ij(Xij − PCij)

2 (3)

By assigning lower weights wj < 1 column-wise to the empty
room instances, which are identified by the presence detec-
tor, WPCA is biased toward finding principal components
that best explain the variance between different occupancy
levels. Other non-empty room instances are assigned with a
fixed weight wj = 1 to prevent bias. To center the dataset
and calculate the covariance matrix, the weighted mean to
be subtracted is given by

x̄ =

∑
j WjXj∑
j Wj

(4)

where Xj denotes the jth column of the dataset X. More
evaluation on how to select a proper weight is discussed in
Section 5.3.

3.3 Presence Detector
The ability to detect whether a room is empty can im-

prove the quality of WPCA and help to determine when
the system should recalibrate. To automate the recurring
recalibration process, we proposed using a single tone in-
stead of a chirp to facilitate the detection of Doppler shift.
In each sensing period, the system transmits 5 consecutive
tones with a delay of 300ms in between to allow echoes to
fully dissipate. The received signals are first transformed
into frequency domain and then filtered to remove out-of-
band noise. The presence detector is composed of three bi-
nary classifier (empty or non-empty), where each focuses on
different features of the received signal. Note that since pres-
ence detection is now part of the people counting algorithm,
the features and mechanisms used in presence detection are
independent from those used in the determination of occu-
pancy level. The first classifier is a Doppler motion detector
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Figure 1: Comparison of presence detection result between
three classifiers with one day of empirical data

that detects Doppler shift caused by the movement of bod-
ies or gestures. Even though Doppler detectors work well at
detecting sudden movements, it is often difficult to detect
static changes such as different postures of the occupants or
slow motions. To improve performance we apply two ad-
ditional classifiers to calculate the variance of the spectral
amplitude and the variance of the received signal energy re-
spectively. Tuning the threshold of each classifier allows us
to control the ratio between false-negative rate (FNR) and
false-positive rate (FPR). To prevent the system from re-
calibrating on non-empty data points, lowering the rate of
getting a negative feedback while the room is occupied is
critical. Recalibrating on FN instances offsets the baseline
of the model and introduces estimation error that would last
until the next recalibration cycle. On the other hand, FP
instances trigger the system to make estimation on the new
environment, which does not introduce much estimation er-
ror in comparison since the model is trained to detect human
bodies that absorb more power. Therefore, the thresholds in
all three detectors are tuned to be conservative, and the final
decision is obtained by taking an OR operation between the
three binary results in order to achieve a low FNR. We dis-
cuss the performance of the presence detector in Section 5.2.

3.4 Volume Control
Reducing the power consumption is key for building a self-

sustained energy harvesting platform. Based on the energy
footprint of the device, signal playback and recording are the
most significant power-consuming operations. The power
consumption of recording is fixed, but the transmit power
can be controlled by adjusting the speaker volume. We also
generally want to decrease volume for scalability and to im-
prove pet friendliness. Since the system relies on the ampli-
tude of the received signal to estimate occupancy level, we
observed a trade-off between the power consumption and
the system performance. Figure 6 shows how volume im-
pacts the clustering performance of WPCA in one of our
test environments. Tighter clusters are easier to distinguish
and hence perform better. The ideal output power is both
environment and room geometry dependent. For this rea-
son, we utilize signal-to-noise ratio (SNR) as a criteria to
estimate the system performance in different environments.
The duration of the received signal on which we calculate
the SNR is an important factor since the received signal dis-

sipates at different rates in different environments. Based
on our experiment results, we find that the features from
the first two segments of the received signal (i.e. the first
reflection) are generally more significant in the generation
of high-rank principal components, therefore we use them
to define SNR. During installation, the volume of the trans-
mitter is slowly increased until a particular SNR threshold
of the reflected signal is achieved. This threshold is selected
based on results described in Section 5.1.

4. PLATFORM IMPLEMENTATION
In this section, we discuss the hardware platform and the

software processing workflow. This entails how data is cap-
tured and passed to a mobile device for installation and
training.

4.1 Hardware Design
We developed an energy harvesting, embedded hardware

platform for our ultrasound transceivers as shown in Fig-
ure 3. The platform was designed to have a low enough
power consumption so that it can be powered using a 7x5.5cm
solar cell harvesting energy from artificial or natural light
sources. This allows for a flexible installation at a low cost,
since the transceivers do not need to be connected to AC wall
power, which is often difficult to access at ceiling mounting
locations.

The hardware platform features a single PCB design, which
uses a TI CC2650 multi-standard BLE and 802.15.4 SoC
connected to a 192kHz audio codec, a MEMS microphone
and a piezo ultrasound speaker connected to a Class D piezo
speaker amplifier to transmit and receive ultrasound signals.
An ultrasonic horn as described in [23] is attached to the
speaker to disperse the emitted ultrasound in an omnidirec-
tional fashion. 2Mbits of on-board SRAM is used to store
recorded waveforms before they are processed and the re-
sults are sent to a gateway using 802.15.4 or BLE. Figure 2
shows a block diagram of the primary components of the
hardware platform. The total cost of our current hardware
design is around $30 at quantity 1000, including the energy
harvesting module.
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Figure 2: Block diagram of main hardware components

4.2 Processing Workflow
In this section, we discuss the processing workflow of our

system starting with installation, training and then steady-
state. All processing is performed on-board except the initial
training, which is offloaded to a computer for processing due
to memory constraint. An installer should first mount the
AURES node to the ceiling in a central location with the



Figure 3: Hardware PCB design with external solar panel

Figure 4: Hardware mounted on hanging fluorescent light

solar panel near a lighting fixture. The installer can then
configure the node using a BLE enabled device, like a smart-
phone, and bootstrap the volume configuration sequence on
AURES where the transmitter profiles the room’s SNR. Af-
ter determining a sufficient volume threshold, the node pe-
riodically scans for presence followed by collecting an occu-
pancy reading. Since initially there is no trained model, the
node will store the output of the high-pass filtered spectrum
response of the chirp in its flash memory as training data.
This will be collected over an extended period and eventu-
ally all training data is transferred to a phone or computer
to perform WPCA and regression. In cases where a gateway
is available, this could also be done in a streaming fashion.
During data collection, the installer should come back peri-
odically to label a subset of the room occupancy levels. In
our experiments we used only two labels, but at least one
point should be above 10% of the room’s capacity. When
collecting data once every 10 minutes, the AURES node has
enough storage to hold two weeks of data in its 4Mbits of
flash storage which requires up to 30 seconds to transfer to
a phone. The resulting model (<4KB) is then transferred
back to the node over BLE at which point the system be-
gins executing. The regression model is periodically updated
afterward when the room is identified as empty.

5. EVALUATION
In this section, we discuss experimental results using data

captured by our system. In order to collect raw waveform
with ground truth, we connected the AURES transceiver to
a BeagleBone Black Linux platform with a fish-eye camera.
During the sensing period, our system starts the recording

of 300ms right after each signal transmission and samples
at a rate of 192KHz1. The recording length is selected to
be significantly longer than the time required for the chirp
to dissipate fully in the room [3]. The ideal chirp length
should be shorter than the acoustic round-trip time of the
room. Assuming the smallest room of operation is 3m2, the
maximum chirps length thereby corresponds to 20ms. To
prevent audible artifacts in low-cost speakers that could be
detected by humans [24], we added an additional 5ms of
fade-in and fade-out time to the chirp and ended up with a
chirp length of 30ms.

We conducted experiments in ten environments of differ-
ent room sizes over the campus2. In each room we mounted
the system on the ceiling close to the center of the room to al-
low a better coverage3. A camera with a fish-eye lens (shown
in Figure 5b) was installed next to the system and configured
to take a low-resolution snapshot (shown in Figure 5c) right
after each signal transmission to capture ground truth. The
system was configured to collect 5 samples for both the pres-
ence detection and occupancy estimation every 10 minutes
through out the day, which correspond to ∼ 1300 samples
per day. We collected data between 3-14 consecutive days in
each room and periodically offloaded the collected data to a
remote server. Once the data collection was completed, we
trained a model using the data collected from the first day
with two occupancy levels manually labeled. To generalize
the evaluation results, we classified these rooms into 3 cat-
egories based on their sizes. Rooms occupy less than 10m2

are classified as small rooms, the rest that occupy between
10m2 − 100m2 are classified as medium rooms, and the rest
that occupy more than 100m2 are classified as large rooms.

5.1 Volume Control
Figure 6 shows how speaker volume directly impacts the

difference in received signals collected from three different
occupancy levels. For the purpose of visualization, the data
are presented in 2-D space using WPCA. Each data point
represents an observation and its color reflects the occu-
pancy level. We see that data collected at low volumes
are more difficult to be separated by their occupancy lev-
els while data collected with higher signal strength can be
easily categorized into clusters. To better understand how
the volume affects the system performance in different en-
vironments, we also calculate their corresponding SNR as
discussed in Section 3.4. Figure 7 shows the average re-
ceived SNR at different output volumes in different sizes of
rooms. One could imagine using this property to estimate
room size. We see received SNR increases exponentially with
higher output volume, and the increasing rate is higher in
smaller rooms. Figure 8 shows the system performance and
the SNR of the received signal in different environments. We
see a positive correlation between the SNR and estimation
accuracy, and we find that the mean error is greatly reduced
once the received SNR pass the 10dB threshold. At installa-
tion, the system slowly increased the volume until this 10dB
threshold is reached.

1The sampling rate can be reduced to 96KHz without much
performance loss [2].
2Our IRB declared this data collection to be non-human
subject research.
3The location of the transceiver has little impact on the
system performance [2].



(a) (b) (c)

Figure 5: Experimental setup (a) Lab with highly variable furniture and equipment positions (b) AURES node connected to
a BeagleBone Black with a fish-eye camera (c) Ground truth camera snapshots of the lab at different occupancy levels
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Figure 6: Effect of different speaker volumes on data clus-
tering in 2-D space derived by WPCA

5.2 Presence Detector
In Figure 1, we show the classifiers’ sensitivity to the room

occupancy level. We can see that the Doppler-based clas-
sifier is sensitive to movements regardless of the number of
the occupant in the room, while the variance-based classi-
fiers are more accurate when there are more occupants. The
overall performance of the presence detector is summarized
in Table 1, which includes the accuracy, false positive rate
(FPR), false negative rate (FNR), precision and recall. We
see that the overall accuracy decreases as the size of room
increases, which is not surprising since multipath reflections
are much weaker and noisier in large spaces. In our ten dif-
ferent room environments, each classifier has an accuracy
of 65− 75% on average, but when combined the overall ac-
curacy increases to 80%. Since the detector is designed to
reduce false positive instances, we are able to achieve a re-
call of 85%. For the remaining 15% false positive instances
we analyzed the distribution over the number of occupants
in different room environments to see the negative impact
on occupancy estimation. Figure 9 shows the FNR as the
number of occupants increases. We see that the detector
suffers the most from single person instances, especially in
cases where the only person is still like when typing or using
laptop. However, the false positive rate decreases exponen-
tially as the number of occupants increases. This indicates
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Figure 7: Received SNR with different output volumes

the introduced error on the successive occupancy estimation
is minimal even if the system erroneously recalibrates on
false negative instances. Also, it should be noted that in
practice we can further improve the detection accuracy by
extending the sensing period and/or increasing the number
of tones used for detection.

5.3 Occupancy Estimation
To evaluate our automatic retraining technique, we col-

lected three weeks of data in a noisy semi-opened laboratory
environment (shown in Figure 5a) which frequently changed
due to everyday use. We show the estimation traces of
the first five days of the collected data in Figure 10, where
the estimation model is trained using the first 500 samples
with two labeled occupancy levels. Without periodic self-
retraining, we see an offset of estimation error right after the
lab is being used on the first day. Moreover, the error off-
set begins to accumulate over time and prevents the system
from accurately estimating the occupancy levels for the fol-
lowing days. However, when the system retrains itself with
presence sensing, it is able to re-zero the baseline according
to the new environment sporadically and thus greatly reduce
the estimation error. Using our presence detector, the sys-
tem is able to reduce the mean error from 2 to 0.5 people. In
comparison, with a perfect presence detector, the estimation
error can be further reduced to 0.3 people. As previously
discussed in Section 3.3, the amount of improvement the
presence detector provides depends mainly on its accuracy
and the error distribution of the false negative cases.



SNR(dB)
0 5 10 15 20 25

M
e

a
n

 e
rr

o
r/

M
a

x
 C

a
p

.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 8: System performance with different SNR in small
rooms

Sizes
Param.

Acc. FP FN Prec. Rec.

Small room(s) 0.85 0.11 0.09 0.90 0.91
Medium room(s) 0.82 0.27 0.12 0.76 0.88
Large room(s) 0.75 0.29 0.21 0.72 0.79

Table 1: Presence detection performance with different room
sizes

In Figure 11, we show the system performance with vary-
ing SNR of the received signal and weights assigned to the
empty room instances. The assigned weights help the system
cope with noisy environmental data in the training dataset.
With a fixed SNR, we see that assigning overly high or low
weights both negatively impact the system’s performance.
Assigning too much weight causes the WPCA to take into
account the variance between different environments, and
thus biases the estimator away from counting people. In
contrast, an overly low weight would produce dominating
principal components poorly extrapolate the occupancy lev-
els, and the estimator would overfit and often predict the
room to be full or empty. This negative impact is more no-
ticeable when the SNR decreases, which is not surprising
since with a low SNR the amplitudes along are not correctly
estimating the occupancy level. At this point, increasing
weights exacerbates the problem. Based on the experiment
results, one should never use an overly low weight to prevent
overfitting and for our evaluation we choose weights equal
to 0.5 since it works well in most configurations. The overall
system performance in different environments is summarized
in Table 2. The error is calculated by taking the absolute
difference between our estimation and the actual number
of people in the room. The overall error slightly increases
with the room size since large rooms result in lower received
signal strength and higher variance in multipath delay. On
average, the absolute error is no more than 3 people across
different room sizes, and the error in percentage to the max-
imum number of the participated occupants is around 10%.

5.4 Open Space Performance
Unlike in enclosed rooms, in open air environments a large

portion of the transmitted signal will be scattered away after
the first reflection and only a small amount of signal can be
captured by the receiver. The amplitude of the reflected sig-
nal is highly dependent on its distance from the transceiver
and the surface material of the ground. To test the system’s
performance and sensing range in an open air environment,
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Figure 9: False negative rate with different number of occu-
pants
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Figure 10: Comparison of occupancy estimation over 5 days
of empirical data with (1) No-retrain (2) Retrain with per-
fect detector (3) Retrain with our detector

we collected a dataset of people standing in lines and in clus-
ters at different distances away from the transceiver. The
transceiver was placed 3.5 meters above the ground on a tri-
pod in an open parking lot. Table 3 shows that performance
is good for occupants standing closer than 6m in diameter
from the transceiver with an 8% estimation error. How-
ever, as occupants move further away, the estimation error
increases to 27% with a large performance drop-off beyond
a 10m diameter. In our experiments, we also noticed sev-
eral blind spots at certain transmission angles that have a
shorter detection range, which is likely caused by the im-
perfect beam pattern of our horn speaker design. In com-
parison to enclosed environments, the system’s performance
in open air is noticeably worse except at close range. This
supports the notion that our training feature is based on the
reverberation and the decay of many multipath reflections.
This experiment does show that our sensor could be used for
estimating occupants in smaller regions, even in open envi-
ronments which might be a powerful tool for estimating line
length in a food court or detecting people in cubical areas.

5.5 Energy Harvesting and Consumption
The AURES hardware platform uses a power manage-

ment IC to charge three low-self-discharge 2100mAh NiMH
cells to provide sufficient power for transmitting ultrasound
whether or not solar power is currently available. The cells
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Figure 11: Mean estimation error with different received
SNR and weights in WPCA

Room
Sizes

Tested/Max
Capacity

Avg. Error Error/ Tested
Cap.

Small(s) 4/5 0.26 6.5%
Medium(s) 10/20 0.94 9.4%
Large(s) 21/100 2.36 11.2%

Table 2: System performance with different room sizes

are able to retain 70% of their charge over 10 years, hence
making their self-discharge rate negligible. The IC starts
harvesting at an input voltage level as low as 100mV and
features a Maximum Power Point Tracking (MPTT) algo-
rithm, which modulates the load on the solar cell to maxi-
mize its power output. Voltage levels for all subsystems are
regulated by highly efficient buck converters.

Figure 13 shows the typical power consumption of a trans-
ceiver waking up from sleep and activating its audio codec
and piezo amplifier (1-2), transmitting a 40ms long ultra-
sound transmission (30ms chirp with 5ms fade-in and fade-
out time to prevent audible artifacts) at maximum volume
(86.5dB(Z) at 1m) (2-3), recording for 300ms at a sam-
pling rate of 96kHz (3-4), processing the recording and send-
ing the result over the radio (4-5) and then going back to
sleep (5). This sequence of operations consumes a total of
18.56mWs. We designed our transceivers to be able to be
installed close to light fixtures on the ceiling. Solar energy
can be harvested directly at the bulb for an improved up-
date rate, or simply from ambient light. Figure 12 shows the
power output at the maximum power point of our 7x5.5cm
solar cell at various distances from a single 100W equivalent
CFL bulb. Based on these numbers and a negligible sleep
power consumption on the order of micro-watts, we estimate
the minimum update period of the system. When the so-
lar cell is placed in close proximity to a lighting source, an
update rate on the order of seconds is possible, while ambi-
ent light energy harvesting allows for an update rate on the
order of tens of minutes.

5.6 Processing Microbenchmarks
The most CPU demanding part of our system’s operations

is performing 10 2048 point FFTs on 10 30ms long chunks
of the 300ms recording. Each segment is fetched from ex-
ternal SRAM and then processed using ARM’s CMSIS-DSP
library. Benchmarking the time duration of this process us-
ing the microcontroller’s clock, we see that this typically
requires 144.45ms, of which 44.88ms are spent fetching the

Sensing Diameter Error/# of Occ. Acc. Error
<6m 0.08 0.08

6m-10m 0.27 0.21
>10m 0.48 0.35

Table 3: System performance in open air environment
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Figure 12: Power output from solar cell vs. distance to
100W equivalent CFL bulb vs. minimum update period

data and 99.56ms are spent calculating the FFTs. From
each FFT result, 205 16bit samples from the frequency band
of interest are sent back to a base station via RF. It takes
approximately 595ms to transmit, record, process and radio
the result of an occupancy sample.

6. LIMITATIONS
Our system has a few practical limitations. We chose our

frequency range because it is supported by low-cost commer-
cial audio codecs and it is the lowest inaudible frequency that
attenuates significantly less than higher frequency narrow-
band transducers. For this reason, the signal is likely per-
ceptible to service animals. Though more testing is required,
our target duty-cycles and volume levels are designed to
aggressively optimize energy and should be almost unde-
tectable to most animals. Many commercial ultrasonic mo-
tion detectors already produce louder harmonics in our tar-
get frequency band than what we require for sensing. Our
system also requires labeling of training data. While mo-
bile phone interfaces can simplify this process, an installer
still needs to capture a snapshot when the room has a rea-
sonable (>10%) occupancy level which might be difficult in
some cases.

7. CONCLUSION
In this paper, we presented an indoor occupancy sensing

platform that is lower-power, accurate, privacy preserving,
and easy to train. The system operates by transmitting
wide-band ultrasonic signals into a room and measure the
superposition of the reflections over time to determine oc-
cupancy level. To help the system adapt to versatile back-
ground environments and improve system performance, we
use a combination of Doppler shift, variance of spectral am-
plitudes and variance of signal energy for presence detection.
We reduce the training effort while improving the system
performance by using WPCA to cope with noisy training
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Figure 13: Power consumption of AURES at full volume

data. To improve energy efficiency and scalability, we pro-
pose a volume control mechanism and an energy-harvesting
subsystem with benchmark test. Finally, we evaluated our
system in 10 rooms with different sizes and collect data of
daily use totaling over 60, 000 data samples. Our result
shows an average of 85% recall rate for presence detection
and less than 20% of estimation error on people counting.
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